Abstract
High mountain regions have been identified as a major hotspot of climate change during recent decades, resulting in a rapid change of local geo- and ecosystems. The ecosystem response to changes of near-surface temperatures and precipitation is often analyzed and simulated by means of statistical or process-based modeling applications. However, these models require high-quality climate input data. Based on the assumption that freely available gridded climate data sets are often not suitable for climate change impact investigation due to their low spatial resolution and a lack of accuracy, this paper aims to suggest adequate statistical downscaling routines in order to facilitate the cooperation of climate and climate impact research. We firstly summarize the requirements of ecological climate impact studies and identify the deficiencies of freely available climate reanalysis and regionalization products. Based on a network of seven recently installed weather stations in the highly structured target area, the seasonal, diurnal, and spatial heterogeneity of near-surface temperatures and precipitation amounts is analyzed, and the major large-scale atmospheric and local-scale topographic forcing are specified. The analysis of observations highly suggests that local-scale climatic conditions are influenced by both large-scale atmospheric parameters and topographic characteristics. Based on related studies in similar environments, we eventually suggest a statistical downscaling approach integrating large-scale atmospheric fields (derived from reanalysis products or large-scale climate models) and GIS-based terrain parameterization in order to generate fully distributed fields of ecologically relevant climate parameters with high spatial resolution.
Keywords
- High mountain climates
- Observations
- Statistical downscaling
- Lapse rates
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Chang Biol 11(9):1504–1513. doi:10.1111/j.1365-2486.2005.01000.x
Berrisford P, Dee D, Fielding K, Fuentes M., Kallberg P, Kobayashi S, Uppala S (2009) The ERA-Interim Archive, ERA report series [online]. Available from: http://www.ecmwf.int/publications/library/do/references/list/782009. Accessed 15 Jan 2013
Bhatt BC, Nakamura K (2005) Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar. Mon Weather Rev 133(1):149–165. doi:10.1175/MWR-2846.1
Böhner J, Antonić O (2009) Land-surface parameters specific to topo-climatology. In: Tomislav H, Hannes IR (eds) Developments in soil science, vol 33. Amsterdam, Elsevier, pp 195–226.
Bollasina M, Bertolani L, Tartari G (2002) Meteorological observations at high altitude in the Khumbu Valley, Nepal Himalayas, 1994–1999. Bull Glaciol Res 19:1–11
Bookhagen B, Burbank DW (2006) Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett 33(8):L08405. doi:10.1029/2006GL026037
Borgaonkar HP, Sikder AB, Ram S (2011) High altitude forest sensitivity to the recent warming: a tree-ring analysis of conifers from western Himalaya, India. Quat Int Quat Int 236(1):158–166. doi:10.1016/j.quaint.2010.01.016
Camarero JJ, Gutierrez E (1999) Structure and recent recruitment at alpine forest-pasture ecotones in the Spanish Central Pyrenees. Ecoscience 6(3):451–464
Case BS, Duncan RP (2014) A novel framework for disentangling the scale-dependent influences of abiotic factors on alpine treeline position. Ecography 37(9):838–851. doi:10.1111/ecog.00280
Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007. doi:10.5194/gmd-8-1991-2015
Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at the central Nepal Himalaya. Clim Past 10(4):1277–1290
Gao L, Bernhardt, Schulz K (2012) Downscaling ERA-interim temperature data in complex terrain. Hydrol Earth Syst Sci Discuss 9:5931–5953
Gao L, Hao L, Chen X (2014) Evaluation of ERA-interim monthly temperature data over the Tibetan Plateau. J Mt Sci 11(5):1154–1168. doi:10.1007/s11629-014-3013-5
Gehrig-Fasel J, Guisan A, Zimmermann NE (2008) Evaluating thermal treeline indicators based on air and soil temperature using an air-to-soil temperature transfer model. Ecol Model 213(3–4):345–355. doi:10.1016/j.ecolmodel.2008.01.003
Gerlitz L (2015) Using fuzzified regression trees for statistical downscaling and regionalization of near surface temperatures in complex terrain. Theor Appl Climatol 1–16. 122:337–352. doi:10.1007/s00704-014-1285-x
Gerlitz L, Conrad O, Böhner J (2015) Large-scale atmospheric forcing and topographic modification of precipitation rates over High Asia – a neural-network-based approach. Earth Syst Dyn 6:61–81. doi:10.5194/esd-6-61-2015
Gerlitz L, Conrad O, Thomas A, Böhner J (2014) Warming patterns over the Tibetan Plateau and adjacent lowlands derived from elevation- and bias-corrected ERA-Interim data. Clim Res 58(3):235–246. doi:10.3354/cr01193
Higuchi K, Ageta Y, Yasunari T, Inoue J (1982) Characteristics of precipitation during the monsoon season in high-mountain areas of the Nepal Himalaya. Hydrol Asp Alpine High Mt Areas 138:21–30
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. doi:10.1002/joc.1276
Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135(1):10–21. doi:10.1007/s00442-002-1154-7
Hoch G, Körner C (2005) Growth, demography and carbon relations of polylepis trees at the world’s highest treeline. Funct Ecol 19(6):941–951
Hofgaard A, Dalen L, Hytteborn H (2009) Tree recruitment above the treeline and potential for climate-driven treeline change. J Veg Sci 20(6):1133–1144. doi:10.1111/j.1654-1103.2009.01114.x
Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14(5):395–410. doi:10.1111/j.1466-822X.2005.00168.x
Immerzeel WW, Petersen L, Ragettli S, Pellicciotti F (2014) The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour Res 50(3):2212–2226. doi:10.1002/2013WR014506
Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31(5):713–732. doi:10.1111/j.1365-2699.2003.01043.x
Liang E, Wang Y, Xu Y, Liu B, Shao X (2010) Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees 24(2):363–373. doi:10.1007/s00468-009-0406-0
Lindkvist L, Lindqvist S (1997) Spatial and temporal variability of nocturnal summer frost in elevated complex terrain. Agric For Meteorol 87(2–3):139–153. doi:10.1016/S0168-1923(97)00021-X
Lloyd CD (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J Hydrol 308(1–4):128–150. doi:10.1016/j.jhydrol.2004.10.026
Lv LX, Zhang QB (2012) Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region. J Plant Ecol 5(2):147–156. doi:10.1093/jpe/rtr016
Maignan F, Bréon FM, Chevallier F, Viovy N, Ciais P, Garrec C, Trules J, Mancip M (2011) Evaluation of a global vegetation model using time series of satellite vegetation indices. Geosci Model Dev 4(4):1103–1114
Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2013) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J Clim 27(5):1910–1927. doi:10.1175/JCLI-D-13-00282.1
Ménégoz M, Gallée H, Jacobi HW (2013) Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations. Hydrol Earth Syst Sci 17(10):3921–3936. doi:10.5194/hess-17-3921-2013
Miehe G, Miehe S, Vogel J, Co S, La D (2007) Highest treeline in the northern hemisphere found in southern Tibet. Mt Res Dev 27(2):169–173. doi:10.1659/mrd.0792
Pepin N (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5(5):424–430. doi:10.1038/nclimate2563
Pypker TG, Unsworth MH, Mix AC, Rugh W, Ocheltree T, Alstad K, Bond BJ (2007) Using nocturnal cold air drainage flow to monitor ecosystem processes in complex terrain. Ecol Appl 17(3):702–714. doi:10.1890/05-1906
Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Chang 114(3–4):527–547. doi:10.1007/s10584-012-0419-3
Rötter RP, Höhn J, Trnka M, Fronzek S, Carter TR, Kahiluoto H (2013) Modelling shifts in agroclimate and crop cultivar response under climate change. Ecol Evol 3(12):4197–4214. doi:10.1002/ece3.782
Saino N, Ambrosini R, Rubolini D, von Hardenberg J, Provenzale A, Hüppop K, Hüppop O, Lehikoinen A, Lehikoinen E, Rainio K, Romano M, Sokolov L (2011) Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc R Soc Lond B Biol Sci 278(1707):835–842. doi:10.1098/rspb.2010.1778
Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Broll PDG, Keplin DB (eds) Mountain ecosystems. Springer, Berlin, pp 275–354 [online] Available from: http://link.springer.com/chapter/10.1007/3-540-27365-4_12 (Accessed 28 October 2014)
Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Heyken H, Lange J, Müller M, Scholten T et al (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dyn 6:245–265
Schoof JT (2013) Statistical downscaling in climatology. Geogr Compass 7(4):249–265. doi:10.1111/gec3.12036
Sheridan P, Smith S, Brown A, Vosper S (2010) A simple height-based correction for temperature downscaling in complex terrain. Met Apps 17(3):329–339. doi:10.1002/met.177
Singh J, Yadav RR (2005) Spring precipitation variations over the western Himalaya, India, since A.D. 1731 as deduced from tree rings. J Geophys Res 110(D1):D01110. doi:10.1029/2004JD004855
Soria-Auza RW, Kessler M, Bach K, Barajas-Barbosa PM, Lehnert M, Herzog SK, Böhner J (2010) Impact of the quality of climate models for modelling species occurrences in countries with poor climatic documentation: a case study from Bolivia. Ecol Model 221(8):1221–1229
Von Storch H (1995) Inconsistencies at the interface of climate impact studies and global climate research. Meteorol Z 4(2):72–80
Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. [online] Available from: http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf. Accessed 28 Oct 2014
Wulf H, Bookhagen B, Scherler D (2010) Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology 118(1–2):13–21. doi:10.1016/j.geomorph.2009.12.003
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Gerlitz, L. et al. (2016). Analytic Comparison of Temperature Lapse Rates and Precipitation Gradients in a Himalayan Treeline Environment: Implications for Statistical Downscaling. In: Singh, R., Schickhoff, U., Mal, S. (eds) Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-319-28977-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-28977-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28975-5
Online ISBN: 978-3-319-28977-9
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)