Advertisement

Climate Change and Treeline Dynamics in the Himalaya

  • Udo SchickhoffEmail author
  • Maria Bobrowski
  • Jürgen Böhner
  • Birgit Bürzle
  • Ram Prasad Chaudhary
  • Lars Gerlitz
  • Jelena Lange
  • Michael Müller
  • Thomas Scholten
  • Niels Schwab
Chapter

Abstract

Treelines are sensitive to changing climatic conditions, in particular to temperature increases, and the majority of global alpine treelines has shown a response to recent climate change. High temperature trends in the Himalaya suggest a treeline advance to higher elevations; it is largely unknown, however, how broader-scale climate inputs interact with local-scale factors and processes to govern treeline response patterns. This paper reviews and synthesizes the current state of knowledge regarding sensitivity and response of Himalayan treelines to climate warming, based on extensive field observations, published results in the widely scattered literature and novel data from ongoing research of the present authors.

Palaeoecological studies indicate that the position of Himalayan treeline ecotones has been sensitive to Holocene climate change. After the Pleistocene-Holocene transition, treelines advanced in elevation to a position several hundred metres higher than today under warm-humid conditions and reached uppermost limits in the early Holocene. Decreasing temperatures below early and mid-Holocene levels induced a downward shift of treelines after c. 5.0 kyr BP. The decline of subalpine forests and treeline elevation in the more recent millennia was coincident with weakening monsoonal influence and increasing anthropogenic interferences.

To assess current treeline dynamics, treeline type, treeline form, seed-based regeneration and growth patterns are evaluated as sensitivity indicators. Anthropogenic treelines are predominant in the Himalaya; upslope movement of these treelines is related to the effects of land-use change. Near-natural treelines, rare nowadays, are usually developed as krummholz treelines which are relatively unresponsive. Strong competition within the krummholz belt and dense dwarf scrub heaths further upslope largely prevents the upward migration of tree species and retards treeline advance to higher elevation. However, intense recruitment of treeline trees within the treeline ecotone and beyond indicates beneficial preconditions for future treeline ascent. Growth patterns of treeline trees are particularly sensitive to higher winter and pre-monsoon temperatures, suggesting that moisture supply in the pre-monsoon season might be an effective control of future treeline dynamics. Modelled upslope range expansions of treeline trees point to potentially favourable bioclimatic conditions for an upward shift of treelines.

Keywords

Holocene Monsoon Niche modelling Recruitment Seedling Soil moisture Soil temperature Tree radial growth Treeline advance Treeline form Treeline type 

Notes

Acknowledgements

We would like to thank several local people in Beding and Langtang who provided lodging and support in field data collection. Our thanks also go to the Deutsche Forschungsgemeinschaft (DFG SCHI 436/14-1, SCHO 739/14-1, BO 1333/4-1), the DAAD, the University of Hamburg and several foundations for financial support.

References

  1. Agrawal DP, Kotlia BS, Kusumgar S, Gupta SK (1989) Quaternary palaeoenvironmental changes in Northwest India. In: Sahni A, Gaur R (eds) Perspectives in human evolution. Renaissance, Delhi, pp 223–260Google Scholar
  2. Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–486CrossRefGoogle Scholar
  3. Anoop A, Prasad S, Krishnan R, Naumann R, Dulski P (2013) Intensified monsoon and spatiotemporal changes in precipitation patterns in the NW Himalaya during the early-mid Holocene. Quat Int 313:74–84CrossRefGoogle Scholar
  4. Anup KC, Ghimire A (2015) High-altitude plants in era of climate change: a case of Nepal Himalayas. In: Öztürk M, Hakeem KR, Faridah-Hanum F, Efe R (eds) Climate change impacts on high-altitude ecosystems. Springer, Cham, pp 177–187Google Scholar
  5. Aryal A, Brunton D, Raubenheimer D (2014) Impact of climate change on human-wildlife-ecosystem interactions in the Trans-Himalaya region of Nepal. Theor Appl Climatol 115:517–529CrossRefGoogle Scholar
  6. Baker BB, Moseley RK (2007) Advancing treeline and retreating glaciers: implications for conservation in Yunnan, P.R. China. Arct Antarct Alp Res 39:200–209CrossRefGoogle Scholar
  7. Batllori E, Gutiérrez E (2008) Regional tree line dynamics in response to global change in the Pyrenees. J Ecol 96:1275–1288CrossRefGoogle Scholar
  8. Bera SK, Basumatary SK (2013) Vegetation history and monsoonal fluctuations during the last 12,500 years BP inferred from pollen record at Lower Subansiri Basin, Assam, Northeast India. Palaeobotanist 62:1–10Google Scholar
  9. Beug HJ, Miehe G (1999) Vegetation history and human impact in the Eastern Central Himalaya (Langtang and Helambu, Nepal). Diss Bot 318, Cramer, BerlinGoogle Scholar
  10. Bharti RR, Rai ID, Adhikari BS, Rawat GS (2011) Timberline change detection using topographic map and satellite imagery: a critique. Trop Ecol 52:133–137Google Scholar
  11. Bharti RR, Adhikari BS, Rawat GS (2012) Assessing vegetation changes in timberline ecotone of Nanda Devi National Park, Uttarakhand. Int J Appl Earth Obs Geoinform 18:472–479CrossRefGoogle Scholar
  12. Bhattacharyya A (1988) Vegetation and climate during post glacial period in the vicinity of Rohtang Pass, Great Himalayan range. Pollen et Spores 30:417–427Google Scholar
  13. Bhattacharyya A (1989) Vegetation and climate during the last 30,000 years in Ladakh. Palaeogeogr Palaeoclimatol Palaeoecol 73:25–38CrossRefGoogle Scholar
  14. Bhattacharyya A, Chaudhary V (2003) Late-summer temperature reconstruction of the eastern Himalayan region based on tree-ring data of Abies densa. Arct Antarct Alp Res 35:196–202CrossRefGoogle Scholar
  15. Bhattacharyya A, Shah SK (2009) Tree-ring studies in India, past appraisal, present status and future prospect. IAWA J 30:361–370CrossRefGoogle Scholar
  16. Bhattacharyya A, Yadav RR (1990) Growth and climate relationship in Cedrus deodara from Joshimath, Uttar Pradesh. Palaeobotanist 38:411–414Google Scholar
  17. Bhattacharyya A, Shah SK, Chaudhary V (2006) Would tree-ring data of Betula utilis have potential for the analysis of Himalayan glacial fluctuations? Curr Sci 91:754–761Google Scholar
  18. Bhattacharyya A, Sharma J, Shah SK, Chaudhury V (2007) Climatic changes during last 1800 yrs BP from Paradise Lake, Sela Pass, Arunachal Pradesh, Northeast Himalaya. Curr Sci 93:983–987Google Scholar
  19. Bhattacharyya A, Ranhotra P, Shah SK (2011) Spatio-temporal variation of alpine vegetation vis-à-vis climate during Holocene in the Himalaya. Mem Geol Soc India 77:309–319CrossRefGoogle Scholar
  20. Böhner J (2006) General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35:279–295CrossRefGoogle Scholar
  21. Borgaonkar HP, Pant GB, Rupa Kumar K (1999) Tree-ring chronologies from western Himalaya and their dendroclimatic potential. Int Assoc Wood Anat J 20:295–309Google Scholar
  22. Borgaonkar HP, Ram S, Sikder AB (2009) Assessment of tree-ring analysis of high-elevation Cedrus deodara D. Don from western Himalaya (India) in relation to climate and glacier fluctuations. Dendrochronologia 27:59–69CrossRefGoogle Scholar
  23. Borgaonkar HP, Sikder AB, Ram S (2011) High altitude forest sensitivity to the recent warming: a tree-ring analysis of conifers from western Himalaya, India. Quat Int 236:158–166CrossRefGoogle Scholar
  24. Bräuning A (2004) Tree-ring studies in the Dolpo-Himalaya (western Nepal). TRACE – Tree Rings Archaeol Climatol Ecol 2:8–12Google Scholar
  25. Bräuning A (2006) Tree-ring evidence of “Little Ice Age” glacier advances in southern Tibet. The Holocene 16:1–12CrossRefGoogle Scholar
  26. Bräuning A, Grießinger J (2006) Late Holocene variations in monsoon intensity in the Tibetan-Himalayan region – evidence from tree rings. J Geol Soc India 68:485–493Google Scholar
  27. Bräuning A, Mantwill B (2004) Summer temperature and summer monsoon history on the Tibetan plateau during the last 400 years recorded by tree rings. Geophys Res Lett 31:L24205. doi: 10.1029/2004GL020793 CrossRefGoogle Scholar
  28. Bräuning A, Grießinger J, Hochreuther P, Wernicke J (2016) Dendroecological perspectives on climate change on the southern Tibetan plateau. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, SwitzerlandGoogle Scholar
  29. Brown ET, Bendick R, Bourles DL, Gaur V, Molnar P, Raisbeck GM, Yiou F (2003) Early Holocene climate recorded in geomorphological features in Western Tibet. Palaeogeogr Palaeoclimatol Palaeoecol 199:141–151CrossRefGoogle Scholar
  30. Cai Y, Zhang H, Cheng H, An Z, Edwards RL, Wang X, Tan L, Liang F, Wang J, Kelly M (2012) The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth Planet Sci Lett 335:135–144CrossRefGoogle Scholar
  31. Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Change 63:181–200CrossRefGoogle Scholar
  32. Case BS, Duncan RP (2014) A novel framework for disentangling the scale-dependent influences of abiotic factors on alpine treeline position. Ecography 37:838–851CrossRefGoogle Scholar
  33. Chakraborty S, Bhattacharya SK, Ranhotra PS, Bhattacharyya A, Bhushan R (2006) Palaeoclimatic scenario during Holocene around Sangla valley, Kinnaur northwest Himalaya based on multi proxy records. Curr Sci 91:777–782Google Scholar
  34. Champion HG, Seth SK (1968) A revised survey of the forest types of India. Govt. of India, DelhiGoogle Scholar
  35. Chaudhary V, Bhattacharyya A (2000) Tree ring analysis of Larix griffithiana from the Eastern Himalayas in the reconstruction of past temperature. Curr Sci 79:1712–1715Google Scholar
  36. Chauhan MS (2006) Late Holocene vegetation and climate change in the alpine belt of Himachal Pradesh. Curr Sci 91:1562–1567Google Scholar
  37. Chauhan MS, Sharma C (1996) Late-Holocene vegetation of Darjeeling (Jore-Pokhari), Eastern Himalaya. Palaeobotanist 45:125–129Google Scholar
  38. Chauhan MS, Sharma C (2000) Late Holocene vegetation and climate in Dewar Tal area, Inner Lesser Garhwal Himalaya. Palaeobotanist 49:509–514Google Scholar
  39. Chauhan MS, Mazari RK, Rajagopalan G (2000) Vegetation and climate in upper Spiti region, Himachal Pradesh during late Holocene. Curr Sci 79:373–376Google Scholar
  40. Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRefGoogle Scholar
  41. Chhetri PK, Cairns DM (2015) Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. J Mt Sci 12:558–570CrossRefGoogle Scholar
  42. Chou SC, Huang CH, Hsu TW, Wu CC, Chou CH (2010) Allelopathic potential of Rhododendron formosanum Hemsl in Taiwan. Allelopathy J 25:73–92Google Scholar
  43. Clift PD, Plumb RA (2008) The asian monsoon: causes, history and effects. Cambridge Univ Press, CambridgeCrossRefGoogle Scholar
  44. Cook BI, Wolkovich EM, Davies TJ, Ault TR, Betancourt JL, Allen JM, Bolmgren K, Cleland EE, Crimmins TM, Kraft NJB, Lancaster LT, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Pau S, Regetz J, Salamin N, Schwartz MD, Travers SE (2012) Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases. Ecosystems 15:1283–1294CrossRefGoogle Scholar
  45. Danby RK, Hik DS (2007) Variability, contingency and rapid change in recent subarctic alpine treeline dynamics. J Ecol 95:352–363CrossRefGoogle Scholar
  46. Daniels LD, Veblen TT (2004) Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia. Ecology 85:1284–1296CrossRefGoogle Scholar
  47. Däniker A (1923) Biologische Studien über Wald- und Baumgrenzen, insbesondere über die klimatischen Ursachen und deren Zusammenhänge. Vierteljahresschr Naturforsch Ges Zürich 68:1–102Google Scholar
  48. Dawadi B, Liang E, Tian L, Devkota LP, Yao T (2013) Pre-monsoon precipitation signal in tree rings of timberline Betula utilis in the central Himalayas. Quat Int 283:72–77CrossRefGoogle Scholar
  49. Demske D, Tarasov PE, Wünnemann B, Riedel F (2009) Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeogr Palaeoclimatol Palaeoecol 279:172–185CrossRefGoogle Scholar
  50. Dixit Y, Hodell DA, Sinha R, Petrie CA (2014) Abrupt weakening of the Indian summer monsoon at 8.2 kyr BP. Earth Planet Sci Lett 391:16–23CrossRefGoogle Scholar
  51. Dodia R, Agrawal DP, Vora AB (1985) New pollen data from Kashmir bogs: a summary. In: Agrawal DP, Kusumgar S, Krishnamurthy RV (eds) Climate and geology of Kashmir and Central Asia. TT Printers & Publ, New Delhi, pp 101–108Google Scholar
  52. Dubey B, Yadav RR, Singh J, Chaturvedi R (2003) Upward shift of Himalayan pine in western Himalaya, India. Curr Sci 85:1135–1136Google Scholar
  53. Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate-change driven treeline shifts: relative effects of temperature increase, dispersal and invisibility. J Ecol 92:241–252CrossRefGoogle Scholar
  54. Dutta PK, Dutta BK, Das AK, Sundriyal RC (2014) Alpine timberline research gap in Himalaya: a literature review. Indian For 140:419–427Google Scholar
  55. Elliott GP (2011) Influences of 20th century warming at the upper tree line contingent on local-scale interactions: evidence from a latitudinal gradient in the Rocky Mountains, USA. Glob Ecol Biogeogr 20:46–57CrossRefGoogle Scholar
  56. Esper J, Schweingruber FH, Winiger M (2002) 1,300 years of climate history for western central Asia inferred from tree-rings. The Holocene 12:267–277CrossRefGoogle Scholar
  57. Esper J, Frank DC, Wilson RJ, Büntgen U, Treydte K (2007) Uniform growth trends among central Asian low-and high-elevation juniper tree sites. Trees 21:141–150CrossRefGoogle Scholar
  58. Fan ZX, Bräuning A, Yang B, Cao KF (2009) Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global Planet Change 65:1–11CrossRefGoogle Scholar
  59. Frenzel B (1994) Über Probleme der holozänen Vegetationsgeschichte Osttibets. Göttinger Geogr Abh 95:143–166Google Scholar
  60. Gaire NP, Dhakal YR, Lekhak HC, Bhuju DR, Shah SK (2011) Dynamics of Abies spectabilis in relation to climate change at the treeline ecotone in Langtang National Park. Nepal J Sci Technol 12:220–229Google Scholar
  61. Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at the central Nepal Himalaya. Clim Past 10:1277–1290CrossRefGoogle Scholar
  62. Gairola S, Rawal RS, Todaria NP (2008) Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalaya, India. Afr J Plant Sci 2:42–48Google Scholar
  63. Gairola S, Rawal RS, Todaria NP, Bhatt A (2014) Population structure and regeneration patterns of tree species in climate-sensitive subalpine forests of Indian western Himalaya. J For Res 25:343–349CrossRefGoogle Scholar
  64. Gasse F, Fontes JC, Van Campo E, Wei K (1996) Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4: discussion and conclusions. Palaeogeogr Palaeoclimatol Palaeoecol 120:79–92CrossRefGoogle Scholar
  65. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582CrossRefGoogle Scholar
  66. Gerlitz L, Conrad O, Thomas A, Böhner J (2014) Warming patterns over the Tibetan Plateau and adjacent lowlands derived from elevation- and bias-corrected ERA-Interim data. Clim Res 58:235–246CrossRefGoogle Scholar
  67. Ghimire BK, Lekhak HD (2007) Regeneration of Abies spectabilis (D. Don) Mirb. in subalpine forest of upper Manang, north-central Nepal. In: Chaudhary RP, Aase TH, Vetaas O, Subedi BP (eds) Local effects of global changes in the Himalayas: Manang Nepal. Kathmandu, Bergen, pp 139–149Google Scholar
  68. Ghimire BK, Mainali KP, Lekhak HD, Chaudhary RP, Ghimeray A (2010) Regeneration of Pinus wallichiana A.B. Jackson in a trans-Himalayan dry valley of north-central Nepal. Himal J Sci 6:19–26Google Scholar
  69. Ghosh R, Paruya DK, Khan MA, Chakraborty S, Sarkar A, Bera S (2014) Late quaternary climate variability and vegetation response in Ziro Lake Basin, Eastern Himalaya: a multiproxy approach. Quat Int 325:13–29CrossRefGoogle Scholar
  70. Ghosh R, Bera S, Sarkar A, Paruya DK, Yao YF, Li CS (2015) A ~50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas. Quat Sci Rev 114:100–115CrossRefGoogle Scholar
  71. Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19:755–768CrossRefGoogle Scholar
  72. Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Kazakis G, Krajči J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat JP, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Chang 2:111–115CrossRefGoogle Scholar
  73. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544CrossRefGoogle Scholar
  74. Gratzer G, Rai PB (2004) Density dependent mortality versus spatial segregation in early life stages of Abies densa and Rhododendron hodgsonii in central Bhutan. For Ecol Manag 192:143–159CrossRefGoogle Scholar
  75. Gratzer G, Rai PB, Schieler K (2002) Structure and regeneration dynamics of Abies densa forests in central Bhutan. Centralbl Ges Forstwes 119:279–287Google Scholar
  76. Graumlich LJ, Waggoner LA, Bunn AG (2005) Detecting global change at alpine treeline: coupling palaeoecology with contemporary studies. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions. An overview of current knowledge. Springer, Dordrecht, pp 501–508CrossRefGoogle Scholar
  77. Grover VI, Borsdorf A, Breuste JH, Tiwari PC, Frangetto FW (2015) Impact of global changes on mountains. Responses and adaptations. CRC Press, Boca RatonGoogle Scholar
  78. Gupta RK (1983) The living Himalayas, vol 1, Aspects of Environment and Resource Ecology of Garhwal. Today and Tomorrow’s, New DelhiGoogle Scholar
  79. Gupta C, Nautiyal DD (1998) Studies on Mansar Lake deposit, Jammu. Pollen analysis and palaeoclimatic changes. Geophytology 27:67–75Google Scholar
  80. Gupta AK, Anderson DM, Pandey DN, Singhvi AK (2006) Adaptation and human migration, and evidence of agriculture coincident with changes in the Indian summer monsoon during the Holocene. Curr Sci 90:1082–1090Google Scholar
  81. Harsch MA, Bader MY (2011) Treeline form – a potential key to understanding treeline dynamics. Glob Ecol Biogeogr 20:582–596CrossRefGoogle Scholar
  82. Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049CrossRefGoogle Scholar
  83. Hasson S, Gerlitz L, Schickhoff U, Scholten T, Böhner J (2016) Recent climate change in High Asia. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, SwitzerlandGoogle Scholar
  84. He M, Yang B, Bräuning A (2013) Tree growth–climate relationships of Juniperus tibetica along an altitudinal gradient on the southern Tibetan Plateau. Trees 27:429–439CrossRefGoogle Scholar
  85. Herzschuh U (2006) Palaeo-moisture evolution at the margins of the Asian monsoon during the last 50 ka. Quat Sci Rev 25:163–178CrossRefGoogle Scholar
  86. Holtmeier FK (2009) Mountain timberlines. Ecology, patchiness, and dynamics. Springer, DordrechtCrossRefGoogle Scholar
  87. Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410CrossRefGoogle Scholar
  88. Holtmeier FK, Broll G (2007) Treeline advance – driving processes and adverse factors. Landsc Online 1:1–21CrossRefGoogle Scholar
  89. Holtmeier FK, Broll G (2009) Altitudinal and polar treelines in the northern hemisphere – causes and response to climate change. Polarforschung 79:139–153Google Scholar
  90. Holtmeier FK, Broll G (2012) Landform influences on treeline patchiness and dynamics in a changing climate. Phys Geogr 33:403-437Google Scholar
  91. Huber UM, Bugmann HKM, Reasoner MA (eds) (2005) Global change and mountain regions. An overview of current knowledge. Springer, DordrechtGoogle Scholar
  92. IPCC (2013) Climate change 2013: the physical science basis. Contribution of the working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  93. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. Contribution of the working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  94. Jacobsen JP, Schickhoff U (1995) Untersuchungen zur Besiedlung und gegenwärtigen Waldnutzung im Hindukusch/Karakorum. Erdkunde 49:49–59Google Scholar
  95. Jarvis DI (1993) Pollen evidence of changing Holocene monsoon climate in Sichuan Province, China. Quat Res 39:325–337CrossRefGoogle Scholar
  96. Kaiser K, Opgenoorth L, Schoch WH, Miehe G (2009) Charcoal and fossil wood from palaeosols, sediments and artificial structures indicating Late Holocene woodland decline in southern Tibet (China). Quat Sci Rev 28:1539–1554CrossRefGoogle Scholar
  97. Kar R, Ranhotra PS, Bhattacharyya A, Sekar B (2002) Vegetation vis-à-vis climate and glacial fluctuations of the Gangotri Glacier since the last 2000 years. Curr Sci 82:347–351Google Scholar
  98. Kharal DK, Bhuju DR, Gaire NP, Rayamajhi S, Meilby H, Chaudhary A (2015) Population structure and distribution of Abies spectabilis (D. Don) in Central Nepal Himalaya: a comparison with the total woody vegetation of the forests at the three different elevation ranges in Manang District. Banko Janakari 25:3–14CrossRefGoogle Scholar
  99. Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459CrossRefGoogle Scholar
  100. Körner C (2007) Climatic treelines: conventions, global patterns, causes. Erdkunde 61:316–324CrossRefGoogle Scholar
  101. Körner C (2012) Alpine treelines. Functional ecology of the high elevation tree limits. Springer, BaselGoogle Scholar
  102. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732CrossRefGoogle Scholar
  103. Körner C, Ohsawa M, Spehn E, Berge E, Bugmann H, Groombridge B, Hamilton L, Hofer T, Ives J, Jodha N, Messerli B, Pratt J, Price M, Reasoner M, Rodgers A, Thonell J, Yoshino M (2005) Mountain systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, vol 1. Island Press, Washington, pp 681–716Google Scholar
  104. Kotlia BS, Joshi LM (2013) Late Holocene climatic changes in Garhwal Himalaya. Curr Sci 104:911–919Google Scholar
  105. Kramer A, Herzschuh U, Mischke S, Zhang C (2010a) Holocene treeline shifts and monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau), implications from palynological investigations. Palaeogeogr Palaeoclimatol Palaeoecol 286:23–41CrossRefGoogle Scholar
  106. Kramer A, Herzschuh U, Mischke S, Zhang C (2010b) Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile. Quat Res 73:324–335CrossRefGoogle Scholar
  107. Kullman L (2000) Tree-limit rise and recent warming: a geoecological case study from the Swedish Scandes. Nors Geogr Tidsskr 54:49–59CrossRefGoogle Scholar
  108. Kullman L (2014) Treeline (Pinus sylvestris) landscape evolution in the Swedish Scandes – a 40-year demographic effort viewed in a broader temporal context. Nors Geogr Tidsskr 68:155–167CrossRefGoogle Scholar
  109. Kullman L, Öberg L (2009) Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective. J Ecol 97:415–429CrossRefGoogle Scholar
  110. Kumar P (2012) Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodivers Conserv 21:1251–1266CrossRefGoogle Scholar
  111. Lang G (1994) Quartäre Vegetationsgeschichte Europas. Fischer, JenaGoogle Scholar
  112. Leipe C, Demske D, Tarasov PE, Members HP (2014) A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: implications for palaeoclimatic and archaeological research. Quat Int 348:93–112CrossRefGoogle Scholar
  113. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771CrossRefGoogle Scholar
  114. Lescop-Sinclair K, Payette S (1995) Recent advance of the arctic treeline along the eastern coast of Hudson Bay. J Ecol 83:929–936CrossRefGoogle Scholar
  115. Liang E, Shao XM, Xu Y (2009) Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Theor Appl Climatol 98:9–18CrossRefGoogle Scholar
  116. Liang E, Wang Y, Xu Y, Liu B, Shao X (2010) Growth variations of Abies georgei var. smithii along altitudinal gradients in the Sygera Mts., southeastern Tibetan Plateau. Trees 24:363–373CrossRefGoogle Scholar
  117. Liang E, Wang Y, Eckstein D, Luo T (2011) Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytol 190:760–769CrossRefGoogle Scholar
  118. Liang E, Dawadi B, Pederson N, Eckstein D (2014) Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology 95:2453–2465CrossRefGoogle Scholar
  119. Liu J, Qin C, Kang S (2013) Growth response of Sabina tibetica to climate factors along an elevation gradient in South Tibet. Dendrochronologia 31:255–265CrossRefGoogle Scholar
  120. Lloyd AH (2005) Ecological histories from Alaskan tree lines provide insight into future change. Ecology 86:1687–1695CrossRefGoogle Scholar
  121. Lv LX, Zhang QB (2012) Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region. J Plant Ecol 5:147–156CrossRefGoogle Scholar
  122. MacDonald GM, Velichko AA, Gattaulin VN (2000) Holocene treeline history and climate change across northern Eurasia. Quat Res 53:302–311CrossRefGoogle Scholar
  123. Malanson GP, Butler DR, Fagre DB, Walsh SJ, Tomback DF, Daniels LD, Resler LM, Smith WK, Weiss DJ, Peterson DL, Bunn AG, Hiemstra CA, Liptzin D, Bourgeron PS, Shen Z, Millar CI (2007) Alpine treeline of western North America: linking organism-to-landscape dynamics. Phys Geogr 28:378–396CrossRefGoogle Scholar
  124. Malanson GP, Resler LM, Bader MY, Holtmeier FK, Butler DR, Weiss DJ, Daniels LD, Fagre DB (2011) Mountain treelines: a roadmap for research orientation. Arct Antarct Alp Res 43:167–177CrossRefGoogle Scholar
  125. Mathisen IE, Mikheeva A, Tutubalina OV, Aune S, Hofgaard A (2014) Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroecological approaches. Appl Veg Sci 17:6–16CrossRefGoogle Scholar
  126. Mehrotra N, Shah SK, Bhattacharyya A (2014) Review of palaeoclimate records from Northeast India based on pollen proxy data of Late Pleistocene–Holocene. Quat Int 325:41–54CrossRefGoogle Scholar
  127. Miehe G (1997) Alpine vegetation types of the central Himalaya. In: Wielgolaski FE (ed) Polar and Alpine Tundra. Ecosystems of the World 3. Elsevier, Amsterdam, pp 161–184Google Scholar
  128. Miehe G (2004) Himalaya. In: Burga CA, Klötzli F, Grabherr G (eds) Gebirge der Erde. Landschaft, Klima, Pflanzenwelt. Ulmer, Stuttgart, pp 325–359Google Scholar
  129. Miehe G, Miehe S (2000) Comparative high mountain research on the treeline ecotone under human impact. Erdkunde 54:34–50CrossRefGoogle Scholar
  130. Miehe G, Miehe S, Schlütz F (2002) Vegetationskundliche und palynologische Befunde aus dem Muktinath-Tal (Tibetischer Himalaya, Nepal): Ein Beitrag zur Landschaftsgeschichte altweltlicher Hochgebirgshalbwüsten. Erdkunde 56:268–285CrossRefGoogle Scholar
  131. Miehe G, Kaiser K, Co S, Xinquan Z, Jianquan L (2008) Geo-ecological transect studies in northeast Tibet (Qinghai, China) reveal human-made mid-Holocene environmental changes in the upper Yellow River catchment changing forest to grassland. Erdkunde 62:187–199CrossRefGoogle Scholar
  132. Miehe G, Miehe S, Schlütz F (2009a) Early human impact in the forest ecotone of southern High Asia (Hindu Kush, Himalaya). Quat Res 71:255–265CrossRefGoogle Scholar
  133. Miehe G, Miehe S, Kaiser K, Reudenbach C, Behrendes L, Duo L, Schlütz F (2009b) How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeogr Palaeoclimatol Palaeoecol 276:130–147CrossRefGoogle Scholar
  134. Miehe G, Miehe S, Böhner J, Bäumler R, Ghimire SK, Bhattarai K, Chaudhary RP, Subedi M, Jha PK, Pendry C (2015) Vegetation ecology. In: Miehe G, Pendry C, Chaudhary RP (eds) Nepal: An introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden Edinburgh, pp 385-472Google Scholar
  135. Moiseev PA, Bartysh AA, Nagimov ZY (2010) Climate changes and tree stand dynamics at the upper limit of their growth in the North Ural Mountains. Russ J Ecol 41:486–497CrossRefGoogle Scholar
  136. Morrill C, Overpeck JT, Cole JE (2003) A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. The Holocene 13:465–476CrossRefGoogle Scholar
  137. Müller M, Schickhoff U, Scholten T, Drollinger S, Böhner J, Chaudhary RP (2016) How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal, Nepal. Prog Phys Geogr 40:135–160Google Scholar
  138. Negi PS (2012) Climate change, alpine treeline dynamics and associated terminology: focus on northwestern Indian Himalaya. Trop Ecol 53:371–374Google Scholar
  139. Overpeck J, Anderson D, Trumbore S, Prell W (1996) The southwest Indian Monsoon over the last 18 000 years. Clim Dyn 12:213–225CrossRefGoogle Scholar
  140. Panigrahy S, Anitha D, Kimothi MM, Singh SP (2010) Timberline change detection using topographic map and satellite imagery. Trop Ecol 51:87–91Google Scholar
  141. Pant GB, Rupa Kumar K, Yamashita K (2000) Climatic response of Cedrus deodara tree-ring parameters from two sites in the western Himalaya. Can J For Res 30:1127–1135CrossRefGoogle Scholar
  142. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollar J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355CrossRefGoogle Scholar
  143. Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alp Bot 124:1–12CrossRefGoogle Scholar
  144. Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusia J, Garbulsky M, Filella I, Jump AS (2013) Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob Chang Biol 19:2303–2338CrossRefGoogle Scholar
  145. Phadtare NR (2000) Sharp decrease in summer monsoon strength 4000–3500 cal yr B.P. in the central higher Himalaya of India based on pollen evidence from alpine peat. Quat Res 53:122–129CrossRefGoogle Scholar
  146. Phadtare NR, Pant RK (2006) A century-scale pollen record of vegetation and climate history during the past 3500 years in the Pinder Valley, Kumaon Higher Himalaya, India. Geol Soc India 68:495–506Google Scholar
  147. Prasad S, Enzel Y (2006) Holocene palaeoclimates of India. Quat Res 66:442–453CrossRefGoogle Scholar
  148. Puri GS, Gupta RK, Meher-Homji VM, Puri S (1989) Forest ecology, vol 2, Plant Form, Diversity, Communities and Succession. Oxford & IBH, New DelhiGoogle Scholar
  149. Rai ID, Bharti R, Adhikari BS, Rawat GS (2013) Structure and functioning of timberline vegetation in the western Himalaya: a case study. In: Wu N, Rawat GS, Joshi S, Ismail M, Sharma E (eds) High-altitude rangelands and their interfaces in the Hindu Kush Himalayas. ICIMOD, Kathmandu, pp 91–107Google Scholar
  150. Ram S, Borgaonkar HP (2013) Growth response of conifer trees from high altitude region of western Himalaya. Curr Sci 105:225–231Google Scholar
  151. Ram S, Borgaonkar HP (2014) Tree-ring analysis over western Himalaya and its long-term association with vapor pressure and potential evapotranspiration. Dendrochronologia 32:32–38CrossRefGoogle Scholar
  152. Ranhotra PS, Bhattacharyya A, Kar R, Sekar B (2001) Vegetation and climatic changes around Gangotri glacier during Holocene. Geol Surv India Spec Publ 65:67–71Google Scholar
  153. Rawat DS (2012) Monitoring ecosystem boundaries in the Himalaya through an ‘eye in the sky’. Curr Sci 102:1352–1354Google Scholar
  154. Rawat S, Gupta AK, Sangode SJ, Srivastava P, Nainwal HC (2015) Late Pleistocene–Holocene vegetation and Indian summer monsoon record from the Lahaul, Northwest Himalaya, India. Quat Sci Rev 114:167–181CrossRefGoogle Scholar
  155. Reasoner MA, Tinner W (2009) Holocene treeline fluctuations. In: Gornitz V (ed) Encyclopedia of palaeoclimatology and ancient environments. Springer, Dordrecht, pp 442–446CrossRefGoogle Scholar
  156. Ren QS, Yang XL, Cui GF, Wang JS, Huang Y, Wei XH, Li QL (2007) Smith fir population structure and dynamics in the timberline ecotone of the Sejila Mountain, Tibet, China. Acta Ecol Sin 27:2669–2677CrossRefGoogle Scholar
  157. Richardson AD, Friedland AJ (2009) A review of the theories to explain arctic and alpine treelines around the world. J Sustain For 28:218–242CrossRefGoogle Scholar
  158. Saijo K, Tanaka S (2002) Palaeosols of Middle Holocene age in the Thakkola Basin, Central Nepal, and their paleoclimatic significance. J Asian Earth Sci 21:323–329CrossRefGoogle Scholar
  159. Sano M, Furuta F, Kobayashi O, Sweda T (2005) Temperature variations since the mid-18th century for western Nepal, as reconstructed from tree-ring width and density of Abies spectabilis. Dendrochronologia 23:83–92CrossRefGoogle Scholar
  160. Schickhoff U (1995) Himalayan forest-cover changes in historical perspective. A case study in the Kaghan Valley, northern Pakistan. Mt Res Dev 15:3–18CrossRefGoogle Scholar
  161. Schickhoff U (2000a) The impact of Asian summer monsoon on forest distribution patterns, ecology, and regeneration north of the main Himalayan range (E-Hindukush, Karakorum). Phytocoenologia 30:633–654CrossRefGoogle Scholar
  162. Schickhoff U (2000b) Persistence and dynamics of long-lived forest stands in the Karakorum under the influence of climate and man. In: Miehe G, Zhang Y (eds) Environmental changes in High Asia. Proceedings of an international symposium at the University of Marburg. Marburger Geogr Schr 135. pp 250–264Google Scholar
  163. Schickhoff U (2002) Die Degradierung der Gebirgswälder Nordpakistans. Faktoren, Prozesse und Wirkungszusammenhänge in einem regionalen Mensch-Umwelt-System. Erdwiss Forsch 41, Steiner, StuttgartGoogle Scholar
  164. Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Broll G, Keplin B (eds) Mountain ecosystems. Studies in treeline ecology. Springer, Berlin, pp 275–354CrossRefGoogle Scholar
  165. Schickhoff U (2011) Dynamics of mountain ecosystems. In: Millington A, Blumler M, Schickhoff U (eds) Handbook of biogeography. Sage Publ, London, pp 313–337Google Scholar
  166. Schickhoff U (2012) Der Himalaya: Wandel eines Gebirgssystems unter dem Einfluss von Klima und Mensch. In: Rintelner Symposium X. Berichte der Reinhold-Tüxen-Gesellschaft 24. pp 103–121Google Scholar
  167. Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Heyken H, Lange J, Müller M, Scholten T, Schwab N, Wedegärtner R (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dyn 6:245–265CrossRefGoogle Scholar
  168. Schlütz F (1999) Palynologische Untersuchungen über die holozäne Vegetations-, Klima- und Siedlungsgeschichte in Hochasien (Nanga Parbat, Karakorum, Nianbaoyeze, Lhasa) und das Pleistozän in China (Qinling-Gebirge, Gaxun Nur). Diss Bot 315, Cramer, BerlinGoogle Scholar
  169. Schlütz F, Zech W (2004) Palynological investigations on vegetation and climate change in the Late Quaternary of Lake Rukche area, Gorkha Himal, Central Nepal. Veg Hist Archaeobot 13:81–90CrossRefGoogle Scholar
  170. Schmidt-Vogt D (1990) High altitude forests in the Jugal Himal (Eastern Central Nepal). Forest Types and Human Impact. Geoecol Res 6, Steiner, StuttgartGoogle Scholar
  171. Schwab N, Schickhoff U, Bürzle B, Hellmold J, Stellmach M (2015) Dendroecological studies in the Nepal Himalaya – review and outlook in the context of a new research initiative (TREELINE). In: Wilson R, Helle G, Gärtner H (eds) TRACE – tree rings in archaeology, climatology and ecology, vol 13. GFZ, Potsdam, pp 86–95Google Scholar
  172. Schwab N, Schickhoff U, Müller M, Gerlitz L, Bürzle B, Böhner J, Chaudhary RP, Scholten T (2016) Treeline responsiveness to climate warming: insights from a krummholz treeline in Rolwaling Himal, Nepal. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, SwitzerlandGoogle Scholar
  173. Schweinfurth U (1957) Die horizontale und vertikale Verbreitung der Vegetation im Himalaya. Bonner Geogr Abh 20, Dümmlers Verlag, BonnGoogle Scholar
  174. Schwörer C, Kaltenrieder P, Glur L, Berlinger M, Elbert J, Frei S, Gilli A, Hafner A, Anselmetti FS, Grosjean M, Tinner W (2014) Holocene climate, fire and vegetation dynamics at the treeline in the Northwestern Swiss Alps. Veg Hist Archaeobot 23:479–496CrossRefGoogle Scholar
  175. Sharma C (1992) Palaeoclimatic oscillations since last deglaciation in western Himalaya: a palynological assay. Palaeobotanist 40:374–382Google Scholar
  176. Sharma C, Chauhan MS (1988) Studies in the late Quaternary vegetational history in Himachal Pradesh. 4. Rewalsar Lake II. Pollen Spores 30:395–408Google Scholar
  177. Sharma C, Chauhan MS (2001) Late Holocene vegetation and climate of Kupup (Sikkim), Eastern Himalaya, India. J Palaeontol Soc India 46:51–58Google Scholar
  178. Sharma C, Gupta A (1995) Vegetational history of Nachiketa Tal, Garhwal Himalaya, India. J Nepal Geol Soc 10:29–34Google Scholar
  179. Sharma C, Gupta A (1997) Vegetation and climate in Garhwal Himalaya during early Holocene: Deoria Tal. Palaeobotanist 46:111–116Google Scholar
  180. Sharma S, Joachimski M, Sharma M, Tobschall HJ, Singh IB, Sharma C, Chauhan MS, Morgenroth G (2004) Lateglacial and Holocene environmental changes in Ganga plain, Northern India. Quat Sci Rev 23:145–159CrossRefGoogle Scholar
  181. Shen J, Jones RT, Yang X, Dearing JA, Wang S (2006) The Holocene vegetation history of Lake Erhai, Yunnan province, southwestern China: the role of climate and human forcings. The Holocene 16:265–276CrossRefGoogle Scholar
  182. Shrestha AB, Aryal R (2011) Climate change in Nepal and its impact on Himalayan glaciers. Reg Environ Chang 11(Suppl 1):S65–S77CrossRefGoogle Scholar
  183. Shrestha BB, Ghimire B, Lekhak HD, Jha PK (2007) Regeneration of tree line birch (Betula utilis D.Don) forest in trans-Himalayan dry valley in central Nepal. Mt Res Dev 27:259–267CrossRefGoogle Scholar
  184. Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One 7:e36741. doi: 10.1371/journal.pone.0036741 CrossRefGoogle Scholar
  185. Shrestha KB, Hofgaard A, Vandvik V (2015a) Recent treeline dynamics are similar between dry and mesic areas of Nepal, central Himalaya. J Plant Ecol 8:347–358CrossRefGoogle Scholar
  186. Shrestha KB, Hofgaard A, Vandvik V (2015b) Tree-growth response to climatic variability in two climatically contrasting treeline ecotone areas, central Himalaya, Nepal. Can J For Res 45:1643–1653CrossRefGoogle Scholar
  187. Singh G (1963) A preliminary survey of the postglacial vegetational history of Kashmir Valley. Palaeobotanist 12:73–108Google Scholar
  188. Singh G, Agrawal DP (1976) Radiocarbon evidence for deglaciation in north-western Himalaya, India. Nature 260:232CrossRefGoogle Scholar
  189. Singh JS, Singh SP (1992) Forests of Himalaya. Gyanodaya Prakashan, NainitalGoogle Scholar
  190. Singh J, Yadav RR (2000) Tree-ring indications of recent glacier fluctuations in Gangotri, western Himalaya, India. Curr Sci 79:1598–1601Google Scholar
  191. Singh CP, Panigrahy S, Thapliyal A, Kimothi MM, Soni P, Parihar JS (2012) Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Curr Sci 102:559–562Google Scholar
  192. Singh CP, Panigrahy S, Parihar JS, Dharaiya N (2013) Modeling environmental niche of Himalayan birch and remote sensing based vicarious validation. Trop Ecol 54:321–329Google Scholar
  193. Smith WK, Germino MJ, Hancock TE, Johnson DM (2003) Another perspective on altitudinal limits of Alpine timberlines. Tree Physiol 23:1101–1112CrossRefGoogle Scholar
  194. Smith WK, Germino MJ, Johnson DM, Reinhardt K (2009) The altitude of alpine treeline: a bellwether of climate change effects. Bot Rev 75:163–190CrossRefGoogle Scholar
  195. Song XY, Yao YF, Wortley AH, Paudayal KN, Yang SH, Li CS, Blackmore S (2012) Holocene vegetation and climate history at Haligu on the Jade Dragon snow mountain, Yunnan, SW China. Clim Change 113:841–866CrossRefGoogle Scholar
  196. Stainton JDA (1972) Forests of Nepal. Hafner, New YorkGoogle Scholar
  197. Staubwasser M (2006) An overview of Holocene South Asian monsoon records- monsoon domains and regional contrasts. J Geol Soc India 68:433–446Google Scholar
  198. Staubwasser M, Sirocko F, Grootes PM, Segl M (2003) Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys Res Lett 30(8):1425. doi: 10.1029/2002GL016822 CrossRefGoogle Scholar
  199. Sujakhu H, Gosai KR, Karmacharya SB (2014) Forest structure and regeneration pattern of Betula utilis D. Don in Manaslu conservation area, Nepal. Ecoprint 20:107–113CrossRefGoogle Scholar
  200. Sun X, Wu Y, Qiao Y, Walker D (1986) Late Pleistocene and Holocene vegetation history at Kunming, Yunnan Province, Southwest China. J Biogeogr 13:441–476CrossRefGoogle Scholar
  201. Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS One 8:e57103. doi: 10.1371/journal.pone.0057103 CrossRefGoogle Scholar
  202. Tinner W, Theurillat JP (2003) Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss Central Alps during the past 11,500 years. Arct Antarct Alp Res 35:158–169CrossRefGoogle Scholar
  203. Trivedi A, Chauhan MS (2008) Pollen proxy records of Holocene vegetation and climate change from Mansar Lake, Jammu region, India. Curr Sci 95:1347–1354Google Scholar
  204. Troll C (1972) The three-dimensional zonation of the Himalayan system. In: Troll C (ed) Geoecology of the high-mountain regions of Eurasia. Steiner, Wiesbaden, pp 264–275Google Scholar
  205. Vishnu-Mittre (1984) Quaternary palaeobotany and palynology in the Himalaya: an overview. Palaeobotanist 32:158–187Google Scholar
  206. Vittoz P, Rulence B, Largey T, Freléchoux F (2008) Effects of climate and land-use change on the establishment and growth of Cembran Pine (Pinus cembra L.) over the altitudinal treeline ecotone in the central Swiss Alps. Arct Antarct Alp Res 40:225–232CrossRefGoogle Scholar
  207. Walker D (1986) Late Pleistocene-early Holocene vegetational and climatic changes in Yunnan Province, southwest China. J Biogeogr 13:477–486CrossRefGoogle Scholar
  208. Wallentin G, Tappeiner U, Strobl J, Tasser E (2008) Understanding alpine tree line dynamics: an individual-based model. Ecol Model 218:235–246CrossRefGoogle Scholar
  209. Wang Y, Camarero JJ, Luo T, Liang E (2012) Spatial patterns of Smith fir alpine treelines on the south-eastern Tibetan Plateau support that contingent local conditions drive recent treeline patterns. Plant Ecol Div 5:311–321CrossRefGoogle Scholar
  210. Weiss DJ, Malanson GP, Walsh SJ (2015) Multiscale relationships between alpine treeline elevation and hypothesized environmental controls in the western United States. Ann Assoc Am Geogr 105:437–453CrossRefGoogle Scholar
  211. Wieser G, Tausz M (eds) (2007) Trees at their upper limit. Treelife limitation at the Alpine timberline. Springer, Dordrecht, pp 79–129Google Scholar
  212. Wieser G, Holtmeier FK, Smith WK (2014) Treelines in a changing globalenvironment. In: Tausz M, Grulke N (eds) Trees in a changing environment. Springer, Dordrecht, pp 221–263Google Scholar
  213. Wong MH, Duan C, Long Y, Luo Y, Xie G (2010) How will the distribution and size of subalpine Abies georgei forest respond to climate change? A study in Northwest Yunnan, China. Phys Geogr 31:319–335CrossRefGoogle Scholar
  214. Xiao X, Haberle SG, Shen J, Yang X, Han Y, Zhang E, Wang S (2014) Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. Quat Sci Rev 86:35–48CrossRefGoogle Scholar
  215. Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530CrossRefGoogle Scholar
  216. Yadav RR, Singh J (2002) Tree-ring analysis of Taxus baccata from the western Himalaya, India, and its dendroclimatic potential. Tree-Ring Res 58:23–29Google Scholar
  217. Yadav RR, Singh J, Dubey B, Chaturvedi R (2004) Varying strength of relationship between temperature and growth of high level fir at marginal ecosystems in western Himalaya, India. Curr Sci 86:1152–1156Google Scholar
  218. Yadav RR, Singh J, Dubey B, Misra KG (2006) A 1584-year ring width chronology of juniper from Lahul, Himachal Pradesh: prospects of developing millennia-long climate records. Curr Sci 90:1122–1126Google Scholar
  219. Yadav RR, Bräuning A, Singh J (2011) Tree ring inferred summer temperature variations over the last millennium in western Himalaya, India. Clim Dyn 36:1545–1554CrossRefGoogle Scholar
  220. Yang B, Wang J, Bräuning A, Dong Z, Esper J (2009) Late Holocene climatic and environmental changes in arid central Asia. Quat Int 194:68–78CrossRefGoogle Scholar
  221. Yang B, Kang X, Bräuning A, Liu J, Qin C, Liu J (2010) A 622-year regional temperature history of southeast Tibet derived from tree rings. The Holocene 20:181–190CrossRefGoogle Scholar
  222. Yang J, Zhang W, Cui Z, Yi C, Chen Y, Xu X (2010) Climate change since 11.5 ka on the Diancang Massif on the southeastern margin of the Tibetan Plateau. Quat Res 73:304–312CrossRefGoogle Scholar
  223. Yasuda Y, Tabata H (1988) Vegetation and climatic changes in Nepal Himalayas II. A preliminary study of the Holocene vegetational history in the Lake Rara National Park area, West Nepal. Proc Indian Natl Sci Acad 54A:538–549Google Scholar
  224. Yonebayashi C, Minaki M (1997) Late quaternary vegetation and climatic history of eastern Nepal. J Biogeogr 24:837–843CrossRefGoogle Scholar
  225. Yu G, Chen X, Ni J, Cheddadi R, Guiot J, Han H, Harrison SP, Huang C, Ke M, Kong Z, Li S, Li W, Liew P, Liu G, Liu J, Liu Q, Liu KB, Prentice IC, Qui W, Ren G, Song C, Sugita S, Sun X, Tang L, Van Campo E, Xia Y, Xu Q, Yan S, Yang X, Zhao J, Zheng Z (2000) Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last glacial maximum. J Biogeogr 27:635–664CrossRefGoogle Scholar
  226. Zhang L, Luo T, Liu X, Kong G (2010) Altitudinal variations in seedling and sapling density and age structure of timberline tree species in the Sergyemla Mountains, southeast Tibet. Acta Ecol Sin 30:76–80CrossRefGoogle Scholar
  227. Zhu HF, Shao XM, Yin ZY, Xu P, Xu Y, Tian H (2011) August temperature variability in the southeastern Tibetan Plateau since AD 1385 inferred from tree rings. Palaeogeogr Palaeoclimatol Palaeoecol 305:84–92CrossRefGoogle Scholar
  228. Zurbriggen N, Hättenschwiler S, Frei ES, Hagedorn F, Bebi P (2013) Performance of germinating tree seedlings below and above treeline in the Swiss Alps. Plant Ecol 214:385–396CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Udo Schickhoff
    • 1
    Email author
  • Maria Bobrowski
    • 1
  • Jürgen Böhner
    • 1
  • Birgit Bürzle
    • 1
  • Ram Prasad Chaudhary
    • 2
  • Lars Gerlitz
    • 3
  • Jelena Lange
    • 4
  • Michael Müller
    • 5
  • Thomas Scholten
    • 5
  • Niels Schwab
    • 1
  1. 1.CEN Center for Earth System Research and Sustainability, Institute of GeographyUniversity of HamburgHamburgGermany
  2. 2.RECAST Research Centre for Applied Science and TechnologyTribhuvan UniversityKathmanduNepal
  3. 3.Section HydrologyGFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.Institute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
  5. 5.Department of Geosciences, Chair of Soil Science and GeomorphologyUniversity of TübingenTübingenGermany

Personalised recommendations