Skip to main content

Context Assumptions for Threat Assessment Systems

  • Chapter
  • First Online:
Context-Enhanced Information Fusion

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Decision support systems enable users to quickly assess data, but they require significant resources to develop and are often relevant to limited domains. This chapter identifies the implicit assumptions that require contextual analysis for decision support systems to be effective for providing a relevant threat assessment. The impacts of the design and user assumptions are related to intelligence errors and intelligence failures that come from a misrepresentation of context. The intent of this chapter is twofold. The first is to enable system users to characterize trust using the decision support system by establishing the context of the decision. The second is to show technology designers how their design decisions impact system integration and usability. We organize the contextual information for threat analysis by categorizing six assumptions: (1) specific problem, (2) acquirable data, (3) use of context, (4) reproducible analysis, (5) actionable intelligence, and (6) quantifiable decision making. The chapter concludes with a quantitative example of context assessment for threat analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.N. Steinberg, Foundations of situation and threat assessment, Chap. 18, in Handbook of Multisensor Data Fusion, ed. by M.E. Liggins et al. (CRC Press, London, 2009)

    Google Scholar 

  2. T.X. Hammes, The Sling and the Stone: On War in the 21st Century (Zenith Press, 2006)

    Google Scholar 

  3. J. Leachtenauer, National Imagery Interpretability Ratings Scales: Overview and Product Description. American Society of Photogrammetry and Remote Sensing Annual Meetings (1996), pp. 262–271

    Google Scholar 

  4. J.M. Irvine, National imagery interpretability rating scales (NIIRS): overview and methodology, in Proceedings of SPIE, vol. 3128 (1997)

    Google Scholar 

  5. J.M. Irvine, D. Cannon, J. Miller, J. Bartolucci, G. O’Brien, L. Gibson, C. Fenimore, J. Roberts, I. Aviles, M. Brennan, A. Bozell, L. Simon, S.A. Israel, Methodology study for development of a motion imagery quality metric, in Proceedings of SPIE, vol. 6209 (2006)

    Google Scholar 

  6. J.T. Picarelli, Transnational threat indications and warning: the utility of network analysis, in AAAI Fall Symposium on Artificial Intelligence and Link Analysis Technical Report (1998)

    Google Scholar 

  7. D. Galula, Counterinsurgency Warfare: Theory and Practice (Praeger Security International, Westport, 1964)

    Google Scholar 

  8. R. Trinquier, Modern Warfare: A Frenchy View of Counterinsurgency (Praeger Security International, Westport, 1964)

    Google Scholar 

  9. R.K. Betts, Analysis, war, and decision: why intelligence failures are inevitable. World Polit. 31, 61–89 (1978)

    Article  Google Scholar 

  10. D.L. Thomas, Proving constructive possession in Virginia: a change in the tradewinds. Colonial Lawyer 18, 137–166 (1989)

    Google Scholar 

  11. S.A. Israel, Toward a common lexicon for exploiting activity data, in IEEE Applied Imagery and Pattern Recognition Workshop: Computer Vision: Time for Change (2012), p. 6

    Google Scholar 

  12. Y. Altshuler, N. Aharony, A. Pentland, Y. Elovici, M. Cebrian, Stealing reality: when criminals become data scientists (or vice versa). IEEE Intell. Syst. 2–10 (2011)

    Google Scholar 

  13. C.R. Vincente, D. Freni, C. Bettini, C.S. Jensen, Location-related privacy in geo-social networks. IEEE Internet Comput. 20–27 (2011)

    Google Scholar 

  14. R. Colbaugh, K. Glass, J. Gosler, Some intelligence analysis problems and their graph formulations. Intell. Community Res. Dev. 315, 27 (2010)

    Google Scholar 

  15. A. Vinciarelli, Capturing order in social interactions. IEEE Signal Process. Mag. 133–152 (2009)

    Google Scholar 

  16. J. Jonas, Threat and fraud intelligence, Las Vegas style. IEEE Secur. Priv. 28–34 (2006)

    Google Scholar 

  17. A.E. Gattiker, F.H. Gebara, A. Gheith, H.P. Hofstee, D.A. Jamsek, J. Li, E. Speight, J.W. Shi, G.C. Chen, P.W. Wong, Understanding system and architecture for big data. IBM (2012), p. 4

    Google Scholar 

  18. C.Y. Lin, L. Wu, Z. Wen, H. Tong, V. Griffiths-Fisher, L. Shi, Social network analysis in enterprise. Proc. IEEE 100(9), 2759–2776 (2012)

    Google Scholar 

  19. M.J. Duggin, C.J. Robinove, Assumptions implicit in remote sensing data acquisition and analysis. Int. J. Remote Sens. 11, 1669–1694 (1990)

    Article  Google Scholar 

  20. R. Johnston, Analytic Culture in the US Intelligence Community: An Ethnographic Study (Center for Study of Intelligence, Central Intelligence Agency, Washington, 2005), pp. 173

    Google Scholar 

  21. D. Chaikin, Network investigations of cyber attacks: the limits of digital evidence. Crime Law Social Change 46, 239–256 (2006)

    Article  Google Scholar 

  22. S.A. Macskassy, F. Provost. A brief survey of machine learning methods for classification in networked data and an application to suspicion scoring, in Workshop on Statistical Network Analysis at the 23rd International Conference on Machine Learning (2006)

    Google Scholar 

  23. J.H. Ratcliffe, Intelligence-Led Policing (Willan Publishing, Cullompton, Devon, 2008)

    Google Scholar 

  24. I. Sakharova, Al Qaeda terrorist financing and technologies to track the finance network, in IEEE Intelligence and Security Informatics (2011)

    Google Scholar 

  25. J. Nagl, Learning to Eat Soup with a Knife: Counterinsurgency Lessons from Malaya and Vietnam (Praeger Publishers, Westport, 2002)

    Google Scholar 

  26. D. Rumsfeld, Known-knowns, in Defense.gov News Transcript: DoD News Briefing—Secretary Rumsfeld and Gen. Myers (United States Department of Defense (defense.gov), 2002)

    Google Scholar 

  27. G.F. Treverton, Intelligence for an Age of Terror (Cambridge University Press, New York, 2009)

    Book  Google Scholar 

  28. S. Ressler, Social network analysis as an approach to combat terrorism: past, present, and future research. Homel. Secur. Affairs 2, 10 (2006)

    Google Scholar 

  29. V.E. Krebs, Mapping networks in terrorist cells. Connections 24, 43–52 (2002)

    Google Scholar 

  30. P. Klerks, The network paradigm applied to criminal organizations: theoretical nitpicking or a relevant doctrine for investigators? Recent developments in the Netherlands. Connections 24, 53–65 (2001)

    Google Scholar 

  31. B. Bringmann, M. Berlingerio, F. Bonchi, A. Gionis, Learning and predicting the evolution of social networks. IEEE Intell. Syst. 26–24 (2010)

    Google Scholar 

  32. R. Travers, The coming intelligence failure. Studies in Intelligence (CIA) 40, 35–43 (1997)

    Google Scholar 

  33. T.J. Burger, Inside the Nerve Center of America’s counterterrorist operations, in Time Magazine (2004)

    Google Scholar 

  34. M.S. Granovetter, The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973)

    Article  Google Scholar 

  35. M.K. Sparrow, The application of network analysis to criminal intelligence: an assessment of the prospects. Soc. Networks 13, 251–274 (1991)

    Article  Google Scholar 

  36. P. Buneman, S. Khanna, W.C. Tan, Data provenance: some basic issues. Found. Softw. Technol. Theor. Comput. Sci. (Springer) 87–93 (2000)

    Google Scholar 

  37. E. Blasch, A. Jøsang, J. Dezert, P.C.G. Costa, K.B. Laskey, A.-L. Jousselme, URREF self-confidence in information fusion trust, in International Conference on Information Fusion (2014)

    Google Scholar 

  38. E.H. Powley, Reclaiming resilience and safety: resilience activation in the critical period of crisis. Hum. Relat. 62, 1289–1326 (2009)

    Article  Google Scholar 

  39. N. Eagle, Behavioral inference across cultures: using telephones as a cultural lens. IEEE Intell. Syst. 62–64 (2008)

    Google Scholar 

  40. S. Milgram, The small-world problem. Psychol. Today 1, 61–67 (1967)

    Google Scholar 

  41. G. Lawton, Invasive software, who’s inside your computer. IEEE Comput. 35, 15–18 (2002)

    Article  Google Scholar 

  42. S. Graham, The urban battlespace. Theor. Cult. Soc. 26, 278–288 (2009)

    Article  Google Scholar 

  43. S. Saavedra, F. Reed-Tsochas, B. Uzzi, Asymmetric disassembly and robustness in declining networks. Proc. Natl. Acad. Sci. 105, 16466–16471 (2008)

    Article  Google Scholar 

  44. H. Sundaram, Y.R. Lin, M. DeChoudhruy, A. Kelliher, Understanding community dynamics in online social networks. IEEE Sign. Proc. Mag. 33–40 (2012)

    Google Scholar 

  45. B. Kahler, E. Blasch, L. Goodwon, Operating condition modeling for ATR fusion assessment, in Proceedings of SPIE, vol. 6571 (2007)

    Google Scholar 

  46. B. Kahler, E. Blasch, Sensor management fusion using operating conditions, in Proceedings of IEEE National Aerospace Electronics Conference (NAECON) (2008)

    Google Scholar 

  47. S. Rassler, Data fusion: identification problems, validity, and multiple imputation. Austrian J. Stat. 33, 153–171 (2004)

    Google Scholar 

  48. I. Bloch, A. Hunter, Fusion: general concepts and characteristics. Int. J. Intell. Syst. 16, 1107–1134 (2001)

    Article  MATH  Google Scholar 

  49. D.L. Hall, Mathematical Techniques in Multisensor Data Fusion (Artech House, 1992)

    Google Scholar 

  50. J. Llinas, C. Bowman, G. Rogova, A. Steinberg, E. Waltz, F. White, Revisiting the JDL data fusion model II, in International Conference on Information Fusion (2004)

    Google Scholar 

  51. E. Blasch, Sensor, User, mission (SUM) resource management and their interaction with level 2/3 fusion, in International Conference on Info Fusion (2006)

    Google Scholar 

  52. E. Blasch, E. Bosse, E. Lambert, High-Level Information Fusion Management and Systems Design (Artech House, Norwood, MA, 2012)

    Google Scholar 

  53. E. Blasch, D.A. Lambert, P. Valin, M.M. Kokar, J. Llinas, S. Das, C.-Y. Chong, E. Shahbazian, High level information fusion (HLIF) survey of models, issues, and grand challenges. IEEE Aerosp. Electron. Syst. Mag. 27(9) (2012)

    Google Scholar 

  54. E. Blasch, A. Steinberg, S. Das, J. Llinas, C.-Y. Chong, O. Kessler, E. Waltz, F. White, Revisiting the JDL model for information exploitation, in International Conference on Info Fusion (2013)

    Google Scholar 

  55. C. Drummond, Replicability is not reproducibility: nor is it good science, in 26th ICML Evaluating Methods for Machine Learning (2009), p. 4

    Google Scholar 

  56. E. Blasch, C. Banas, M. Paul, B. Bussjager, G. Seetharaman, Pattern activity clustering and evaluation (PACE), in Proceedings of SPIE, vol. 8402 (2012)

    Google Scholar 

  57. R.O. Duda, P.E. Hart, D.G. Stork, Patten Classification, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  58. T.E. Senator, H.G. Goldberg, A. Memory, Distinguishing the unexplainable from the merely unusual: adding explanations to outliers to discover and detect significant complex rare events, in ODD ‘13 Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, pp. 40–45 (2013)

    Google Scholar 

  59. J.M. Irvine, S.A. Israel, A sequential procedure for individual identity verification using ECG. EURASIP J. Adv. Signal Process. Recent Adv. Biometric Syst. A Signal Process. Perspect. 243215, 13 (2009)

    Google Scholar 

  60. A. Wald, Sequential Analysis (Dover, New York, 1994)

    MATH  Google Scholar 

  61. C.E. Callwell, Small Wars: Their Principles and Practice (University of Nebraska Press, 1906)

    Google Scholar 

  62. J.R. Hipp, A. Perrin, Nested loyalties: local networks’ effects on neighbourhood and community cohesion. Urban Stud. 43, 2503–2523 (2006)

    Article  Google Scholar 

  63. J.D. Lee, K.A. See, Trust in automation: designing for appropriate reliance. Hum. Factors 46, 50–80 (2004)

    Article  Google Scholar 

  64. R. Parasuraman, V. Riley, Performance consequences of automation induced complancey. Int. J. Aviat. Psychol. 3, 1–23 (1993)

    Article  Google Scholar 

  65. E.J. Ploran, S.M.M. Nelson, K. Velanova, D.I. Donaldson, S.E. Petersen, M.E. Wheeler, Evidence accumulation and the moment of recognition: dissociating decision processes using fMRI. J. Neurosci. 27, 11912–11924 (2007)

    Article  Google Scholar 

  66. D.M. Trujillo, Are intelligence failures inevitable? e-International Relations (2012)

    Google Scholar 

  67. S. Brown, M. Steyvers, E.J. Wagenmakers, Observing evidence accumulation during multi-alternative decisions. J. Math. Psychol. 53, 453–462 (2009)

    Article  MathSciNet  Google Scholar 

  68. A. Neal, P.J. Kwantes, An evidence accumulation model for conflict detection performance in a simulated air traffic control task. Hum. Factors 51, 164–180 (2009)

    Article  Google Scholar 

  69. C.F. Chabris, D.I. Laibson, C.L. Morris, J.P. Schuldt, D. Taubinsky, The allocation of time in decision-making. J. Eur. Econ. Assoc. 7, 628–637 (2009)

    Article  Google Scholar 

  70. I. Cohen, Improving time-critical decision making in life threatening situations: observations and insights. Decis. Anal. 5, 100–110 (2008)

    Article  Google Scholar 

  71. E. Agichtein, C. Castillo, D. Donato, A. Gionis, G. Mishne, Finding high-quality content in social media, in Web Search and Web Data Mining (ACM, Palo Alto, 2008)

    Google Scholar 

  72. A.M. MacEachren, Some Truth with Maps: A Primer on Symbolization and Design (American Association of Geographer, 1994)

    Google Scholar 

  73. M. Monmonier, How to Lie with Maps, 2nd edn. (University of Chicago Press, 1996)

    Google Scholar 

  74. R. Amar, J. Eagan, J. Stasko, Low-level components of analytic activity in information visualization, in IEEE Symposium on Information Visualization (Minneapolis, 2005), pp. 111–117

    Google Scholar 

  75. A. Perer, B. Shneiderman, Balancing systematic and flexible exploration of social networks. IEEE Trans. Vis. Comput. Graphics 12, 693–700 (2006)

    Article  Google Scholar 

  76. Z. Shen, K.L. Ma, T. Eliassi-Rad, Visual analysis of large heterogeneous social networks by semantic and structural abstraction. IEEE Trans. Vis. Comput. Graphics 12, 1427–2439 (2006)

    Article  Google Scholar 

  77. E. Blasch, Introduction to level 5 fusion: the role of the user, Chap. 19, in Handbook of Multisensor Data Fusion, 2nd edn., ed by M.E. Liggins, D. Hall, J. Llinas (CRC Press, 2008)

    Google Scholar 

  78. S. Zilberstein, An anytime computation approach to information gathering, in AAAI Spring Symposium Series on Information Gathering from Distributed, Heterogeneous Environments (1995)

    Google Scholar 

  79. S.A. Israel, Performance metrics: how and when. Geocarto Int. 21, 23–32 (2006)

    Article  Google Scholar 

  80. E. Blasch, P. Valin, E. Bossé, Measures of effectiveness for high-level fusion, in International Conference on Info Fusion (2010)

    Google Scholar 

  81. P.C.G. Costa, K.B. Laskey, E. Blasch, A.-L. Jousselme, Towards unbiased evaluation of uncertainty reasoning: the URREF ontology, in International Conference on Information Fusion (2012)

    Google Scholar 

  82. E. Blasch, K.B. Laskey, A.-L. Joussselme, V. Dragos, P.C.G. Costa, J. Dezert, URREF reliability versus credibility in information fusion (STANAG 2511), in International Conference on Information Fusion (2013)

    Google Scholar 

  83. J. Dezert, Non-bayesian reasoning for information fusion—a Tribute to Lofti Zadeh. J. Adv. Inf. Fusion (2012)

    Google Scholar 

  84. J. Yen, A reasoning model based on the extended Dempster Shafer theory, in National Conference on Artificial Intelligence (1986)

    Google Scholar 

  85. E. Blasch, J. Dezert, B. Pannetier, Overview of Dempster-Shafer and belief function tracking methods, in Proceedings of SPIE, vol. 8745 (2013)

    Google Scholar 

  86. J. Dezert, F. Smarandache, Advances and applications of DSmT for information fusion (collected works), vol. 1–3 (American Research Press, 2009) http://www.gallup.unm.edu/~smarandache/DSmT.htm

  87. J. Dezert, Foundations for a new theory of plausible and paradoxical reasoning. Inf. Secur. Int. J. 9 (ed. by Prof. Tzv. Semerdjiev)

    Google Scholar 

  88. J. Dezert, F. Smarandache, On the generation of hyper-powersets for the DSmT, in International Conference on Info Fusion (2003)

    Google Scholar 

  89. E. Blasch, J. Dezert, B. Pannetier, Overview of dempster-shafer and belief function tracking methods, in Proceedings SPIE, vol. 8745 (2013)

    Google Scholar 

  90. G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, NJ, 1976)

    MATH  Google Scholar 

  91. A. Josang, M. Daniel, Strategies for combining conflict dogmatic beliefs, in International Conference on Information Fusion (2006)

    Google Scholar 

  92. F. Smaradache, J. Dezert, Information fusion based on new proportional conflict redistribution rules, in International Conference on Information Fusion (2005)

    Google Scholar 

  93. M. Daniel, Generalization of the classic combination rules to DSm hyper-power sets. Inf. Secur. Int. J. 20, 4–9 (2006)

    Google Scholar 

  94. M.C. Florea, J. Dezert, P. Valin, F. Smarandache, A.-L. Jousselme, Adaptive combination rule and proportional conflict redistribution rule for information fusion, in COGIS ‘06 Conference (2006)

    Google Scholar 

  95. A. Martin, C. Osswald, J. Dezert, F. Smarandache, General combination rules for qualitative and quantitative beliefs. J. Adv. Inf. Fusion 3(2) (2008)

    Google Scholar 

  96. P. Djiknavorian, D. Grenier, P. Valin, Approximation in DSm theory for fusing ESM reports, in International Workshop on Belief functions (2010)

    Google Scholar 

  97. Z.H. Lee, J.S. Choir, R. Elmasri, A static evidential network for context reasoning in home-based care. IEEE Trans. Sys. Man Cyber-Part A Syst. Hum. 40(6), 1232–1243 (2010)

    Google Scholar 

  98. E. Blasch, J. Dezert, P. Valin, DSMT applied to seismic and acoustic sensor fusion, in Proceedings of IEEE National Aerospace Electronics Conference (NAECON) (2011)

    Google Scholar 

  99. P. Smets, Analyzing the combination of conflicting belief functions, in International Conference on Information Fusion (2005)

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by the Air Force Office of Scientific Research (AFOSR) under the Dynamic Data Driven Application Systems program and the Air Force Research Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Blasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (outside the USA)

About this chapter

Cite this chapter

Israel, S.A., Blasch, E. (2016). Context Assumptions for Threat Assessment Systems. In: Snidaro, L., García, J., Llinas, J., Blasch, E. (eds) Context-Enhanced Information Fusion. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-28971-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28971-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28969-4

  • Online ISBN: 978-3-319-28971-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics