International Conference on Mobile Computing, Applications, and Services

Mobile Computing, Applications, and Services pp 122-139 | Cite as

Pervasive Context Sharing in Magpie: Adaptive Trust-Based Privacy Protection

Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 162)

Abstract

Today’s mobile and pervasive computing devices are embedded with increasingly powerful sensing capabilities that enable them to provide exceptional spatio-temporal context acquisition that is not possible with traditional static sensor networks alone. As a result, enabling these devices to share context information with one another has a great potential for enabling mobile users to exploit the nearby cyber and physical environments in participatory or human-centric computing. However, because these mobile devices are owned by and sense information about individuals, sharing the acquired context raises significant privacy concerns. In this paper, we define Magpie, which implements an alternative to existing all-or-nothing sharing solutions. Magpie integrates a decentralized context-dependent and adaptive trust scheme with a privacy preserving sharing mechanism to evaluate the risk of disclosing potentially private data. The proposed method uses this assessment to dynamically determine the sharing strategy and the quality of the context shared. Conceptually, Magpie allows devices to actively obfuscate context information so that sharing is still useful but does not breach user privacy. To our knowledge this is the first work to take both trust relationships and users’ individual privacy sensitivities into account to balance sharing and privacy preservation. We describe Magpie and then evaluate it in a series of application-oriented experiments running on the Opportunistic Network Environment (ONE) simulator.

Keywords

Context sharing Privacy preserving Adaptive trust 

References

  1. 1.
    Shilton, K.: Four billion little brothers?: Privacy, mobile phones, and ubiquitous data collection. Commun. ACM 52(11), 48–53 (2009)CrossRefGoogle Scholar
  2. 2.
    Eisenman, S.B., Miluzzo, E., Lane, N.D., Peterson, R.A., Ahn, G.-S., Campbell, A.T.: Bikenet: a mobile sensing system for cyclist experience mapping. ACM Trans. Sens. Netw. 6(1), 6 (2009)CrossRefGoogle Scholar
  3. 3.
    Mendez, D., Perez, A.J., Labrador, N., Marron, J.J., et al.: P-sense: a participatory sensing system for air pollution monitoringand control. In: Percom Workshops, pp. 344–347 (2011)Google Scholar
  4. 4.
    Bales, E., Nikzad, N., Quick, N., Ziftci, C., Patrick, K., Griswold, W.: Citisense: Mobile air quality sensing for individuals and communitiesdesign and deployment of the citisense mobile air-quality system.In Proceedings of PervasiveHealth (2012)Google Scholar
  5. 5.
    Grim, E., Fok, C.-L., Julien, C.: Grapevine: efficient situational awareness in pervasive computingenvironments. In: Proceedings of Percom Workshops (2012)Google Scholar
  6. 6.
    Srivastava, M., Abdelzaher, T., Szymanski, B.: Human-centric sensing. Philos. Trans. Royal Soc. Lond. Math. Phys. Eng. Sci. 370(1958), 176–197 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Almenarez, F., Marin, A., Díaz, D., Sanchez, J.: Developing a model for trust management in pervasive devices. In: Proceedings of Percom Workshops (2006)Google Scholar
  8. 8.
    Wang, X., Cheng, W., Mohapatra, P., Abdelzaher, T.: Artsense: anonymous reputation and trust in participatory sensing. In: Proceedings of INFOCOM (2013)Google Scholar
  9. 9.
    Xiong, L., Liu, L.: Building trust in decentralized peer-to-peer electronic communities. In: Proceedings of ICECR-5 (2002)Google Scholar
  10. 10.
    Shi, E., Chan, T.-H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Proceedings of NDSS (2011)Google Scholar
  11. 11.
    Ganti, R.K., Pham, N., Tsai, Y.-E., Abdelzaher, T.F.: Poolview: stream privacy for grassroots participatory sensing. In: Proceedings of SenSys, pp. 281–294 (2008)Google Scholar
  12. 12.
    Dwork, C.: Differential privacy. In: Encyclopedia of Cryptography and Security, pp. 338–340 (2011)Google Scholar
  13. 13.
    Keränen, A., Ott, J., Kärkkäinen, T.: The one simulator for dtn protocol evaluation. In: Proceedings of SimuTOOLS, pp. 55 (2009)Google Scholar
  14. 14.
    Christin, D., Reinhardt, A., Kanhere, S.S., Hollick, M.: A survey on privacy in mobile participatory sensing applications. J. Syst. Softw. 84(11), 1928–1946 (2011)CrossRefGoogle Scholar
  15. 15.
    Pelusi, L., Passarella, A., Conti, M.: Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. IEEE Commun. Mag. 44(11), 134–141 (2006)CrossRefGoogle Scholar
  16. 16.
    Luhmann, N.: Familiarity, n.confidence, trust: problems and alternatives. Trust Mak. Breaking Coop. Relat. 6, 94–107 (2000)Google Scholar
  17. 17.
    Li, H., Singhal, M.: Trust management in distributed systems. IEEE Comput. 40(2), 45–53 (2007)CrossRefGoogle Scholar
  18. 18.
    Babu, S.S., Raha, A., Naskar, M.K.: Trust evaluation based on nodes characteristics and neighbouring nodes recommendations for WSN. In: Wireless Sensor Network 2014 (2014)Google Scholar
  19. 19.
    Uddin, M.G., Zulkernine, M., Ahamed, S.I.: Cat: a context-aware trust model for open and dynamic systems. In: Proceedings of SAC, pp. 2024–2029 (2008)Google Scholar
  20. 20.
    Selcuk, A.A., Uzun, E., Pariente, M.R.: A reputation-based trust management system for p2p networks. In: Proceedings of CCGrid, pp. 251–258 (2004)Google Scholar
  21. 21.
    Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(5), 557–570 (2002)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Bilogrevic, I., Freudiger, J., De Cristofaro, E., Uzun, E.: What’s the gist? privacy-preserving aggregation of user profiles. In: Kutyłowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 128–145. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Reinhardt, A., Englert, F., Christin, D.: Averting the privacy risks of smart metering by local data preprocessing. Pervasive Mob. Comput. 16, 171–183 (2015)CrossRefGoogle Scholar
  24. 24.
    Pallapa, G., Das, S.K., Di Francesco, M., Aura, T.: Adaptive and context-aware privacy preservation exploiting user interactions in smart environments. Pervasive Mob. Comput. 12, 232–243 (2014)CrossRefGoogle Scholar
  25. 25.
    Hengartner, U., Steenkiste, P.: Avoiding privacy violations caused by context-sensitive services. Pervasive Mob. Comput. 2(4), 427–452 (2006)CrossRefGoogle Scholar
  26. 26.
    Tomasic, A., Zimmerman, J., Steinfeld, A., Huang, Y.: Motivating contribution in a participatory sensing system via quid-pro-quo. In: Proceedings of CSCW (2014)Google Scholar
  27. 27.
    Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A. Shih, E., Balakrishnan, H., Madden, S.: Cartel: a distributed mobile sensor computing system. In: Proceedings of SenSys, pp. 125–138 (2006)Google Scholar
  28. 28.
    Shokri, R., Theodorakopoulos, G., Papadimitratos, P., Kazemi, E., Hubaux, J.: Hiding in the mobile crowd: locationprivacy through collaboration. IEEE Trans. DSC 11(3), 266–279 (2014)Google Scholar
  29. 29.
    Liu, Y., Rahmati, A., Huang, Y., Jang, H., Zhong, L., Zhang, Y., Zhang, S.: xshare: supporting impromptu sharing of mobile phones. In: Proceedings of MobiSys (2009)Google Scholar
  30. 30.
    Golrezaei, N., Molisch, A., Dimakis, A.G., Caire, G.: Femtocaching and device-to-device collaboration. IEEE Commun. Mag. 51(4), 142–149 (2013)CrossRefGoogle Scholar
  31. 31.
    Oulasvirta, A.: Finding meaningful uses for context-aware technologies: thehumanistic research strategy. In: Proceedings of the SIGCHI Conference on Human Factors in ComputingSystems, pp. 247–254 (2004)Google Scholar
  32. 32.
    Stephen, M.: Formalising trust as a computational concept. Ph.D. dissertation. University of Stirling, Scotland (1994)Google Scholar
  33. 33.
    Duma, C., Shahmehri, N., Caronni, G.: Dynamic trust metrics for peer-to-peer systems. In: Proceedings of DESA, pp. 776–781 (2005)Google Scholar
  34. 34.
    Jiang, X., Landay, J., et al.: Modeling privacy control in context-aware systems. IEEE Pervasive Comput. 1(3), 59–63 (2002)CrossRefGoogle Scholar
  35. 35.
    Lu, Y., Wang, Z., Yu, Y.-T., Fan, R., Gerla, M.: Social network based security scheme in mobile information-centric network. In: Proceedings of MED-HOC-NET (2013)Google Scholar
  36. 36.
    Parris, I., Bigwood, G., Henderson, T.: Privacy-enhanced social network routing in opportunistic networks. In: Proceedings of Percom Workshops, pp. 624–629 (2010)Google Scholar
  37. 37.
    Belyaev, Yu.K., Chepurin, E.V. (originator): Weibull distribution.http://www.encyclopediaofmath.org/index.php?title=Weibull_distribution&oldid=18906
  38. 38.
    Sarathy, R., Muralidhar, K.: Evaluating laplace noise addition to satisfy differential privacy for numeric data. Trans. Data Priv. 4(1), 1–17 (2011)MathSciNetGoogle Scholar

Copyright information

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations