Advertisement

Grape Polyphenols in the Prevention of Cardiovascular Disease

  • Myron GrossEmail author
Chapter

Abstract

The consumption of grapes has been considered part of a prudent diet and a healthy lifestyle for many years. It contributes toward compliance with the recommendation of consuming five servings of fruits and vegetables per day. Compliance with this recommendation has been associated with cardioprotective effects and low levels of cardiovascular disease mortality and morbidity. The association of grape intake with low cardiovascular disease risk is supported by various epidemiologic, clinical, and experimental studies. In particular, grapes contain numerous compounds with bioactivities relevant to the prevention of cardiovascular disease. Grapes contain simple phenols, simple phenolic acids, cinnamic acids, stilbenes, proanthocyanidins, anthocyanins, flavonoids, flavans, anthocyanins, resveratrol, and carotenoids. Many of the compounds have multiple bioactivities. For instance, resveratrol has numerous bioactivities and is a potent cardioprotective agent. The bioactivities of resveratrol and other grape components include antioxidative, lipid-lowering, and anti-inflammatory effects. Clinically, grapes and grape products have anti-atherosclerotic, anti-arrhythmic, vasorelaxation activities, and possibly anti-hyperglycemic effects. In addition, grapes and its products have been associated with low platelet activity and low thrombosis, promoting normal endothelial function, blocking cellular adhesion molecule activity, and preventing the oxidation of LDL particles. We describe the association of grapes, its products, and compounds with specified bioactivities, pinpointing their sites of action. In addition, it is recognized that the bioactivity of several flavonoids in grapes may depend upon the context of their consumption, food versus supplement, and overall dietary composition. Diets high in fruits and vegetables are also generally low in saturated fat, low in calories, and high in omega-3 fatty acids: characteristics associated with low body weight and blood pressure. Many of these effects will require additional detailed studies for their recognition. Thus, understanding the effects of grape intake and the interactions of its components and overall dietary composition will require extensive additional research.

Keywords

Flavonoids Phenolics Cardiovascular disease Sites of action Bioactivity 

References

  1. Alvarez-Suarez JM, Dekanski D, Ristić S, Radonjić NV, Petronijević ND, Giampieri F, Astolfi P, González-Paramás AM, Santos-Buelga C, Tulipani S, Quiles JL, Mezzetti B, Battino M (2011) Strawberry polyphenols attenuate ethanol-induced gastric lesions in rats by activation of antioxidant enzymes and attenuation of MDA increase. PloS One 6:e25878CrossRefGoogle Scholar
  2. Ashby J, Tinwell H, Pennie W (1999) Partial and weak oestrogenicity of the red wine constituent resveratrol: consideration of its superagonist activity in MCF-7 cells and its suggested cardiovascular protective effects. J Appl Toxicol 19:39–45CrossRefGoogle Scholar
  3. Aviram M, Fuhrman B (2002) Wine flavonoids protect against LDL oxidation and atherosclerosis. Ann N Y Acad Sci 957:146–161CrossRefGoogle Scholar
  4. Babaev VR, Fazio S, Gleaves LA, Carter KJ, Semenkovich CF, Linton MF (1999) Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo. J Clin Invest 103:1697–1705CrossRefGoogle Scholar
  5. Barona J, Aristizabal JC, Blesso CN, Volek JS, Fernandez ML (2012) Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome. J Nutr 142:1626–1632CrossRefGoogle Scholar
  6. Baroni MV, Di Paola Naranjo RD, García-Ferreyra C, Otaiza S, Wunderlin DA (2012) How good antioxidant is the red wine? Comparison of some in vitro and in vivo methods to assess the antioxidant capacity of Argentinean red wines. LWT Food Sci Technol 47:1–7CrossRefGoogle Scholar
  7. Basly JP, Marre-Fournier F, Le Bail JC, Habrioux G, Chulia AJ (2000) Estrogenic/antiestrogenic and scavenging properties of (E)- and (Z)-resveratrol. Life Sci 66:769–777CrossRefGoogle Scholar
  8. Belcaro G, Ledda A, Hu S, Cesarone MR, Feragalli B, Dugall M, Belcaro G, Ledda A, Hu S, Cesarone MR, Feragalli B, Dugall M (2013) Grape seed procyanidins in pre- and mild hypertension: a registry study. Evid Based Complement Alternat Med 2013:e313142Google Scholar
  9. Beretz A, Stierle A, Anton R, Cazenave JP (1982) Role of cyclic AMP in the inhibition of human platelet aggregation by quercetin, a flavonoid that potentiates the effect of prostacyclin. Biochem Pharmacol 31:3597–3600CrossRefGoogle Scholar
  10. Bernátová I, Pechánová O, Babál P, Kyselá S, Stvrtina S, Andriantsitohaina R (2002) Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. Am J Physiol Heart Circ Physiol 282:H942–H948CrossRefGoogle Scholar
  11. Bhat KPL, Kosmeder JW, Pezzuto JM (2001) Biological effects of resveratrol. Antioxid Redox Signal 3:1041–1064CrossRefGoogle Scholar
  12. Blanco-Colio LM, Valderrama M, Alvarez-Sala LA, Bustos C, Ortego M, Hernández-Presa MA, Cancelas P, Gómez-Gerique J, Millán J, Egido J (2000) Red wine intake prevents nuclear factor-kappaB activation in peripheral blood mononuclear cells of healthy volunteers during postprandial lipemia. Circulation 102:1020–1026CrossRefGoogle Scholar
  13. Borradaile NM, de Dreu LE, Barrett PHR, Huff MW (2002) Inhibition of hepatocyte apoB secretion by naringenin: enhanced rapid intracellular degradation independent of reduced microsomal cholesteryl esters. J Lipid Res 43:1544–1554CrossRefGoogle Scholar
  14. Botden IPG, Draijer R, Westerhof BE, Rutten JHW, Langendonk JG, Sijbrands EJG, Danser AHJ, Zock PL, van den Meiracker AH (2012) Red wine polyphenols do not lower peripheral or central blood pressure in high normal blood pressure and hypertension. Am J Hypertens 25:718–723CrossRefGoogle Scholar
  15. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333CrossRefGoogle Scholar
  16. Bub A, Watzl B, Heeb D, Rechkemmer G, Briviba K (2001) Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur J Nutr 40:113–120CrossRefGoogle Scholar
  17. Cadenas S, Barja G (1999) Resveratrol, melatonin, vitamin E, and PBN protect against renal oxidative DNA damage induced by the kidney carcinogen KBrO3. Free Radic Biol Med 26:1531–1537CrossRefGoogle Scholar
  18. Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, Aiello FB, Piantelli M (2000) Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer 87:595–600CrossRefGoogle Scholar
  19. Camejo G, Lopez A, Vegas H, Paoli H (1975) The participation of aortic proteins in the formation of complexes between low density lipoproteins and intima-media extracts. Atherosclerosis 21:77–91CrossRefGoogle Scholar
  20. Camejo G, Lalaguna F, Lopez F, Starosta R (1980) Characterization and properties of a lipoprotein-complexing proteoglycan from human aorta. Atherosclerosis 35:307–320CrossRefGoogle Scholar
  21. Cao G, Prior RL (1999) Anthocyanins are detected in human plasma after oral administration of an elderberry extract. Clin Chem 45:574–576Google Scholar
  22. Cao G, Muccitelli HU, Sánchez-Moreno C, Prior RL (2001) Anthocyanins are absorbed in glycated forms in elderly women: a pharmacokinetic study. Am J Clin Nutr 73:920–926Google Scholar
  23. Carr TP, Parks JS, Rudel LL (1992) Hepatic ACAT activity in African green monkeys is highly correlated to plasma LDL cholesteryl ester enrichment and coronary artery atherosclerosis. Arterioscler Thromb 12:1274–1283CrossRefGoogle Scholar
  24. Chaves AA, Joshi MS, Coyle CM, Brady JE, Dech SJ, Schanbacher BL, Baliga R, Basuray A, Bauer JA (2009) Vasoprotective endothelial effects of a standardized grape product in humans. Vascul Pharmacol 50:20–26CrossRefGoogle Scholar
  25. Chiva-Blanch G, Urpi-Sarda M, Llorach R, Rotches-Ribalta M, Guillén M, Casas R, Arranz S, Valderas-Martinez P, Portoles O, Corella D, Tinahones F, Lamuela-Raventos RM, Andres-Lacueva C, Estruch R (2012) Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: a randomized clinical trial. Am J Clin Nutr 95:326–334CrossRefGoogle Scholar
  26. Chuang C-C, McIntosh MK (2011) Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annu Rev Nutr 31:155–176CrossRefGoogle Scholar
  27. Commonwealth Scientific and Industrial Research Organization (2007) Finding the white wine difference. Phys. Org. Accessed 26 Feb 2016Google Scholar
  28. Conseil G, Baubichon-Cortay H, Dayan G, Jault JM, Barron D, Di Pietro A (1998) Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc Natl Acad Sci USA 95:9831–9836CrossRefGoogle Scholar
  29. Corder R, Douthwaite JA, Lees DM, Khan NQ, Viseu Dos Santos AC, Wood EG, Carrier MJ (2001) Endothelin-1 synthesis reduced by red wine. Nature 414:863–864CrossRefGoogle Scholar
  30. Dash S, Xiao C, Morgantini C, Szeto L, Lewis GF (2013) High-dose resveratrol treatment for 2 weeks inhibits intestinal and hepatic lipoprotein production in overweight/obese men. Arterioscler Thromb Vasc Biol 33:2895–2901CrossRefGoogle Scholar
  31. Davies MJ, Judd JT, Baer DJ, Clevidence BA, Paul DR, Edwards AJ, Wiseman SA, Muesing RA, Chen SC (2003) Black tea consumption reduces total and LDL cholesterol in mildly hypercholesterolemic adults. J Nutr 133:3298S–3302SGoogle Scholar
  32. Demrow HS, Slane PR, Folts JD (1995) Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation 91:1182–1188CrossRefGoogle Scholar
  33. Déprez S, Brezillon C, Rabot S, Philippe C, Mila I, Lapierre C, Scalbert A (2000) Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J Nutr 130:2733–2738Google Scholar
  34. Diebolt M, Bucher B, Andriantsitohaina R (2001) Wine polyphenols decrease blood pressure, improve NO vasodilatation, and induce gene expression. Hypertension 38:159–165CrossRefGoogle Scholar
  35. Dohadwala MM, Vita JA (2009) Grapes and cardiovascular disease. J Nutr 139:1788S–1793SCrossRefGoogle Scholar
  36. Dohadwala MM, Hamburg NM, Holbrook M, Kim BH, Duess M-A, Levit A, Titas M, Chung WB, Vincent FB, Caiano TL, Frame AA, Keaney JF, Vita JA (2010) Effects of Concord grape juice on ambulatory blood pressure in prehypertension and stage 1 hypertension. Am J Clin Nutr 92:1052–1059CrossRefGoogle Scholar
  37. Dohadwala MM, Holbrook M, Hamburg NM, Shenouda SM, Chung WB, Titas M, Kluge MA, Wang N, Palmisano J, Milbury PE, Blumberg JB, Vita JA (2011) Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am J Clin Nutr 93:934–940CrossRefGoogle Scholar
  38. Dower JI, Geleijnse JM, Gijsbers L, Zock PL, Kromhout D, Hollman PC (2015) Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: a randomized, double-blind, placebo-controlled, crossover trial. Am J Clin Nutr 101:914–921CrossRefGoogle Scholar
  39. Duthie GG, Gardner PT, Kyle JAM (2003) Plant polyphenols: are they the new magic bullet? Proc Nutr Soc 62:599–603CrossRefGoogle Scholar
  40. Estruch R, Sacanella E, Badia E, Antúnez E, Nicolás JM, Fernández-Solá J, Rotilio D, de Gaetano G, Rubin E, Urbano-Márquez A (2004) Different effects of red wine and gin consumption on inflammatory biomarkers of atherosclerosis: a prospective randomized crossover trial. Effects of wine on inflammatory markers. Atherosclerosis 175:117–123CrossRefGoogle Scholar
  41. Feng AN, Chen YL, Chen YT, Ding YZ, Lin SJ (1999) Red wine inhibits monocyte chemotactic protein-1 expression and modestly reduces neointimal hyperplasia after balloon injury in cholesterol-fed rabbits. Circulation 100:2254–2259CrossRefGoogle Scholar
  42. Ferrara N (1999) Molecular and biological properties of vascular endothelial growth factor. J Mol Med (Berl) 77:527–543CrossRefGoogle Scholar
  43. Ferrero ME, Bertelli AE, Fulgenzi A, Pellegatta F, Corsi MM, Bonfrate M, Ferrara F, De Caterina R, Giovannini L, Bertelli A (1998) Activity in vitro of resveratrol on granulocyte and monocyte adhesion to endothelium. Am J Clin Nutr 68:1208–1214Google Scholar
  44. Fitzpatrick DF, Hirschfield SL, Coffey RG (1993) Endothelium-dependent vasorelaxing activity of wine and other grape products. Am J Physiol 265:H774–H778Google Scholar
  45. Fitzpatrick DF, Hirschfield SL, Ricci T, Jantzen P, Coffey RG (1995) Endothelium-dependent vasorelaxation caused by various plant extracts. J Cardiovasc Pharmacol 26:90–95CrossRefGoogle Scholar
  46. Fitzpatrick DF, Fleming RC, Bing B, Maggi DA, O’Malley RM (2000) Isolation and characterization of endothelium-dependent vasorelaxing compounds from grape seeds. J Agric Food Chem 48:6384–6390CrossRefGoogle Scholar
  47. Frank T, Netzel M, Strass G, Bitsch R, Bitsch I (2003) Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Can J Physiol Pharmacol 81:423–435CrossRefGoogle Scholar
  48. Frankel EN, Kanner J, German JB, Parks E, Kinsella JE (1993) Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341:454–457CrossRefGoogle Scholar
  49. Freeze-Dried Table Grape Powder Analysis Report (2011) California Table Grape Commission Freeze-Dried Table Graphe Powder Analysis Report, 1st Edn. California Table Grape Commision, 2013. Accessed 26 Feb 2016Google Scholar
  50. Frémont L (2000) Biological effects of resveratrol. Life Sci 66:663–673CrossRefGoogle Scholar
  51. Freyberger A, Hartmann E, Hildebrand H, Krötlinger F (2001) Differential response of immature rat uterine tissue to ethinyl estradiol and the red wine constituent resveratrol. Arch Toxicol 74:709–715CrossRefGoogle Scholar
  52. Giada MDLR (2013) Food phenolic compounds: main classes, sources and their antioxidant power. In: Morales-Gonza’lez JA (ed) Oxidative stress and chronic degenerative diseases—a role for antioxidants. InTech, Rijeka, pp 87–112Google Scholar
  53. Glass CK, Witztum JL (2001) Atherosclerosis. Cell 104:503–516CrossRefGoogle Scholar
  54. González-Flores D, Gamero E, Garrido M, Ramírez R, Moreno D, Delgado J, Valdés E, Barriga C, Rodríguez AB, Paredes SD (2012) Urinary 6-sulfatoxymelatonin and total antioxidant capacity increase after the intake of a grape juice cv. Tempranillo stabilized with HHP. Food Funct 3:34–39CrossRefGoogle Scholar
  55. Groenewoud G, Hundt HK (1986) The microbial metabolism of condensed (+)-catechins by rat-caecal microflora. Xenobiotica 16:99–107CrossRefGoogle Scholar
  56. Gryglewski RJ, Korbut R, Robak J, Swies J (1987) On the mechanism of antithrombotic action of flavonoids. Biochem Pharmacol 36:317–322CrossRefGoogle Scholar
  57. Hansson GK (1997) Cell-mediated immunity in atherosclerosis. Curr Opin Lipidol 8:301–311CrossRefGoogle Scholar
  58. Harmand MF, Blanquet P (1978) The fate of total flavanolic oligomers (OFT) extracted from ‘Vitis vinifera L.’ in the rat. Eur J Drug Metab Pharmacokinet 3:15–30CrossRefGoogle Scholar
  59. Hassellund SS, Flaa A, Kjeldsen SE, Seljeflot I, Karlsen A, Erlund I, Rostrup M (2013) Effects of anthocyanins on cardiovascular risk factors and inflammation in pre-hypertensive men: a double-blind randomized placebo-controlled crossover study. J Hum Hypertens 27:100–106CrossRefGoogle Scholar
  60. Hassimotto NMA, Pinto MDS, Lajolo FM (2008) Antioxidant status in humans after consumption of blackberry (Rubus fruticosus L.) juices with and without defatted milk. J Agric Food Chem 56:11727–11733CrossRefGoogle Scholar
  61. Hattori R, Otani H, Maulik N, Das DK (2002) Pharmacological preconditioning with resveratrol: role of nitric oxide. Am J Physiol Heart Circ Physiol 282:H1988–H1995CrossRefGoogle Scholar
  62. Hedges JC, Dechert MA, Yamboliev IA, Martin JL, Hickey E, Weber LA, Gerthoffer WT (1999) A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem 274:24211–24219CrossRefGoogle Scholar
  63. Hollis JH, Houchins JA, Blumberg JB, Mattes RD (2009) Effects of concord grape juice on appetite, diet, body weight, lipid profile, and antioxidant status of adults. J Am Coll Nutr 28:574–582CrossRefGoogle Scholar
  64. Iijima K, Yoshizumi M, Hashimoto M, Kim S, Eto M, Ako J, Liang YQ, Sudoh N, Hosoda K, Nakahara K, Toba K, Ouchi Y (2000) Red wine polyphenols inhibit proliferation of vascular smooth muscle cells and downregulate expression of cyclin A gene. Circulation 101:805–811CrossRefGoogle Scholar
  65. Iijima K, Yoshizumi M, Hashimoto M, Akishita M, Kozaki K, Ako J, Watanabe T, Ohike Y, Son B, Yu J, Nakahara K, Ouchi Y (2002) Red wine polyphenols inhibit vascular smooth muscle cell migration through two distinct signaling pathways. Circulation 105:2404–2410CrossRefGoogle Scholar
  66. Imai Y, Clemmons DR (1999) Roles of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways in stimulation of vascular smooth muscle cell migration and deoxyriboncleic acid synthesis by insulin-like growth factor-I. Endocrinology 140:4228–4235Google Scholar
  67. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Fabbro CD, Alaux M, Gaspero GD, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Clainche IL, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefGoogle Scholar
  68. Jialal I, Devaraj S, Kaul N (2001) The effect of alpha-tocopherol on monocyte proatherogenic activity. J Nutr 131:389S–394SGoogle Scholar
  69. Jimenez-Ramsey LM, Rogler JC, Housley TL, Butler LG, Elkin RG (1994) Absorption and distribution of 14C-labeled condensed tannins and related sorghum phenolics in chickens. J Agric Food Chem 42:963–967CrossRefGoogle Scholar
  70. Kalin R, Righi A, Del Rosso A, Bagchi D, Generini S, Cerinic MM, Das DK (2002) Activin, a grape seed-derived proanthocyanidin extract, reduces plasma levels of oxidative stress and adhesion molecules (ICAM-1, VCAM-1 and E-selectin) in systemic sclerosis. Free Radic Res 36:819–825CrossRefGoogle Scholar
  71. Kar P, Laight D, Rooprai HK, Shaw KM, Cummings M (2009) Effects of grape seed extract in type 2 diabetic subjects at high cardiovascular risk: a double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med 26:526–531CrossRefGoogle Scholar
  72. Kim SM, Chung MJ, Ha TJ, Choi HN, Jang SJ, Kim SO, Chun MH, Do SI, Choo YK, Park YI (2012) Neuroprotective effects of black soybean anthocyanins via inactivation of ASK1-JNK/p38 pathways and mobilization of cellular sialic acids. Life Sci 90:874–882CrossRefGoogle Scholar
  73. Kimura Y (2003) Pharmacological studies on resveratrol. Methods Find Exp Clin Pharmacol 25:297–310CrossRefGoogle Scholar
  74. Knall C, Worthen GS, Johnson GL (1997) Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc Natl Acad Sci USA 94:3052–3057CrossRefGoogle Scholar
  75. Koenen RR, von Hundelshausen P, Nesmelova IV, Zernecke A, Liehn EA, Sarabi A, Kramp BK, Piccinini AM, Paludan SR, Kowalska MA, Kungl AJ, Hackeng TM, Mayo KH, Weber C (2009) Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 15:97–103CrossRefGoogle Scholar
  76. Kolehmainen M, Mykkänen O, Kirjavainen PV, Leppänen T, Moilanen E, Adriaens M, Laaksonen DE, Hallikainen M, Puupponen-Pimiä R, Pulkkinen L, Mykkänen H, Gylling H, Poutanen K, Törrönen R (2012) Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol Nutr Food Res 56:1501–1510CrossRefGoogle Scholar
  77. Landolfi R, Mower RL, Steiner M (1984) Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relations. Biochem Pharmacol 33:1525–1530CrossRefGoogle Scholar
  78. Laparra J, Michaud J, Masquelier J (1977) Etude pharmacocinétique des oligomères flavanoliques (Pharmacokinetic study of flavonic oligomers). Plant Med Phytother 11:133–142Google Scholar
  79. Lapidot T, Harel S, Granit R, Kanner J (1998) Bioavailability of red wine anthocyanins as detected in human urine. J Agric Food Chem 46:4297–4302CrossRefGoogle Scholar
  80. Larson A, Witman MAH, Guo Y, Ives S, Richardson RS, Bruno RS, Jalili T, Symons JD (2012) Acute, quercetin-induced reductions in blood pressure in hypertensive individuals are not secondary to lower plasma angiotensin-converting enzyme activity or endothelin-1: nitric oxide. Nutr Res 32:557–564CrossRefGoogle Scholar
  81. Lavy A, Fuhrman B, Markel A, Dankner G, Ben-Amotz A, Presser D, Aviram M (1994) Effect of dietary supplementation of red or white wine on human blood chemistry, hematology and coagulation: favorable effect of red wine on plasma high-density lipoprotein. Ann Nutr Metab 38:287–294CrossRefGoogle Scholar
  82. Lee SK, Mbwambo ZH, Chung H, Luyengi L, Gamez EJ, Mehta RG, Kinghorn AD, Pezzuto JM (1998) Evaluation of the antioxidant potential of natural products. Comb Chem High Throughput Screen 1:35–46Google Scholar
  83. Leeper NJ, Ardehali R, deGoma EM, Heidenreich PA (2007) Statin use in patients with extremely low low-density lipoprotein levels is associated with improved survival. Circulation 116:613–618CrossRefGoogle Scholar
  84. Leikert JF, Räthel TR, Wohlfart P, Cheynier V, Vollmar AM, Dirsch VM (2002) Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation 106:1614–1617CrossRefGoogle Scholar
  85. Leonard SS, Xia C, Jiang B-H, Stinefelt B, Klandorf H, Harris GK, Shi X (2003) Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun 309:1017–1026CrossRefGoogle Scholar
  86. Leslie EM, Mao Q, Oleschuk CJ, Deeley RG, Cole SP (2001) Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and atpase activities by interaction with dietary flavonoids. Mol Pharmacol 59:1171–1180Google Scholar
  87. Löest HB, Noh SK, Koo SI (2002) Green tea extract inhibits the lymphatic absorption of cholesterol and alpha-tocopherol in ovariectomized rats. J Nutr 132:1282–1288Google Scholar
  88. Manna SK, Mukhopadhyay A, Aggarwal BB (2000) Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 164:6509–6519CrossRefGoogle Scholar
  89. Matsumoto H, Inaba H, Kishi M, Tominaga S, Hirayama M, Tsuda T (2001) Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J Agric Food Chem 49:1546–1551CrossRefGoogle Scholar
  90. Maxwell S, Cruickshank A, Thorpe G (1994) Red wine and antioxidant activity in serum. Lancet 344:193–194CrossRefGoogle Scholar
  91. McGhie TK, Ainge GD, Barnett LE, Cooney JM, Jensen DJ (2003) Anthocyanin glycosides from berry fruit are absorbed and excreted unmetabolized by both humans and rats. J Agric Food Chem 51:4539–4548CrossRefGoogle Scholar
  92. Medina-Remón A, Zamora-Ros R, Rotchés-Ribalta M, Andres-Lacueva C, Martínez-González MA, Covas MI, Corella D, Salas-Salvadó J, Gómez-Gracia E, Ruiz-Gutiérrez V, García de la Corte FJ, Fiol M, Pena MA, Saez GT, Ros E, Serra-Majem L, Pinto X, Warnberg J, Estruch R, Lamuela-Raventos RM (2011) Total polyphenol excretion and blood pressure in subjects at high cardiovascular risk. Nutr Metab Cardiovasc Dis 21:323–331CrossRefGoogle Scholar
  93. Mellen PB, Daniel KR, Brosnihan KB, Hansen KJ, Herrington DM (2010) Effect of muscadine grape seed supplementation on vascular function in subjects with or at risk for cardiovascular disease: a randomized crossover trial. J Am Coll Nutr 29:469–475CrossRefGoogle Scholar
  94. Mestas J, Ley K (2008) Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc Med 18:228–232CrossRefGoogle Scholar
  95. Milbury PE, Cao G, Prior RL, Blumberg J (2002) Bioavailability of elderberry anthocyanins. Mech Ageing Dev 123:997–1006CrossRefGoogle Scholar
  96. Mizutani K, Ikeda K, Kawai Y, Yamori Y (1999) Extract of wine phenolics improves aortic biomechanical properties in stroke-prone spontaneously hypertensive rats (SHRSP). J Nutr Sci Vitaminol (Tokyo) 45:95–106CrossRefGoogle Scholar
  97. Morazzoni P, Livio S, Scilingo A, Malandrino S (1991) Vaccinium myrtillus anthocyanosides pharmacokinetics in rats. Arzneimittelforschung 41:128–131Google Scholar
  98. Morton LW, Abu-Amsha Caccetta R, Puddey IB, Croft KD (2000) Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease. Clin Exp Pharmacol Physiol 27:152–159CrossRefGoogle Scholar
  99. Nakano T, Nakashima Y, Yonemitsu Y, Sumiyoshi S, Chen Y-X, Akishima Y, Ishii T, Iida M, Sueishi K (2005) Angiogenesis and lymphangiogenesis and expression of lymphangiogenic factors in the atherosclerotic intima of human coronary arteries. Hum Pathol 36:330–340CrossRefGoogle Scholar
  100. Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K (2007) Early human atherosclerosis accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol 27:1159–1165CrossRefGoogle Scholar
  101. Nakashima Y, Wight TN, Sueishi K (2008) Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res 79:14–23CrossRefGoogle Scholar
  102. Ndiaye M, Chataigneau T, Andriantsitohaina R, Stoclet J-C, Schini-Kerth VB (2003) Red wine polyphenols cause endothelium-dependent EDHF-mediated relaxations in porcine coronary arteries via a redox-sensitive mechanism. Biochem Biophys Res Commun 310:371–377CrossRefGoogle Scholar
  103. Netzel M, Strass G, Bitsch I, Konitz R, Christmann M, Bitsch R (2002) Red wine anthocyanins and their bioavailability in humans. Emaehrung 26:58–63Google Scholar
  104. Nielsen ILF, Dragsted LO, Ravn-Haren G, Freese R, Rasmussen SE (2003) Absorption and excretion of black currant anthocyanins in humans and watanabe heritable hyperlipidemic rabbits. J Agric Food Chem 51:2813–2820CrossRefGoogle Scholar
  105. Öörni K, Hakala JK, Annila A, Ala-Korpela M, Kovanen PT (1998) Sphingomyelinase induces aggregation and fusion, but phospholipase A2 only aggregation, of low density lipoprotein (LDL) particles two distinct mechanisms leading to increased binding strength of LDL to human aortic proteoglycans. J Biol Chem 273:29127–29134CrossRefGoogle Scholar
  106. Pace-Asciak CR, Rounova O, Hahn SE, Diamandis EP, Goldberg DM (1996) Wines and grape juices as modulators of platelet aggregation in healthy human subjects. Clin Chim Acta 246:163–182CrossRefGoogle Scholar
  107. Paganga G, Rice-Evans CA (1997) The identification of flavonoids as glycosides in human plasma. FEBS Lett 401:78–82CrossRefGoogle Scholar
  108. Pal S, Ho N, Santos C, Dubois P, Mamo J, Croft K, Allister E (2003) Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells. J Nutr 133:700–706Google Scholar
  109. Park YK, Lee SH, Park E, Kim J, Kang M-H (2009) Changes in antioxidant status, blood pressure, and lymphocyte DNA damage from grape juice supplementation. Ann NY Acad Sci 1171:385–390CrossRefGoogle Scholar
  110. Passamonti S, Vrhovsek U, Vanzo A, Mattivi F (2003) The stomach as a site for anthocyanins absorption from food. FEBS Lett 544:210–213CrossRefGoogle Scholar
  111. Pellegrini N, Pareti FI, Stabile F, Brusamolino A, Simonetti P (1996) Effects of moderate consumption of red wine on platelet aggregation and haemostatic variables in healthy volunteers. Eur J Clin Nutr 50:209–213Google Scholar
  112. Pellegrini N, Serafini M, Colombi B, Rio DD, Salvatore S, Bianchi M, Brighenti F (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133:2812–2819Google Scholar
  113. Razavi S-M, Gholamin S, Eskandari A, Mohsenian N, Ghorbanihaghjo A, Delazar A, Rashtchizadeh N, Keshtkar-Jahromi M, Argani H (2013) Red grape seed extract improves lipid profiles and decreases oxidized low-density lipoprotein in patients with mild hyperlipidemia. J Med Food 16:255–258CrossRefGoogle Scholar
  114. Rein D, Paglieroni TG, Pearson DA, Wun T, Schmitz HH, Gosselin R, Keen CL (2000) Cocoa and wine polyphenols modulate platelet activation and function. J Nutr 130:2120S–2126SGoogle Scholar
  115. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526CrossRefGoogle Scholar
  116. Rivero-Pérez MD, Muñiz P, Gonzalez-Sanjosé ML (2007) Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies. J Agric Food Chem 55:5476–5483CrossRefGoogle Scholar
  117. Robinson J (2001) Concise Wine Companion. Oxford University Press, OxfordGoogle Scholar
  118. Robinson J (2012) Wine and spirits: understanding wine quality, vol 2. Wine & Spirit Education Trust, LondonGoogle Scholar
  119. Rossi A, Serraino I, Dugo P, Di Paola R, Mondello L, Genovese T, Morabito D, Dugo G, Sautebin L, Caputi AP, Cuzzocrea S (2003) Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation. Free Radic Res 37:891–900CrossRefGoogle Scholar
  120. Russo P, Tedesco I, Russo M, Russo GL, Venezia A, Cicala C (2001) Effects of de-alcoholated red wine and its phenolic fractions on platelet aggregation. Nutr Metab Cardiovasc Dis 11:25–29Google Scholar
  121. Santos-Buelga C, Scalbert A (2000) Proanthocyanidins and tannin-like compounds—nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80:1094–1117CrossRefGoogle Scholar
  122. Schramm DD, Pearson DA, German JB (1997) Endothelial cell basal PGI2 release is stimulated by wine in vitro: one mechanism that may mediate the vasoprotective effects of wine. J Nutr Biochem 8:647–651CrossRefGoogle Scholar
  123. Siasos G, Tousoulis D, Tsigkou V, Kokkou E, Oikonomou E, Vavuranakis M, Basdra EK, Papavassiliou AG, Stefanadis C (2013) Flavonoids in atherosclerosis: an overview of their mechanisms of action. Curr Med Chem 20:2641–2660CrossRefGoogle Scholar
  124. Stalmach A, Edwards CA, Wightman JD, Crozier A (2011) Identification of (poly)phenolic compounds in concord grape juice and their metabolites in human plasma and urine after juice consumption. J Agric Food Chem 59:9512–9522CrossRefGoogle Scholar
  125. Tedesco I, Russo M, Russo P, Iacomino G, Russo GL, Carraturo A, Faruolo C, Moio L, Palumbo R (2000) Antioxidant effect of red wine polyphenols on red blood cells. J Nutr Biochem 11:114–119CrossRefGoogle Scholar
  126. Terrill TH, Waghorn GC, Woolley DJ, McNabb WC, Barry TN (1994) Assay and digestion of 14C-labelled condensed tannins in the gastrointestinal tract of sheep. Br J Nutr 72:467–477CrossRefGoogle Scholar
  127. Tessitore L, Davit A, Sarotto I, Caderni G (2000) Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression. Carcinogenesis 21:1619–1622CrossRefGoogle Scholar
  128. Thiagarajan G, Chandani S, Sundari CS, Rao SH, Kulkarni AV, Balasubramanian D (2001) Antioxidant properties of green and black tea, and their potential ability to retard the progression of eye lens cataract. Exp Eye Res 73:393–401CrossRefGoogle Scholar
  129. Thorne RF, Mhaidat NM, Ralston KJ, Burns GF (2007) CD36 is a receptor for oxidized high density lipoprotein: implications for the development of atherosclerosis. FEBS Lett 581:1227–1232CrossRefGoogle Scholar
  130. Tomé-Carneiro J, Gonzálvez M, Larrosa M, Yáñez-Gascón MJ, García-Almagro FJ, Ruiz-Ros JA, García-Conesa MT, Tomás-Barberán FA, Espín JC (2012a) One-year consumption of a grape nutraceutical containing resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease. Am J Cardiol 110:356–363CrossRefGoogle Scholar
  131. Tomé-Carneiro J, Gonzálvez M, Larrosa M, Yáñez-Gascón MJ, García-Almagro FJ, Ruiz-Ros JA, Tomás-Barberán FA, García-Conesa MT, Espín JC (2012b) Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drugs Ther 27:37–48CrossRefGoogle Scholar
  132. Tomé-Carneiro J, Gonzálvez M, Larrosa M, García-Almagro FJ, Avilés-Plaza F, Parra S, Yáñez-Gascón MJ, Ruiz-Ros JA, García-Conesa MT, Tomás-Barberán FA, Espín JC (2012c) Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: a triple-blind, 6-month follow-up, placebo-controlled, randomized trial. Mol Nutr Food Res 56:810–821CrossRefGoogle Scholar
  133. Tresserra-Rimbau A, Rimm EB, Medina-Remón A, Martínez-González MA, de la Torre R, Corella D, Salas-Salvadó J, Gómez-Gracia E, Lapetra J, Arós F, Fiol M, Ros E, Serra-Majem L, Pintó X, Saez GT, Basora J, Sorlí JV, Martínez JA, Vinyoles E, Ruiz-Gutiérrez V, Estruch R, Lamuela-Raventós RM (2014) Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr Metab Cardiovasc Dis 24:639–647CrossRefGoogle Scholar
  134. Triebel S, Trieu H-L, Richling E (2012) Modulation of inflammatory gene expression by a bilberry (Vaccinium myrtillus L.) extract and single anthocyanins considering their limited stability under cell culture conditions. J Agric Food Chem 60:8902–8910CrossRefGoogle Scholar
  135. Troup R, Hayes JH, Raatz SK, Thyagarajan B, Khaliq W, Jacobs DR, Key NS, Morawski BM, Kaiser D, Bank AJ, Gross M (2015) Effect of black tea intake on blood cholesterol concentrations in individuals with mild hypercholesterolemia: a diet-controlled randomized trial. J Acad Nutr Diet 115:264–271.e2CrossRefGoogle Scholar
  136. Tsuda T, Horio F, Osawa T (1999) Absorption and metabolism of cyanidin 3-O-beta-d-glucoside in rats. FEBS Lett 449:179–182CrossRefGoogle Scholar
  137. Turner RT, Evans GL, Zhang M, Maran A, Sibonga JD (1999) Is resveratrol an estrogen agonist in growing rats? Endocrinology 140:50–54Google Scholar
  138. van Mierlo LAJ, Zock PL, van der Knaap HCM, Draijer R (2010) Grape polyphenols do not affect vascular function in healthy men. J Nutr 140:1769–1773CrossRefGoogle Scholar
  139. Vastano BC, Chen Y, Zhu N, Ho CT, Zhou Z, Rosen RT (2000) Isolation and identification of stilbenes in two varieties of Polygonum cuspidatum. J Agric Food Chem 48:253–256CrossRefGoogle Scholar
  140. Vijayagopal P, Srinivasan SR, Radhakrishnamurthy B, Berenson GS (1981) Interaction of serum lipoproteins and a proteoglycan from bovine aorta. J Biol Chem 256:8234–8241Google Scholar
  141. “Vitis vinifera,” Euro + Med PlantBase [Online]. Available: http://www.emplantbase.org/home.html. Accessed 5 Oct 2015
  142. Weseler AR, Ruijters EJB, Drittij-Reijnders M-J, Reesink KD, Haenen GRMM, Bast A (2011) Pleiotropic benefit of monomeric and oligomeric flavanols on vascular health—a randomized controlled clinical pilot study. PLoS One 6:e28460CrossRefGoogle Scholar
  143. Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15:551–561CrossRefGoogle Scholar
  144. Wilson K, Fry GL, Chappell DA, Sigmund CD, Medh JD (2001) Macrophage-specific expression of human lipoprotein lipase accelerates atherosclerosis in transgenic apolipoprotein E knockout mice but not in C57BL/6 mice. Arterioscler Thromb Vasc Biol 21:1809–1815CrossRefGoogle Scholar
  145. Yang CS, Landau JM, Huang MT, Newmark HL (2001) Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 21:381–406CrossRefGoogle Scholar
  146. Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL, Han S, Welch CL, Wang N, Randolph GJ, Snoeck HW, Tall AR (2010) ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328:1689–1693CrossRefGoogle Scholar
  147. Zenebe W, Pechánová O, Andriantsitohaina R (2003) Red wine polyphenols induce vasorelaxation by increased nitric oxide bioactivity. Physiol Res 52:425–432Google Scholar
  148. Zern TL, Wood RJ, Greene C, West KL, Liu Y, Aggarwal D, Shachter NS, Fernandez ML (2005) Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J Nutr 135:1911–1917Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations