Abstract
In regenerative medicine, stem cell therapy can be used to replace, restore or enhance the biological function of damaged tissues and organs. Mesenchymal stem cells (MSCs) isolated from various sources are inexhaustible sources of therapeutic products for cell-based therapies. Various tissues in an adult organism can serve as sources of MSCs. MSCs have multipotent, regenerative and immunosuppressive properties. The main advantage of MSC is the safety of their use, but the effectiveness of stem cell therapy might be limited by low survivability and insufficient expression of various biologically active factors by the transplanted cells. To enhance the viability of MSC and increase their therapeutic potential, scientists perform genetic modification of such cells. For this purpose, recombinant genetic material can be delivered using various viral and non-viral methods. This chapter describes the advantages and disadvantages of commonly used viral, physical and chemical gene delivery vector systems in respect to MSC genetic modification. It should be noted that the MSCs derived from different tissues of the tooth have higher pro-angiogenic, neurogenic and regenerative potential compared to the stem cells of the bone marrow and adipose tissue. The main research areas for genetic engineering of MSCs derived from dental tissues are modulation of phenotype, immortalization, controlling the processes of differentiation and apoptosis, as well as increasing secretion of therapeutic growth factors. In this chapter, we summarize prospective studies of genetically modified MSCs from different tissues of the tooth in the context of their application in regenerative medicine for treatment of dental, ischemic and neurodegenerative diseases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Park JS, Suryaprakash S, Lao YH, Leong KW (2015) Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods. doi:10.1016/j.ymeth.2015.03.002
Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806. doi:10.1177/0022034509340867
Kim JY, Kim MR, Kim SJ (2013) Modulation of osteoblastic/odontoblastic differentiation of adult mesenchymal stem cells through gene introduction: a brief review. J Korean Assoc Oral Maxillofac Surg 39(2):55–62. doi:10.5125/jkaoms.2013.39.2.55
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630
Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165
Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, Fonseca SA, Cabral RM, Maranduba CM, Gaiad TP, Morini AC, Vieira NM, Brolio MP, Sant'Anna OA, Miglino MA, Zatz M (2008) Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? J Transl Med 6:35. doi:10.1186/1479-5876-6-35
Yao S, Pan F, Prpic V, Wise GE (2008) Differentiation of stem cells in the dental follicle. J Dent Res 87(8):767–771
Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238(1):120–132
Yu YS, Shen ZY, Ye WX, Huang HY, Hua F, Chen YH, Chen K, Lao WJ, Tao L (2010) AKT-modified autologous intracoronary mesenchymal stem cells prevent remodeling and repair in swine infarcted myocardium. Chin Med J (Engl) 123(13):1702–1708
Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, Liu X, Li Y, Ward CA, Melo LG, Kong D (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 16(3):571–579. doi:10.1038/sj.mt.6300374
Huang J, Zhang Z, Guo J, Ni A, Deb A, Zhang L, Mirotsou M, Pratt RE, Dzau VJ (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 106(11):1753–1762. doi:10.1161/CIRCRESAHA.109.196030
Lu CH, Chang YH, Lin SY, Li KC, Hu YC (2013) Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 31(8):1695–1706. doi:10.1016/j.biotechadv.2013.08.015
Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S (2010) Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther 18(5):1026–1034. doi:10.1038/mt.2009.315
Santos JL, Pandita D, Rodrigues J, Pego AP, Granja PL, Tomas H (2011) Non-viral gene delivery to mesenchymal stem cells: methods, strategies and application in bone tissue engineering and regeneration. Curr Gene Ther 11(1):46–57
Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M (2013) Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 36(1):1–22
Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 459(1–2):70–83. doi:10.1016/j.ijpharm.2013.11.041
Schagen FH, Ossevoort M, Toes RE, Hoeben RC (2004) Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol Hematol 50(1):51–70
Campos SK, Barry MA (2007) Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther 7(3):189–204
Latchman DS (2005) Herpes simplex virus-based vectors for the treatment of cancer and neurodegenerative disease. Curr Opin Mol Ther 7(5):415–418
de Silva S, Bowers WJ (2009) Herpes virus amplicon vectors. Viruses 1(3):594–629. doi:10.3390/v1030594
Wu X, Burgess SM (2004) Integration target site selection for retroviruses and transposable elements. Cell Mol Life Sci 61(19–20):2588–2596
Nanou A, Azzouz M (2009) Gene therapy for neurodegenerative diseases based on lentiviral vectors. Prog Brain Res 175:187–200. doi:10.1016/S0079-6123(09)17513-1
Dropulic B (2011) Lentiviral vectors: their molecular design, safety, and use in laboratory and preclinical research. Hum Gene Ther 22(6):649–657. doi:10.1089/hum.2011.058
Albertini AA, Baquero E, Ferlin A, Gaudin Y (2012) Molecular and cellular aspects of rhabdovirus entry. Viruses 4(1):117–139. doi:10.3390/v4010117
Hitchman RB, Possee RD, Crombie AT, Chambers A, Ho K, Siaterli E, Lissina O, Sternard H, Novy R, Loomis K, Bird LE, Owens RJ, King LA (2010) Genetic modification of a baculovirus vector for increased expression in insect cells. Cell Biol Toxicol 26(1):57–68. doi:10.1007/s10565-009-9133-y
Lu CH, Lin KJ, Chiu HY, Chen CY, Yen TC, Hwang SM, Chang YH, Hu YC (2012) Improved chondrogenesis and engineered cartilage formation from TGF-beta3-expressing adipose-derived stem cells cultured in the rotating-shaft bioreactor. Tissue Eng Part A 18(19–20):2114–2124. doi:10.1089/ten.TEA.2012.0010
Wang W, Li W, Ma N, Steinhoff G (2013) Non-viral gene delivery methods. Curr Pharm Biotechnol 14(1):46–60
Kaestner L, Scholz A, Lipp P (2015) Conceptual and technical aspects of transfection and gene delivery. Bioorg Med Chem Lett 25(6):1171–1176. doi:10.1016/j.bmcl.2015.01.018
Yalvac ME, Ramazanoglu M, Gumru OZ, Sahin F, Palotas A, Rizvanov AA (2009) Comparison and optimisation of transfection of human dental follicle cells, a novel source of stem cells, with different chemical methods and electro-poration. Neurochem Res 34(7):1272–1277. doi:10.1007/s11064-008-9905-4
Yalvac ME, Rizvanov AA, Kilic E, Sahin F, Mukhamedyarov MA, Islamov RR, Palotas A (2009) Potential role of dental stem cells in the cellular therapy of cerebral ischemia. Curr Pharm Des 15(33):3908–3916
Nakashima M, Iohara K, Ishikawa M, Ito M, Tomokiyo A, Tanaka T, Akamine A (2004) Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11). Hum Gene Ther 15(11):1045–1053
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M (2013) Sonoporation: gene transfer using ultrasound. World J Methodol 3(4):39–44. doi:10.5662/wjm.v3.i4.39
Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy - an overview. J Clin Diagn Res 9(1):GE01–GE06. doi:10.7860/JCDR/2015/10443.5394
Solovyeva VV, Kudryashova NV, Rizvanov АА (2011) Transfer of recombinant nucleic acids into cells (transfection) by means of histones and other nuclear proteins. Cell Transpl Tiss Eng 6(3):29–40
Gheisari Y, Soleimani M, Azadmanesh K, Zeinali S (2008) Multipotent mesenchymal stromal cells: optimization and comparison of five cationic polymer-based gene delivery methods. Cytotherapy 10(8):815–823. doi:10.1080/14653240802474307
Chesnoy S, Huang L (2000) Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct 29:27–47
Tang F, Hughes JA (1998) Introduction of a disulfide bond into a cationic lipid enhances transgene expression of plasmid DNA. Biochem Biophys Res Commun 242(1):141–145
Rao NM, Gopal V (2006) Cell biological and biophysical aspects of lipid-mediated gene delivery. Biosci Rep 26(4):301–324
Madeira С, Mendes RD, Ribeiro SC, Boura JS, Aires-Barros MR, da Silva CL, Cabral JMS (2010) Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy. J Biomed Biotechnol. doi:10.1155/2010/735349
Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556. doi:10.1083/jcb.201009094
Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8(9):671–682. doi:10.1038/nrc2399
Ramboer E, De Craene B, De Kock J, Vanhaecke T, Berx G, Rogiers V, Vinken M (2014) Strategies for immortalization of primary hepatocytes. J Hepatol 61(4):925–943. doi:10.1016/j.jhep.2014.05.046
Jha KK, Banga S, Palejwala V, Ozer HL (1998) SV40-mediated immortalization. Exp Cell Res 245(1):1–7
Yalvac ME, Yilmaz A, Mercan D, Aydin S, Dogan A, Arslan A, Demir Z, Salafutdinov II, Shafigullina AK, Sahin F, Rizvanov AA, Palotas A (2011) Differentiation and neuro-protective properties of immortalized human tooth germ stem cells. Neurochem Res 36(12):2227–2235. doi:10.1007/s11064-011-0546-7
Egbuniwe O, Grant AD, Renton T, Di Silvio L (2013) Phenotype-independent effects of retroviral transduction in human dental pulp stem cells. Macromol Biosci 13(7):851–859. doi:10.1002/mabi.201300020
Wang J, Zhang H, Zhang W, Huang E, Wang N, Wu N, Wen S, Chen X, Liao Z, Deng F, Yin L, Zhang J, Zhang Q, Yan Z, Liu W, Zhang Z, Ye J, Deng Y, Luu HH, Haydon RC, He TC (2014) Bone morphogenetic protein-9 effectively induces osteo/odontoblastic differentiation of the reversibly immortalized stem cells of dental apical papilla. Stem Cells Dev 23(12):1405–1416. doi:10.1089/scd.2013.0580
Yokoi T, Saito M, Kiyono T, Iseki S, Kosaka K, Nishida E, Tsubakimoto T, Harada H, Eto K, Noguchi T, Teranaka T (2007) Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res 327(2):301–311
Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM (2014) Bone morphogenetic proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys 561:64–73. doi:10.1016/j.abb.2014.07.011
Tasli PN, Aydin S, Yalvac ME, Sahin F (2014) Bmp 2 and bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells. Appl Biochem Biotechnol 172(6):3016–3025. doi:10.1007/s12010-013-0706-0
Yang X, van der Kraan PM, Bian Z, Fan M, Walboomers XF, Jansen JA (2009) Mineralized tissue formation by BMP2-transfected pulp stem cells. J Dent Res 88(11):1020–1025. doi:10.1177/0022034509346258
Yang X, van der Kraan PM, van den Dolder J, Walboomers XF, Bian Z, Fan M, Jansen JA (2007) STRO-1 selected rat dental pulp stem cells transfected with adenoviral-mediated human bone morphogenetic protein 2 gene show enhanced odontogenic differentiation. Tissue Eng 13(11):2803–2812
Yang X, Walboomers XF, van den Dolder J, Yang F, Bian Z, Fan M, Jansen JA (2008) Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers. Tissue Eng Part A 14(1):71–81. doi:10.1089/ten.a.2007.0102
Zhang W, Zhang X, Ling J, Liu W, Ma J, Zheng J (2014) Proliferation and odontogenic differentiation of BMP2 gene-transfected stem cells from human tooth apical papilla: an in vitro study. Int J Mol Med 34(4):1004–1012. doi:10.3892/ijmm.2014.1862
Yang X, Han G, Pang X, Fan M (2012) Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo. J Biomed Mater Res A. doi:10.1002/jbm.a.34064
Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A (2003) Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 14(6):591–597
Nakashima M, Mizunuma K, Murakami T, Akamine A (2002) Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther 9(12):814–818
Pan K, Sun Q, Zhang J, Ge S, Li S, Zhao Y, Yang P (2010) Multilineage differentiation of dental follicle cells and the roles of Runx2 over-expression in enhancing osteoblast/cementoblast-related gene expression in dental follicle cells. Cell Prolif 43(3):219–228. doi:10.1111/j.1365-2184.2010.00670.x
Vimalraj S, Arumugam B, Miranda PJ, Selvamurugan N (2015) Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 78:202–208. doi:10.1016/j.ijbiomac.2015.04.008
Morsczeck C (2006) Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. Calcif Tissue Int 78(2):98–102
Viale-Bouroncle S, Felthaus O, Schmalz G, Brockhoff G, Reichert TE, Morsczeck C (2012) The transcription factor DLX3 regulates the osteogenic differentiation of human dental follicle precursor cells. Stem Cells Dev 21(11):1936–1947. doi:10.1089/scd.2011.0422
Press T, Viale-Bouroncle S, Felthaus O, Gosau M, Morsczeck C (2015) EGR1 supports the osteogenic differentiation of dental stem cells. Int Endod J 48(2):185–192. doi:10.1111/iej.12299
Li Y, Lu Y, Maciejewska I, Galler KM, Cavender A, D'Souza RN (2011) TWIST1 promotes the odontoblast-like differentiation of dental stem cells. Adv Dent Res 23(3):280–284. doi:10.1177/0022034511405387
Scheller EL, Chang J, Wang CY (2008) Wnt/beta-catenin inhibits dental pulp stem cell differentiation. J Dent Res 87(2):126–130
Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32
Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55(3):261–268. doi:10.1387/ijdb.103167dr
Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7(4):452–464
Sieveking DP, Ng MK (2009) Cell therapies for therapeutic angiogenesis: back to the bench. Vasc Med 14(2):153–166. doi:10.1177/1358863X08098698
Dissanayaka WL, Zhan X, Zhang C, Hargreaves KM, Jin L, Tong EH (2012) Coculture of dental pulp stem cells with endothelial cells enhances osteo-/odontogenic and angiogenic potential in vitro. J Endod 38(4):454–463. doi:10.1016/j.joen.2011.12.024
Gandia C, Arminan A, Garcia-Verdugo JM, Lledo E, Ruiz A, Minana MD, Sanchez-Torrijos J, Paya R, Mirabet V, Carbonell-Uberos F, Llop M, Montero JA, Sepulveda P (2008) Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 26(3):638–645
Janebodin K, Zeng Y, Buranaphatthana W, Ieronimakis N, Reyes M (2013) VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells. J Dent Res 92(6):524–531
Ahmad S, Hewett PW, Al-Ani B, Sissaoui S, Fujisawa T, Cudmore MJ, Ahmed A (2011) Autocrine activity of soluble Flt-1 controls endothelial cell function and angiogenesis. Vasc Cell 3(1):15. doi:10.1186/2045-824X-3-15
Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 26(9):943–954
Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111(12):1843–1851
Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 99(18):11946–11950
Solovyeva VV, Blatt NL, Shafigullina AK, Rizvanov AA (2012) Endogenous secretion of vascular endothelial growth factor by multipotent mesenchymal stromal cells derived from human third molar dental follicles. Cell Transpl Tiss Eng 7(3):155–158
Acknowledgements
The work was supported by grant 15-04-07527 from Russian Foundation for Basic Research and was performed in accordance with Program of Competitive Growth of Kazan Federal University and subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities.
Statement of Conflict of Interest
Authors declare no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Solovyeva, V.V., Kiyasov, A.P., Rizvanov, A.A. (2016). Genetically Engineered Dental Stem Cells for Regenerative Medicine. In: Şahin, F., Doğan, A., Demirci, S. (eds) Dental Stem Cells. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28947-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-28947-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28945-8
Online ISBN: 978-3-319-28947-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)