Skip to main content

Spatially Variable Vegetation Greenness Trends in Uttarakhand Himalayas in Response to Environmental Drivers

  • 1080 Accesses

Abstract

Over the last few decades, Western Himalayas experienced high population growth and increase in exploitative land use practices. This trend coupled with influence of climatic variability has resulted in significant negative effects on vegetation cover and productivity. This study aims to understand the spatial patterns and severity of these impacts in Uttarakhand Himalayas. Specifically, the objectives of this study are twofold: first, to quantify interannual trends in vegetation greenness by conducting nonparametric Mann-Kendall trend analysis on MODIS-NDVI time series (2000–2014) and, second, to assess distribution of this trend with respect to land use land cover properties and elevation zones. The results show that out of the total vegetated area in Uttarakhand, 2,686.95 km2 (5.69 %) showed changes in the vegetation greenness and 73.64 % of this change was significant negative trend (browning). While areas with <800 m elevation showed dominant browning, those between 800 and 1600 m showed significant positive trend (greening), and majority of areas >1600 m were characterized by browning trend. Majority of intensively cultivated irrigated croplands in the Himalayan foothills and areas around growing urban centers showed widespread browning, whereas areas of rainfed cultivation showed dominant greening. Browning was also dominant in closed needle leaf forests and alpine shrublands, except areas where human impacts has led to more mixed patterns. These results highlight previously unreported fine-scale spatial variations in vegetation productivity trend with respect to both elevation and LULC properties.

Keywords

  • Vegetation trend
  • Uttarakhand Himalaya
  • MODIS-NDVI
  • Land cover
  • Land use
  • Elevation
  • Greening
  • Browning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-28977-9_18
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-28977-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 18.1
Fig. 18.2
Fig. 18.3
Fig. 18.4

References

  • Barichivich J, Briffa KR, Myneni R, Schrier GVD, Dorigo W, Tucker CJ, Osborn TJ, Melvin TM (2014) Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. Remote Sens 6(2):1390–1431

    CrossRef  Google Scholar 

  • Bontemps S, Defourny P, Bogaert EV, Arino O, Kalogirou V, Perez JR (2011) GLOBCOVER 2009-products description and validation report

    Google Scholar 

  • D’Arrigo RD, Kaufmann RK, Davi N, Jacoby GC, Laskowski C, Myneni RB, Cherubini P (2004) Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Glob Biogeochem Cycles 18(3):7. doi:10.1029/2004gb002249

    Google Scholar 

  • de Jong R, Verbesselt J, Zeileis A, Schaepman ME (2013) Shifts in global vegetation activity trends. Remote Sens 5(3):1117–1133. doi:10.3390/rs5031117

    CrossRef  Google Scholar 

  • Goetz SJ, Prince SD (1999) Modelling terrestrial carbon exchange and storage: evidence and implications of functional convergence in light-use efficiency. Adv Ecol Res 28(28):57–92. doi:10.1016/s0065-2504(08)60029-x

    CrossRef  Google Scholar 

  • Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Alonso JLB, Coldea G, Dick J, Erschbamer B, Kazakis G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Chang 2(2):111–115

    CrossRef  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1–2):195–213. doi:10.1016/s0034-4257(02)00096-2

    CrossRef  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385. doi:10.1126/science.1183188

    CrossRef  Google Scholar 

  • India Co (2011) Uttarakhand final population totals 2011

    Google Scholar 

  • Ives J (2004) Himalayan perceptions: environmental change and the well-being of mountain peoples. Routledge, London

    Google Scholar 

  • Kaspersen PS, Fensholt R, Huber S (2011) A spatiotemporal analysis of climatic drivers for observed changes in Sahelian vegetation productivity (1982–2007). Int J Geophys 2011:1–15

    Google Scholar 

  • Kendall MG (1938) A new measure of rank correlation. Biometrika 30:81–93

    CrossRef  Google Scholar 

  • Krishnaswamy J, John R, Joseph S (2014) Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob Chang Biol 20(1):203–215. doi:10.1111/gcb.12362

    CrossRef  Google Scholar 

  • Lillesand TM, Kiefer RW (1994) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica: J Econ Soc 13:245–259

    CrossRef  Google Scholar 

  • Menzel A (2002) Phenology: its importance to the global change community. Clim Chang 54(4):379–385

    CrossRef  Google Scholar 

  • Mishra NB, Chaudhuri G (2015) Spatio-temporal analysis of trends in seasonal vegetation productivity across Uttarakhand, Indian Himalayas, 2000–2014. Appl Geogr 56:29–41

    CrossRef  Google Scholar 

  • Mittal S, Tripathi G, Sethi D (2008) Development strategy for the hill districts of Uttarakhand. Indian Council for Research on International Economic Relations. New Delhi, India

    Google Scholar 

  • Myneni RB, Hall FG, Sellers PJ, Marshak AL (1995) The interpretation of spectral vegetation indexes. IEEE Trans Geosci Remote Sens 33(2):481–486. doi:10.1109/36.377948

    CrossRef  Google Scholar 

  • Myneni RB, Keeling C, Tucker C, Asrar G, Nemani R (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386(6626):698–702

    CrossRef  Google Scholar 

  • Negi SP (2009) Forest cover in Indian Himalayan states-an overview. Indian J For 32(1):1–5

    Google Scholar 

  • Pandit MK, Grumbine RE (2012) Potential effects of ongoing and proposed hydropower development on terrestrial biological diversity in the Indian Himalaya. Conserv Biol 26(6):1061–1071. doi:10.1111/j.1523-1739.2012.01918.x

    CrossRef  Google Scholar 

  • Pandit MK, Sodhi NS, Koh LP, Bhaskar A, Brook BW (2007) Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodivers Conserv 16(1):153–163. doi:10.1007/s10531-006-9038-5

    CrossRef  Google Scholar 

  • Phukan H, Rahman Z, Devdutt P (2012) Effect of spiritual tourism on financial health of the Uttarakhand state of India. Int J Res Commer IT Manag 2(2):1–7

    Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398(6728):611–615. doi:10.1038/19297

    CrossRef  Google Scholar 

  • Rana N, Sati S, Sundriyal Y, Doval MM, Juyal N (2007) Socio-economic and environmental implications of the hydroelectric projects in Uttarakhand Himalaya, India. J Mt Sci 4(4):344–353

    CrossRef  Google Scholar 

  • Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Chang 114(3–4):527–547. doi:10.1007/s10584-012-0419-3

    CrossRef  Google Scholar 

  • Semwal RL, Nautiyal S, Sen K, Rana U, Maikhuri R, Rao K, Saxena K (2004) Patterns and ecological implications of agricultural land-use changes: a case study from central Himalaya, India. Agric Ecosyst Environ 102(1):81–92

    CrossRef  Google Scholar 

  • Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Clim 12(9):2775–2786. doi:10.1175/1520-0442(1999)012<2775:mttith>2.0.co;2

    CrossRef  Google Scholar 

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PloS One 7(5). doi:10.1371/journal.pone.0036741

    Google Scholar 

  • Singh J (2006) Sustainable development of the Indian Himalayan region: linking ecological and economic concerns. Curr Sci 90(6):784–788

    Google Scholar 

  • Singh J, Singh S (1987) Forest vegetation of the Himalaya. Bot Rev 53(1):80–192

    CrossRef  Google Scholar 

  • Tachikawa T, Kaku M, Iwasaki A, Gesch D, Oimoen M, Zhang Z, Danielson J, Krieger T, Curtis B, Haase J (2011) ASTER global digital elevation model version 2–summary of validation results. ASTER GDEM Validation Team (http://www.jspacesystemsorjp/ersdac/GDEM/ver2Validation/Summary_GDEM2_v alidation_report_final pdf)

  • Tiwari PC (2000) Land-use changes in Himalaya and their impact on the plains ecosystem: need for sustainable land use. Land Use Policy 17(2):101–111. doi:10.1016/s0264-8377(00)00002-8

    CrossRef  Google Scholar 

  • Tiwari P (2008) Land use changes in Himalaya and their impacts on environment, society and economy: a study of the Lake Region in Kumaon Himalaya, India. Adv Atmos Sci 25(6):1029–1042. doi:10.1007/s00376-008-1029-x

    CrossRef  Google Scholar 

  • Tiwari PC, Joshi B (2012) Urban growth in Himalaya. MRI NEWS 7

    Google Scholar 

  • Walther GR, Beißner S, Pott R (2005) Climate change and high mountain vegetation shifts. In: Mountain ecosystems. Springer, Berlin, pp 77–96

    Google Scholar 

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23(3):520–530. doi:10.1111/j.1523-1739.2009.01237.x

    CrossRef  Google Scholar 

  • Yue S, Wang C (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18(3):201–218

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niti B. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mishra, N.B., Chaudhuri, G. (2016). Spatially Variable Vegetation Greenness Trends in Uttarakhand Himalayas in Response to Environmental Drivers. In: Singh, R., Schickhoff, U., Mal, S. (eds) Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-319-28977-9_18

Download citation