Skip to main content

Topological Analysis of the Fukui Function

  • Chapter
  • First Online:
Applications of Topological Methods in Molecular Chemistry

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 22))

Abstract

In this work, the Fukui function will be analyzed using the framework of the topological analysis. First, the Fukui function will be introduced as part of the Density Functional Theory of Chemical Reactivity, and its chemical interpretation will be discussed. Then, some applications showing the importance of the topological analysis will be presented. The applications cover from acids and basis of Lewis, substituted benzenes and as an orientation predictor for the most favorable interaction between clusters (used as building blocks) to form larger structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  2. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular-systems. J Chem Phys 92(9):5397–5403

    Article  CAS  Google Scholar 

  3. Silvi B, Savin A (1994) Classification of chemical-bonds based on topological analysis of electron localization functions. Nature 371(6499):683–686

    Article  CAS  Google Scholar 

  4. Savin A, Nesper R, Wengert S, Fassler TF (1997) ELF: the electron localization function. Angew Chem 36(17):1809–1832

    Article  Google Scholar 

  5. Parr RG, Yang WT (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  6. Yang WT, Parr RG, Pucci R (1984) Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863

    Article  CAS  Google Scholar 

  7. Yang WT, Parr RG (1985) Hardness, softness, and the fukui function in the electron theory of metals and catalysis. PNAS 82:6723–6726

    Article  CAS  Google Scholar 

  8. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford UP, New York

    Google Scholar 

  9. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534

    Google Scholar 

  10. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  11. Gazquez J (2008) Perspectives on density functional theory of chemical reactivity. J Mex Chem Soc 52(1):3–10

    CAS  Google Scholar 

  12. Liu S-B (2009) Conceptual density functional theory and some recent developments. Acta Phys-Chim Sinica 25(03):590–600

    CAS  Google Scholar 

  13. Fuentealba P, Cardenas C (2015) Density functional theory of chemical reactivity. In: Chemical modelling: volume 11, vol 11. The Royal Society of Chemistry, pp 151–174

    Google Scholar 

  14. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  15. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  16. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  17. Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694

    Article  CAS  Google Scholar 

  18. Chan GKL (1999) A fresh look at ensembles: derivative discontinuities in density functional theory. J Chem Phys 110:4710–4723

    Article  CAS  Google Scholar 

  19. Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175

    Article  CAS  Google Scholar 

  20. Cohen MH, Wasserman A (2003) Revisiting N-continuous density-functional theory: chemical reactivity and “atoms” in “molecules”. Isr J Chem 43:219–227

    Article  CAS  Google Scholar 

  21. Cohen MH, Wasserman A (2007) On the foundations of chemical reactivity theory. J Phys Chem A 111:2229–2242

    Article  CAS  Google Scholar 

  22. Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43(1):285–303

    Article  CAS  Google Scholar 

  23. Cohen AJ, Mori-Sanchez P, Yang WT (2008) Insights into current limitations of density functional theory. Science 321(5890):792–794

    Article  CAS  Google Scholar 

  24. Fuentealba P, Cardenas C (2013) On the exponential model for energy with respect to number of electrons. J Mol Model 19:2849–2853

    Article  Google Scholar 

  25. Bultinck P, Cardenas C, Fuentealba P, Johnson PA, Ayers PW (2013) How to compute the Fukui matrix and function for systems with (quasi-)degenerate states. J Chem Theory Comput 10(1):202–210

    Article  Google Scholar 

  26. Bultinck P, Cardenas C, Fuentealba P, Johnson PA, Ayers PW (2013) Atomic charges and the electrostatic potential are Ill-defined in degenerate ground states. J Chem Theory Comput 9(11):4779–4788

    Article  CAS  Google Scholar 

  27. Cardenas C, Ayers PW, As Cedillo (2011) Reactivity indicators for degenerate states in the density-functional theoretic chemical reactivity theory. J Chem Phys 134(17):174103

    Article  Google Scholar 

  28. Ayers PW, Levy M (2000) Perspective on “density functional approach to the frontier-electron theory of chemical reactivity” by Parr RG, Yang W (1984). Theor Chem Acc 103:353–360

    Google Scholar 

  29. Echegaray E, Rabi S, Cárdenas C, Zadeh FH, Rabi N, Lee S, Anderson JS, Toro-Labbe A, Ayers PW (2014) In pursuit of negative Fukui functions: molecules with very small band gaps. J Mol Model 20(3):1–7

    Article  CAS  Google Scholar 

  30. Bultinck P, Carbo-Dorca R, Langenaeker W (2003) Negative Fukui functions: new insights based on electronegativity equalization. J Chem Phys 118:4349–4356

    Article  CAS  Google Scholar 

  31. Melin J, Ayers PW, Ortiz JV (2007) Removing electrons can increase the electron density: a computational study of negative Fukui functions. J Phys Chem A 111:10017–10019

    Article  CAS  Google Scholar 

  32. Bultinck P, Clarisse D, Ayers PW, Carbo-Dorca R (2011) The Fukui matrix: a simple approach to the analysis of the Fukui function and its positive character. Phys Chem Chem Phys 13(13):6110–6115

    Article  CAS  Google Scholar 

  33. Echegaray E, Cardenas C, Rabi S, Rabi N, Lee S, Heidar Zadeh F, Toro-Labbe A, Anderson JSM, Ayers PW (2013) In pursuit of negative Fukui functions: examples where the highest occupied molecular orbital fails to dominate the chemical reactivity. J Mol Model 19:2779–2783

    Article  CAS  Google Scholar 

  34. Yang WT, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  35. Chamorro E, Duque M, Cardenas C, Santos C, Tiznado W, Fuentealba P (2005) Condensation of the highest occupied molecular orbital within the electron localization function domains. J Chem Sci 117:419–424

    Article  CAS  Google Scholar 

  36. Zielinski F, Tognetti V, Joubert L (2012) Condensed descriptors for reactivity: a methodological study. Chem Phys Lett 527:67–72

    Article  CAS  Google Scholar 

  37. Bultinck P, Fias S, Alsenoy CV, Ayers PW, Carbó-Dorca R (2007) Critical thoughts on computing atom condensed Fukui functions. J Chem Phys 127:034102

    Article  Google Scholar 

  38. Hirshfeld FL (1977) Theor Chim Act 44:129–138

    Article  CAS  Google Scholar 

  39. Nalewajski RF (2003) Information principles in the theory of electronic structure. Chem Phys Lett 372(1–2):28–34

    Article  CAS  Google Scholar 

  40. Ayers PW (2006) Information theory, the shape function, and the Hirshfeld atom. Theor Chem Acc 115:370–378

    Article  CAS  Google Scholar 

  41. Bultinck P, Van Alsenoy C, Ayers PW, Carbo-Dorca R (2007) Critical analysis and extension of the Hirshfeld atoms in molecules. J Chem Phys 126:144111

    Article  Google Scholar 

  42. Verstraelen T, Ayers PW, Van Speybroeck V, Waroquier M (2013) Hirshfeld-E partitioning: AIM charges with an improved trade-off between robustness and accurate electrostatics. J Chem Theory Comput 9:2221–2225

    Article  CAS  Google Scholar 

  43. Bultinck P, Fias S, Van Alsenoy C, Ayers PW, Carbo-Dorca R (2007) Critical thoughts on computing atom condensed Fukui functions. J Chem Phys 127(3):11

    Article  Google Scholar 

  44. Fuentealba P, Florez E, Tiznado W (2010) Topological analysis of the Fukui function. J Cheml Theory Comput 6(5):1470–1478

    Article  CAS  Google Scholar 

  45. Savin A, Becke AD, Flad J, Nesper R, Preuss H, Vonschnering HG (1991) A new look at electron localization. Angew Chem 30(4):409–412

    Article  Google Scholar 

  46. Tiznado W, Chamorro E, Contreras R, Fuentealba P (2005) Comparison among four different ways to condense the Fukui function. J Phys Chem A 109(14):3220–3224

    Article  CAS  Google Scholar 

  47. Osorio E, Ferraro MB, Oña OB, Cárdenas C, Fuentealba P, Tiznado W (2011) Assembling small silicon clusters using criteria of maximum mismatch of the Fukui functions. J Chem Theory Comput 7:3995–4001

    Article  CAS  Google Scholar 

  48. Levy M (1983) The constrained search approach, mappings to external potentials, and virial-like theorems for electron-density and one-matrix energy-functional theories. In: Keller J, Gazquez JL (eds) Density functional theory, vol 187, Lecture Notes in Physics Springer, Heidelberg, pp 9–35

    Chapter  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT

    Google Scholar 

  50. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. doi:10.1002/jcc.22885

    Article  Google Scholar 

  51. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  52. Pauling L, Wheland GW (1933) The nature of the chemical bond. V. The quantum mechanical calculation of the resonance energy of benzene and naphthalene and the hydrocarbon free radicals. J Chem Phys 1(6):362–374

    Article  CAS  Google Scholar 

  53. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdisc Rev.: Comput Mol Science 1(2):153–163

    CAS  Google Scholar 

  54. Hehre WJ, Radom L, Pople JA (1972) Molecular orbital theory of the electronic structure of organic compounds. XII. conformations, stabilities, and charge distributions in monosubstituted benzenes. J Am Chem Soc 94(5):1496–1504. doi:10.1021/ja00760a011

    Article  CAS  Google Scholar 

  55. Osorio E, Ferraro MB, Oña OB, Cardenas C, Fuentealba P, Tiznado W (2011) Assembling small silicon clusters using criteria of maximum matching of the Fukui functions. J Chem Theory Comp 7(12):3995–4001

    Article  CAS  Google Scholar 

  56. Tam NM, Ngan VT, Nguyen MT (2014) Planar tetracoordinate carbon stabilized by heavier congener cages: the Si9C and Ge9C clusters. Chem Phys Lett 595–596:272–276

    Article  Google Scholar 

  57. Florez E, Tiznado W, Mondragón F, Fuentealba P (2005) Theoretical study of the interaction of molecular oxygen with copper clusters. J Phys Chem A 109(34):7815–7821

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CC and PF acknowledges financial support from FONDECYT through projects No 11090013 and 1130202, and also by Millennium Nucleus CILIS, Project ICM-P10-003-F. WT and RP acknowledge financial support from FONDECYT through project No 1140358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fuentealba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fuentealba, P., Cardenas, C., Pino-Rios, R., Tiznado, W. (2016). Topological Analysis of the Fukui Function. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_8

Download citation

Publish with us

Policies and ethics