k-Bisimulation: A Bisimulation for Measuring the Dissimilarity Between Processes

  • Giuseppe De Ruvo
  • Giuseppe Lettieri
  • Domenico Martino
  • Antonella Santone
  • Gigliola Vaglini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9539)


We propose to use bisimulation to quantify dissimilarity between processes: in this case we speak of k-bisimulation. Two processes p and q, whose semantics is given through transition systems, are k-bisimilar if they differ from at most k moves, where k is a natural number. Roughly speaking, the k-bisimulation captures the extension of the dissimilarity between p and q when they are neither strong nor weak equivalent. The importance of the formal concept of k-bisimulation can be seen in several application fields, such as clone detection, process mining, business-IT alignment. We propose several heuristics in order to efficiently check such a bisimulation. The approach can be applied to different specification languages (CCS, LOTOS, CSP) provided that the language semantics is based on the notion of transition system. We have implemented a prototype tool and we have conducted experiments on well-known systems for a proof of concept of our methodology.


Transition System Formal Verification Heuristic Function Prototype Tool Levenshtein Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  2. 2.
    Alkhammash, E., Fathabadi, A.S., Butler, M.J., Cîrstea, C.: Building traceable Event-B models from requirements. ECEASST 66, 1–16 (2013)Google Scholar
  3. 3.
    Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Comput. Netw. ISDN Syst. 14(1), 25–59 (1987)CrossRefGoogle Scholar
  4. 4.
    Bruns, G.: A case study in safety-critical design. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 220–233. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
    Černý, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 253–268. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, X., Deng, Y.: Game characterizations of process equivalences. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Cleaveland, R., Sims, S.: The NCSU concurrency workbench. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Conchon, S., Krstic, S.: Strategies for combining decision procedures. Theor. Comput. Sci. 354(2), 187–210 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Cuomo, A., Santone, A., Villano, U.: CD-Form: a clone detector based on formal methods. Sci. Comput. Program. 95, 390–405 (2014)CrossRefGoogle Scholar
  10. 10.
    De Francesco, N., Santone, A., Tesei, L.: Abstract interpretation and model checking for checking secure information flow in concurrent systems. Fundamenta Informaticae 54(2), 195–211 (2003)zbMATHMathSciNetGoogle Scholar
  11. 11.
    De Ruvo, G., Santone, A.: Equivalence-based selection of best-fit models to support wiki design. In: Reddy, S. (ed.) WETICE 2015, pp. 204–209. IEEE Press, New York (2015)Google Scholar
  12. 12.
    Delsarte, P., Levenshtein, V.I.: Association schemes and coding theory. IEEE Trans. Inf. Theor. 44(6), 2477–2504 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)CrossRefGoogle Scholar
  14. 14.
    van Glabbeek, R.J.: The linear time - branching time spectrum. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR ’90 Theories of Concurrency: Unification and Extension. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  15. 15.
    Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hoare, C.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Jacquart, P.: Nouvelles recherches sur la distribution florale. Bull. Soc. Vand. Sci. Nat. 44, 223–270 (1908)Google Scholar
  18. 18.
    Mazzocca, N., Santone, A., Vaglini, G., Vittorini, V.: Efficient model checking of properties of a distributed application: a multimedia case study. Softw. Test. Verif. Reliab. 12(1), 3–21 (2002)CrossRefGoogle Scholar
  19. 19.
    Milner, R.: Communication and Concurrency. Prentice Hall, London (1989). Prentice Hall International Series in Computer SciencezbMATHGoogle Scholar
  20. 20.
    Nguyen, H.N., Poizat, P., Zaïdi, F.: A symbolic framework for the conformance checking of value-passing choreographies. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 525–532. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Palahan, S., Babic, D., Chaudhuri, S., Kifer, D.: Extraction of statistically significant malware behaviors. In: Paynre Jr., C.N. (ed.) ACSAC 2013, pp. 69–78. ACM, New York (2013)Google Scholar
  22. 22.
    Romero Hernández, D., de Frutos Escrig, D.: Defining distances for all process semantics. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 169–185. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Romero-Hernández, D., de Frutos Escrig, D.: Coinductive definition of distances between processes: beyond bisimulation distances. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014. LNCS, vol. 8461, pp. 249–265. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. 24.
    Roy, C., Cordy, J., Koschke, R.: Comparison and evaluation of code clone detection techniques and tools: a qualitative approach. Sci. Comput. Program. 74(7), 470–495 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Santone, A., Vaglini, G.: Abstract reduction in directed model checking CCS processes. Acta Informatica 49(5), 313–341 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Santone, A., Vaglini, G., Villani, M.L.: Incremental construction of systems: an efficient characterization of the lacking sub-system. Sci. Comput. Program. 78(9), 1346–1367 (2013)CrossRefGoogle Scholar
  27. 27.
    Ullah, A., Lai, R.: A systematic review of business and information technology alignment. ACM Trans. Manage. Inf. Syst. 4(1), 1–30 (2013)CrossRefGoogle Scholar
  28. 28.
    Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. PVLDB 2(1), 25–36 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Giuseppe De Ruvo
    • 1
  • Giuseppe Lettieri
    • 2
  • Domenico Martino
    • 1
  • Antonella Santone
    • 1
  • Gigliola Vaglini
    • 2
  1. 1.Department of EngineeringUniversity of SannioBeneventoItaly
  2. 2.Department of Information EngineeringUniversity of PisaPisaItaly

Personalised recommendations