Analytic Comparison of Temperature Lapse Rates and Precipitation Gradients in a Himalayan Treeline Environment: Implications for Statistical Downscaling

  • Lars GerlitzEmail author
  • Benjamin Bechtel
  • Jürgen Böhner
  • Maria Bobrowski
  • Birgit Bürzle
  • Michael Müller
  • Thomas Scholten
  • Udo Schickhoff
  • Niels Schwab
  • Johannes Weidinger


High mountain regions have been identified as a major hotspot of climate change during recent decades, resulting in a rapid change of local geo- and ecosystems. The ecosystem response to changes of near-surface temperatures and precipitation is often analyzed and simulated by means of statistical or process-based modeling applications. However, these models require high-quality climate input data. Based on the assumption that freely available gridded climate data sets are often not suitable for climate change impact investigation due to their low spatial resolution and a lack of accuracy, this paper aims to suggest adequate statistical downscaling routines in order to facilitate the cooperation of climate and climate impact research. We firstly summarize the requirements of ecological climate impact studies and identify the deficiencies of freely available climate reanalysis and regionalization products. Based on a network of seven recently installed weather stations in the highly structured target area, the seasonal, diurnal, and spatial heterogeneity of near-surface temperatures and precipitation amounts is analyzed, and the major large-scale atmospheric and local-scale topographic forcing are specified. The analysis of observations highly suggests that local-scale climatic conditions are influenced by both large-scale atmospheric parameters and topographic characteristics. Based on related studies in similar environments, we eventually suggest a statistical downscaling approach integrating large-scale atmospheric fields (derived from reanalysis products or large-scale climate models) and GIS-based terrain parameterization in order to generate fully distributed fields of ecologically relevant climate parameters with high spatial resolution.


High mountain climates Observations Statistical downscaling Lapse rates 


  1. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Chang Biol 11(9):1504–1513. doi: 10.1111/j.1365-2486.2005.01000.x CrossRefGoogle Scholar
  2. Berrisford P, Dee D, Fielding K, Fuentes M., Kallberg P, Kobayashi S, Uppala S (2009) The ERA-Interim Archive, ERA report series [online]. Available from: Accessed 15 Jan 2013
  3. Bhatt BC, Nakamura K (2005) Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar. Mon Weather Rev 133(1):149–165. doi: 10.1175/MWR-2846.1 CrossRefGoogle Scholar
  4. Böhner J, Antonić O (2009) Land-surface parameters specific to topo-climatology. In: Tomislav H, Hannes IR (eds) Developments in soil science, vol 33. Amsterdam, Elsevier, pp 195–226.Google Scholar
  5. Bollasina M, Bertolani L, Tartari G (2002) Meteorological observations at high altitude in the Khumbu Valley, Nepal Himalayas, 1994–1999. Bull Glaciol Res 19:1–11Google Scholar
  6. Bookhagen B, Burbank DW (2006) Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett 33(8):L08405. doi: 10.1029/2006GL026037 CrossRefGoogle Scholar
  7. Borgaonkar HP, Sikder AB, Ram S (2011) High altitude forest sensitivity to the recent warming: a tree-ring analysis of conifers from western Himalaya, India. Quat Int Quat Int 236(1):158–166. doi: 10.1016/j.quaint.2010.01.016 CrossRefGoogle Scholar
  8. Camarero JJ, Gutierrez E (1999) Structure and recent recruitment at alpine forest-pasture ecotones in the Spanish Central Pyrenees. Ecoscience 6(3):451–464Google Scholar
  9. Case BS, Duncan RP (2014) A novel framework for disentangling the scale-dependent influences of abiotic factors on alpine treeline position. Ecography 37(9):838–851. doi: 10.1111/ecog.00280 CrossRefGoogle Scholar
  10. Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007. doi: 10.5194/gmd-8-1991-2015 CrossRefGoogle Scholar
  11. Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at the central Nepal Himalaya. Clim Past 10(4):1277–1290CrossRefGoogle Scholar
  12. Gao L, Bernhardt, Schulz K (2012) Downscaling ERA-interim temperature data in complex terrain. Hydrol Earth Syst Sci Discuss 9:5931–5953CrossRefGoogle Scholar
  13. Gao L, Hao L, Chen X (2014) Evaluation of ERA-interim monthly temperature data over the Tibetan Plateau. J Mt Sci 11(5):1154–1168. doi: 10.1007/s11629-014-3013-5 CrossRefGoogle Scholar
  14. Gehrig-Fasel J, Guisan A, Zimmermann NE (2008) Evaluating thermal treeline indicators based on air and soil temperature using an air-to-soil temperature transfer model. Ecol Model 213(3–4):345–355. doi: 10.1016/j.ecolmodel.2008.01.003 CrossRefGoogle Scholar
  15. Gerlitz L (2015) Using fuzzified regression trees for statistical downscaling and regionalization of near surface temperatures in complex terrain. Theor Appl Climatol 1–16. 122:337–352. doi: 10.1007/s00704-014-1285-x Google Scholar
  16. Gerlitz L, Conrad O, Böhner J (2015) Large-scale atmospheric forcing and topographic modification of precipitation rates over High Asia – a neural-network-based approach. Earth Syst Dyn 6:61–81. doi: 10.5194/esd-6-61-2015 CrossRefGoogle Scholar
  17. Gerlitz L, Conrad O, Thomas A, Böhner J (2014) Warming patterns over the Tibetan Plateau and adjacent lowlands derived from elevation- and bias-corrected ERA-Interim data. Clim Res 58(3):235–246. doi: 10.3354/cr01193 CrossRefGoogle Scholar
  18. Higuchi K, Ageta Y, Yasunari T, Inoue J (1982) Characteristics of precipitation during the monsoon season in high-mountain areas of the Nepal Himalaya. Hydrol Asp Alpine High Mt Areas 138:21–30Google Scholar
  19. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  20. Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135(1):10–21. doi: 10.1007/s00442-002-1154-7 CrossRefGoogle Scholar
  21. Hoch G, Körner C (2005) Growth, demography and carbon relations of polylepis trees at the world’s highest treeline. Funct Ecol 19(6):941–951CrossRefGoogle Scholar
  22. Hofgaard A, Dalen L, Hytteborn H (2009) Tree recruitment above the treeline and potential for climate-driven treeline change. J Veg Sci 20(6):1133–1144. doi: 10.1111/j.1654-1103.2009.01114.x CrossRefGoogle Scholar
  23. Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14(5):395–410. doi: 10.1111/j.1466-822X.2005.00168.x CrossRefGoogle Scholar
  24. Immerzeel WW, Petersen L, Ragettli S, Pellicciotti F (2014) The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour Res 50(3):2212–2226. doi: 10.1002/2013WR014506 CrossRefGoogle Scholar
  25. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31(5):713–732. doi: 10.1111/j.1365-2699.2003.01043.x CrossRefGoogle Scholar
  26. Liang E, Wang Y, Xu Y, Liu B, Shao X (2010) Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees 24(2):363–373. doi: 10.1007/s00468-009-0406-0 CrossRefGoogle Scholar
  27. Lindkvist L, Lindqvist S (1997) Spatial and temporal variability of nocturnal summer frost in elevated complex terrain. Agric For Meteorol 87(2–3):139–153. doi: 10.1016/S0168-1923(97)00021-X CrossRefGoogle Scholar
  28. Lloyd CD (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J Hydrol 308(1–4):128–150. doi: 10.1016/j.jhydrol.2004.10.026 CrossRefGoogle Scholar
  29. Lv LX, Zhang QB (2012) Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region. J Plant Ecol 5(2):147–156. doi: 10.1093/jpe/rtr016 CrossRefGoogle Scholar
  30. Maignan F, Bréon FM, Chevallier F, Viovy N, Ciais P, Garrec C, Trules J, Mancip M (2011) Evaluation of a global vegetation model using time series of satellite vegetation indices. Geosci Model Dev 4(4):1103–1114CrossRefGoogle Scholar
  31. Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2013) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J Clim 27(5):1910–1927. doi: 10.1175/JCLI-D-13-00282.1 CrossRefGoogle Scholar
  32. Ménégoz M, Gallée H, Jacobi HW (2013) Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations. Hydrol Earth Syst Sci 17(10):3921–3936. doi: 10.5194/hess-17-3921-2013 CrossRefGoogle Scholar
  33. Miehe G, Miehe S, Vogel J, Co S, La D (2007) Highest treeline in the northern hemisphere found in southern Tibet. Mt Res Dev 27(2):169–173. doi: 10.1659/mrd.0792 CrossRefGoogle Scholar
  34. Pepin N (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5(5):424–430. doi: 10.1038/nclimate2563 CrossRefGoogle Scholar
  35. Pypker TG, Unsworth MH, Mix AC, Rugh W, Ocheltree T, Alstad K, Bond BJ (2007) Using nocturnal cold air drainage flow to monitor ecosystem processes in complex terrain. Ecol Appl 17(3):702–714. doi: 10.1890/05-1906 CrossRefGoogle Scholar
  36. Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Chang 114(3–4):527–547. doi: 10.1007/s10584-012-0419-3 CrossRefGoogle Scholar
  37. Rötter RP, Höhn J, Trnka M, Fronzek S, Carter TR, Kahiluoto H (2013) Modelling shifts in agroclimate and crop cultivar response under climate change. Ecol Evol 3(12):4197–4214. doi: 10.1002/ece3.782 CrossRefGoogle Scholar
  38. Saino N, Ambrosini R, Rubolini D, von Hardenberg J, Provenzale A, Hüppop K, Hüppop O, Lehikoinen A, Lehikoinen E, Rainio K, Romano M, Sokolov L (2011) Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc R Soc Lond B Biol Sci 278(1707):835–842. doi: 10.1098/rspb.2010.1778 CrossRefGoogle Scholar
  39. Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Broll PDG, Keplin DB (eds) Mountain ecosystems. Springer, Berlin, pp 275–354 [online] Available from: (Accessed 28 October 2014)CrossRefGoogle Scholar
  40. Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Heyken H, Lange J, Müller M, Scholten T et al (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dyn 6:245–265CrossRefGoogle Scholar
  41. Schoof JT (2013) Statistical downscaling in climatology. Geogr Compass 7(4):249–265. doi: 10.1111/gec3.12036 CrossRefGoogle Scholar
  42. Sheridan P, Smith S, Brown A, Vosper S (2010) A simple height-based correction for temperature downscaling in complex terrain. Met Apps 17(3):329–339. doi: 10.1002/met.177 Google Scholar
  43. Singh J, Yadav RR (2005) Spring precipitation variations over the western Himalaya, India, since A.D. 1731 as deduced from tree rings. J Geophys Res 110(D1):D01110. doi: 10.1029/2004JD004855 CrossRefGoogle Scholar
  44. Soria-Auza RW, Kessler M, Bach K, Barajas-Barbosa PM, Lehnert M, Herzog SK, Böhner J (2010) Impact of the quality of climate models for modelling species occurrences in countries with poor climatic documentation: a case study from Bolivia. Ecol Model 221(8):1221–1229CrossRefGoogle Scholar
  45. Von Storch H (1995) Inconsistencies at the interface of climate impact studies and global climate research. Meteorol Z 4(2):72–80Google Scholar
  46. Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. [online] Available from: Accessed 28 Oct 2014
  47. Wulf H, Bookhagen B, Scherler D (2010) Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology 118(1–2):13–21. doi: 10.1016/j.geomorph.2009.12.003 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lars Gerlitz
    • 1
    Email author
  • Benjamin Bechtel
    • 2
  • Jürgen Böhner
    • 2
  • Maria Bobrowski
    • 2
  • Birgit Bürzle
    • 2
  • Michael Müller
    • 3
  • Thomas Scholten
    • 3
  • Udo Schickhoff
    • 2
  • Niels Schwab
    • 2
  • Johannes Weidinger
    • 2
  1. 1.Section HydrologyGFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.CEN Center for Earth System Research and Sustainability, Institute of GeographyUniversity of HamburgHamburgGermany
  3. 3.Department of Geosciences, Chair of Soil Science and GeomorphologyUniversity of TübingenTübingenGermany

Personalised recommendations