Skip to main content

Genetically Engineered Dental Stem Cells for Regenerative Medicine

  • Chapter
  • First Online:
Dental Stem Cells

Abstract

In regenerative medicine, stem cell therapy can be used to replace, restore or enhance the biological function of damaged tissues and organs. Mesenchymal stem cells (MSCs) isolated from various sources are inexhaustible sources of therapeutic products for cell-based therapies. Various tissues in an adult organism can serve as sources of MSCs. MSCs have multipotent, regenerative and immunosuppressive properties. The main advantage of MSC is the safety of their use, but the effectiveness of stem cell therapy might be limited by low survivability and insufficient expression of various biologically active factors by the transplanted cells. To enhance the viability of MSC and increase their therapeutic potential, scientists perform genetic modification of such cells. For this purpose, recombinant genetic material can be delivered using various viral and non-viral methods. This chapter describes the advantages and disadvantages of commonly used viral, physical and chemical gene delivery vector systems in respect to MSC genetic modification. It should be noted that the MSCs derived from different tissues of the tooth have higher pro-angiogenic, neurogenic and regenerative potential compared to the stem cells of the bone marrow and adipose tissue. The main research areas for genetic engineering of MSCs derived from dental tissues are modulation of phenotype, immortalization, controlling the processes of differentiation and apoptosis, as well as increasing secretion of therapeutic growth factors. In this chapter, we summarize prospective studies of genetically modified MSCs from different tissues of the tooth in the context of their application in regenerative medicine for treatment of dental, ischemic and neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Park JS, Suryaprakash S, Lao YH, Leong KW (2015) Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods. doi:10.1016/j.ymeth.2015.03.002

    Google Scholar 

  2. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806. doi:10.1177/0022034509340867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim JY, Kim MR, Kim SJ (2013) Modulation of osteoblastic/odontoblastic differentiation of adult mesenchymal stem cells through gene introduction: a brief review. J Korean Assoc Oral Maxillofac Surg 39(2):55–62. doi:10.5125/jkaoms.2013.39.2.55

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165

    Article  CAS  PubMed  Google Scholar 

  6. Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, Fonseca SA, Cabral RM, Maranduba CM, Gaiad TP, Morini AC, Vieira NM, Brolio MP, Sant'Anna OA, Miglino MA, Zatz M (2008) Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? J Transl Med 6:35. doi:10.1186/1479-5876-6-35

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yao S, Pan F, Prpic V, Wise GE (2008) Differentiation of stem cells in the dental follicle. J Dent Res 87(8):767–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238(1):120–132

    Article  CAS  PubMed  Google Scholar 

  9. Yu YS, Shen ZY, Ye WX, Huang HY, Hua F, Chen YH, Chen K, Lao WJ, Tao L (2010) AKT-modified autologous intracoronary mesenchymal stem cells prevent remodeling and repair in swine infarcted myocardium. Chin Med J (Engl) 123(13):1702–1708

    CAS  Google Scholar 

  10. Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, Liu X, Li Y, Ward CA, Melo LG, Kong D (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 16(3):571–579. doi:10.1038/sj.mt.6300374

    Article  CAS  PubMed  Google Scholar 

  11. Huang J, Zhang Z, Guo J, Ni A, Deb A, Zhang L, Mirotsou M, Pratt RE, Dzau VJ (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 106(11):1753–1762. doi:10.1161/CIRCRESAHA.109.196030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu CH, Chang YH, Lin SY, Li KC, Hu YC (2013) Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 31(8):1695–1706. doi:10.1016/j.biotechadv.2013.08.015

    Article  CAS  PubMed  Google Scholar 

  13. Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S (2010) Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther 18(5):1026–1034. doi:10.1038/mt.2009.315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Santos JL, Pandita D, Rodrigues J, Pego AP, Granja PL, Tomas H (2011) Non-viral gene delivery to mesenchymal stem cells: methods, strategies and application in bone tissue engineering and regeneration. Curr Gene Ther 11(1):46–57

    Article  PubMed  Google Scholar 

  15. Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M (2013) Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 36(1):1–22

    CAS  PubMed  Google Scholar 

  16. Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 459(1–2):70–83. doi:10.1016/j.ijpharm.2013.11.041

    Article  CAS  PubMed  Google Scholar 

  17. Schagen FH, Ossevoort M, Toes RE, Hoeben RC (2004) Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol Hematol 50(1):51–70

    Article  PubMed  Google Scholar 

  18. Campos SK, Barry MA (2007) Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther 7(3):189–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Latchman DS (2005) Herpes simplex virus-based vectors for the treatment of cancer and neurodegenerative disease. Curr Opin Mol Ther 7(5):415–418

    CAS  PubMed  Google Scholar 

  20. de Silva S, Bowers WJ (2009) Herpes virus amplicon vectors. Viruses 1(3):594–629. doi:10.3390/v1030594

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu X, Burgess SM (2004) Integration target site selection for retroviruses and transposable elements. Cell Mol Life Sci 61(19–20):2588–2596

    Article  CAS  PubMed  Google Scholar 

  22. Nanou A, Azzouz M (2009) Gene therapy for neurodegenerative diseases based on lentiviral vectors. Prog Brain Res 175:187–200. doi:10.1016/S0079-6123(09)17513-1

    Article  CAS  PubMed  Google Scholar 

  23. Dropulic B (2011) Lentiviral vectors: their molecular design, safety, and use in laboratory and preclinical research. Hum Gene Ther 22(6):649–657. doi:10.1089/hum.2011.058

    Article  CAS  PubMed  Google Scholar 

  24. Albertini AA, Baquero E, Ferlin A, Gaudin Y (2012) Molecular and cellular aspects of rhabdovirus entry. Viruses 4(1):117–139. doi:10.3390/v4010117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hitchman RB, Possee RD, Crombie AT, Chambers A, Ho K, Siaterli E, Lissina O, Sternard H, Novy R, Loomis K, Bird LE, Owens RJ, King LA (2010) Genetic modification of a baculovirus vector for increased expression in insect cells. Cell Biol Toxicol 26(1):57–68. doi:10.1007/s10565-009-9133-y

    Article  CAS  PubMed  Google Scholar 

  26. Lu CH, Lin KJ, Chiu HY, Chen CY, Yen TC, Hwang SM, Chang YH, Hu YC (2012) Improved chondrogenesis and engineered cartilage formation from TGF-beta3-expressing adipose-derived stem cells cultured in the rotating-shaft bioreactor. Tissue Eng Part A 18(19–20):2114–2124. doi:10.1089/ten.TEA.2012.0010

    Article  CAS  PubMed  Google Scholar 

  27. Wang W, Li W, Ma N, Steinhoff G (2013) Non-viral gene delivery methods. Curr Pharm Biotechnol 14(1):46–60

    CAS  PubMed  Google Scholar 

  28. Kaestner L, Scholz A, Lipp P (2015) Conceptual and technical aspects of transfection and gene delivery. Bioorg Med Chem Lett 25(6):1171–1176. doi:10.1016/j.bmcl.2015.01.018

    Article  CAS  PubMed  Google Scholar 

  29. Yalvac ME, Ramazanoglu M, Gumru OZ, Sahin F, Palotas A, Rizvanov AA (2009) Comparison and optimisation of transfection of human dental follicle cells, a novel source of stem cells, with different chemical methods and electro-poration. Neurochem Res 34(7):1272–1277. doi:10.1007/s11064-008-9905-4

    Article  CAS  PubMed  Google Scholar 

  30. Yalvac ME, Rizvanov AA, Kilic E, Sahin F, Mukhamedyarov MA, Islamov RR, Palotas A (2009) Potential role of dental stem cells in the cellular therapy of cerebral ischemia. Curr Pharm Des 15(33):3908–3916

    Article  CAS  PubMed  Google Scholar 

  31. Nakashima M, Iohara K, Ishikawa M, Ito M, Tomokiyo A, Tanaka T, Akamine A (2004) Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11). Hum Gene Ther 15(11):1045–1053

    Article  CAS  PubMed  Google Scholar 

  32. Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M (2013) Sonoporation: gene transfer using ultrasound. World J Methodol 3(4):39–44. doi:10.5662/wjm.v3.i4.39

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy - an overview. J Clin Diagn Res 9(1):GE01–GE06. doi:10.7860/JCDR/2015/10443.5394

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Solovyeva VV, Kudryashova NV, Rizvanov АА (2011) Transfer of recombinant nucleic acids into cells (transfection) by means of histones and other nuclear proteins. Cell Transpl Tiss Eng 6(3):29–40

    Google Scholar 

  35. Gheisari Y, Soleimani M, Azadmanesh K, Zeinali S (2008) Multipotent mesenchymal stromal cells: optimization and comparison of five cationic polymer-based gene delivery methods. Cytotherapy 10(8):815–823. doi:10.1080/14653240802474307

    Article  CAS  PubMed  Google Scholar 

  36. Chesnoy S, Huang L (2000) Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct 29:27–47

    Article  CAS  PubMed  Google Scholar 

  37. Tang F, Hughes JA (1998) Introduction of a disulfide bond into a cationic lipid enhances transgene expression of plasmid DNA. Biochem Biophys Res Commun 242(1):141–145

    Article  CAS  PubMed  Google Scholar 

  38. Rao NM, Gopal V (2006) Cell biological and biophysical aspects of lipid-mediated gene delivery. Biosci Rep 26(4):301–324

    Article  CAS  PubMed  Google Scholar 

  39. Madeira С, Mendes RD, Ribeiro SC, Boura JS, Aires-Barros MR, da Silva CL, Cabral JMS (2010) Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy. J Biomed Biotechnol. doi:10.1155/2010/735349

    PubMed  PubMed Central  Google Scholar 

  40. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556. doi:10.1083/jcb.201009094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8(9):671–682. doi:10.1038/nrc2399

    Article  CAS  PubMed  Google Scholar 

  42. Ramboer E, De Craene B, De Kock J, Vanhaecke T, Berx G, Rogiers V, Vinken M (2014) Strategies for immortalization of primary hepatocytes. J Hepatol 61(4):925–943. doi:10.1016/j.jhep.2014.05.046

    Article  CAS  PubMed  Google Scholar 

  43. Jha KK, Banga S, Palejwala V, Ozer HL (1998) SV40-mediated immortalization. Exp Cell Res 245(1):1–7

    Article  CAS  PubMed  Google Scholar 

  44. Yalvac ME, Yilmaz A, Mercan D, Aydin S, Dogan A, Arslan A, Demir Z, Salafutdinov II, Shafigullina AK, Sahin F, Rizvanov AA, Palotas A (2011) Differentiation and neuro-protective properties of immortalized human tooth germ stem cells. Neurochem Res 36(12):2227–2235. doi:10.1007/s11064-011-0546-7

    Article  CAS  PubMed  Google Scholar 

  45. Egbuniwe O, Grant AD, Renton T, Di Silvio L (2013) Phenotype-independent effects of retroviral transduction in human dental pulp stem cells. Macromol Biosci 13(7):851–859. doi:10.1002/mabi.201300020

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, Zhang H, Zhang W, Huang E, Wang N, Wu N, Wen S, Chen X, Liao Z, Deng F, Yin L, Zhang J, Zhang Q, Yan Z, Liu W, Zhang Z, Ye J, Deng Y, Luu HH, Haydon RC, He TC (2014) Bone morphogenetic protein-9 effectively induces osteo/odontoblastic differentiation of the reversibly immortalized stem cells of dental apical papilla. Stem Cells Dev 23(12):1405–1416. doi:10.1089/scd.2013.0580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yokoi T, Saito M, Kiyono T, Iseki S, Kosaka K, Nishida E, Tsubakimoto T, Harada H, Eto K, Noguchi T, Teranaka T (2007) Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res 327(2):301–311

    Article  CAS  PubMed  Google Scholar 

  48. Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM (2014) Bone morphogenetic proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys 561:64–73. doi:10.1016/j.abb.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  49. Tasli PN, Aydin S, Yalvac ME, Sahin F (2014) Bmp 2 and bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells. Appl Biochem Biotechnol 172(6):3016–3025. doi:10.1007/s12010-013-0706-0

    Article  CAS  PubMed  Google Scholar 

  50. Yang X, van der Kraan PM, Bian Z, Fan M, Walboomers XF, Jansen JA (2009) Mineralized tissue formation by BMP2-transfected pulp stem cells. J Dent Res 88(11):1020–1025. doi:10.1177/0022034509346258

    Article  CAS  PubMed  Google Scholar 

  51. Yang X, van der Kraan PM, van den Dolder J, Walboomers XF, Bian Z, Fan M, Jansen JA (2007) STRO-1 selected rat dental pulp stem cells transfected with adenoviral-mediated human bone morphogenetic protein 2 gene show enhanced odontogenic differentiation. Tissue Eng 13(11):2803–2812

    Article  CAS  PubMed  Google Scholar 

  52. Yang X, Walboomers XF, van den Dolder J, Yang F, Bian Z, Fan M, Jansen JA (2008) Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers. Tissue Eng Part A 14(1):71–81. doi:10.1089/ten.a.2007.0102

    Article  CAS  PubMed  Google Scholar 

  53. Zhang W, Zhang X, Ling J, Liu W, Ma J, Zheng J (2014) Proliferation and odontogenic differentiation of BMP2 gene-transfected stem cells from human tooth apical papilla: an in vitro study. Int J Mol Med 34(4):1004–1012. doi:10.3892/ijmm.2014.1862

    PubMed  PubMed Central  Google Scholar 

  54. Yang X, Han G, Pang X, Fan M (2012) Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo. J Biomed Mater Res A. doi:10.1002/jbm.a.34064

    Google Scholar 

  55. Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A (2003) Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 14(6):591–597

    Article  CAS  PubMed  Google Scholar 

  56. Nakashima M, Mizunuma K, Murakami T, Akamine A (2002) Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther 9(12):814–818

    Article  CAS  PubMed  Google Scholar 

  57. Pan K, Sun Q, Zhang J, Ge S, Li S, Zhao Y, Yang P (2010) Multilineage differentiation of dental follicle cells and the roles of Runx2 over-expression in enhancing osteoblast/cementoblast-related gene expression in dental follicle cells. Cell Prolif 43(3):219–228. doi:10.1111/j.1365-2184.2010.00670.x

    Article  CAS  PubMed  Google Scholar 

  58. Vimalraj S, Arumugam B, Miranda PJ, Selvamurugan N (2015) Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 78:202–208. doi:10.1016/j.ijbiomac.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  59. Morsczeck C (2006) Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. Calcif Tissue Int 78(2):98–102

    Article  CAS  PubMed  Google Scholar 

  60. Viale-Bouroncle S, Felthaus O, Schmalz G, Brockhoff G, Reichert TE, Morsczeck C (2012) The transcription factor DLX3 regulates the osteogenic differentiation of human dental follicle precursor cells. Stem Cells Dev 21(11):1936–1947. doi:10.1089/scd.2011.0422

    Article  CAS  PubMed  Google Scholar 

  61. Press T, Viale-Bouroncle S, Felthaus O, Gosau M, Morsczeck C (2015) EGR1 supports the osteogenic differentiation of dental stem cells. Int Endod J 48(2):185–192. doi:10.1111/iej.12299

    Article  CAS  PubMed  Google Scholar 

  62. Li Y, Lu Y, Maciejewska I, Galler KM, Cavender A, D'Souza RN (2011) TWIST1 promotes the odontoblast-like differentiation of dental stem cells. Adv Dent Res 23(3):280–284. doi:10.1177/0022034511405387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Scheller EL, Chang J, Wang CY (2008) Wnt/beta-catenin inhibits dental pulp stem cell differentiation. J Dent Res 87(2):126–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32

    Article  CAS  PubMed  Google Scholar 

  65. Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55(3):261–268. doi:10.1387/ijdb.103167dr

    Article  CAS  PubMed  Google Scholar 

  66. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7(4):452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sieveking DP, Ng MK (2009) Cell therapies for therapeutic angiogenesis: back to the bench. Vasc Med 14(2):153–166. doi:10.1177/1358863X08098698

    Article  PubMed  Google Scholar 

  68. Dissanayaka WL, Zhan X, Zhang C, Hargreaves KM, Jin L, Tong EH (2012) Coculture of dental pulp stem cells with endothelial cells enhances osteo-/odontogenic and angiogenic potential in vitro. J Endod 38(4):454–463. doi:10.1016/j.joen.2011.12.024

    Article  PubMed  Google Scholar 

  69. Gandia C, Arminan A, Garcia-Verdugo JM, Lledo E, Ruiz A, Minana MD, Sanchez-Torrijos J, Paya R, Mirabet V, Carbonell-Uberos F, Llop M, Montero JA, Sepulveda P (2008) Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 26(3):638–645

    Article  PubMed  Google Scholar 

  70. Janebodin K, Zeng Y, Buranaphatthana W, Ieronimakis N, Reyes M (2013) VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells. J Dent Res 92(6):524–531

    Article  CAS  PubMed  Google Scholar 

  71. Ahmad S, Hewett PW, Al-Ani B, Sissaoui S, Fujisawa T, Cudmore MJ, Ahmed A (2011) Autocrine activity of soluble Flt-1 controls endothelial cell function and angiogenesis. Vasc Cell 3(1):15. doi:10.1186/2045-824X-3-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 26(9):943–954

    Article  CAS  PubMed  Google Scholar 

  73. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111(12):1843–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 99(18):11946–11950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Solovyeva VV, Blatt NL, Shafigullina AK, Rizvanov AA (2012) Endogenous secretion of vascular endothelial growth factor by multipotent mesenchymal stromal cells derived from human third molar dental follicles. Cell Transpl Tiss Eng 7(3):155–158

    Google Scholar 

Download references

Acknowledgements

The work was supported by grant 15-04-07527 from Russian Foundation for Basic Research and was performed in accordance with Program of Competitive Growth of Kazan Federal University and subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities.

Statement of Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert A. Rizvanov PhD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Solovyeva, V.V., Kiyasov, A.P., Rizvanov, A.A. (2016). Genetically Engineered Dental Stem Cells for Regenerative Medicine. In: Şahin, F., Doğan, A., Demirci, S. (eds) Dental Stem Cells. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28947-2_5

Download citation

Publish with us

Policies and ethics