Label-Free Optical Biosensors for Monitoring Cellular Processes and Cytotoxic Agents at Interfaces Using Guided Modes and Advanced Phase-Contrast Imaging Techniques

  • Inna Székács
  • Robert Horvath
  • András Székács
Chapter
Part of the Advanced Sciences and Technologies for Security Applications book series (ASTSA)

Abstract

Novel optical biosensors in direct interaction with living cells open new avenues in the detection of given cell types, including pathogenic microorganisms, and in the measurement of cytotoxicity of given xenobiotics, such as biothreat agents, on suitably selected cell types or lines. Evanescent optical field based biosensors emerging for such applications are reviewed, covering surface plasmon and waveguide based formats, imaging setup, employing optical waveguides, and digital holographic microscopy. Commercial technologies, along with main pathogenic microorganisms (Bacillus anthracis, Escherichia coli, Listeria monocytogenes, Campylobacter jejuni, etc.) as analytes and cell lines (native tissue and tumor cells) as cytotoxicity effect subjects are highlighted.

Keywords

Evanescent field Cell biosensor Optical waveguide Pathogenic microorganisms Cytotoxicity Digital holographic microscopy 

References

  1. 1.
    Abbas A, Linman MJ, Cheng Q (2011) New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens Bioelectron 26:1815–1824CrossRefGoogle Scholar
  2. 2.
    Abdulhalim I, Zourob M, Lakhtakia A (2007) Overview of optical biosensing techniques. In: Marks RS, Cullen DC, Karube I, Lowe CR, Weetall HH (eds) Handbook of biosensors and biochips. Wiley, London, pp 1–34Google Scholar
  3. 3.
    Acharya G, Chang C-L, Savran C (2006) An optical biosensor for rapid and label-free detection of cells. J Am Chem Soc 128:3862–3863CrossRefGoogle Scholar
  4. 4.
    Acharya G, Doorneweerd DD, Chang C-L, Henne WA, Low PS, Savran CA (2007) Label-free optical detection of anthrax-causing spores. J Am Chem Soc 129:732–733CrossRefGoogle Scholar
  5. 5.
    Adányi N, Bori Z, Szendrő I, Erdélyi K, Wang X, Schröder HC, Müller WEG (2013) Bacterial sensors based on biosilica immobilization for label-free OWLS detection. New Biotechnol 30(5):493–499CrossRefGoogle Scholar
  6. 6.
    Adányi N, Németh E, Halász A, Szendrő I, Váradi M (2006) Application of electrochemical optical waveguide lightmode spectroscopy (EC-OWLS) for studying the effect of different stress factors on lactic acid bacteria. Anal Chim Acta 573–574:41–47CrossRefGoogle Scholar
  7. 7.
    Adányi N, Majer-Baranyi K, Székács A (2015) Evanescent field effect based nanobiosensors for agro-environmental and food safety. In: Grumezescu AM (ed) Nanotechnology in food industry. Springer, Berlin (in press)Google Scholar
  8. 8.
    Alm K, El-Schich Z, Falck Miniotis M, Gjörloff Wingren A, Janicke B, Oredsson S (2013) Cells and holograms—Holograms and digital holographic microscopy as a tool to study the morphology of living cells. In: Mihaylova E (ed) Holography—Basic Principles and Contemporary Applications. InTech, Rijeka, pp 335–351Google Scholar
  9. 9.
    Aref A, Horvath R, McColl J, Ramsden JJ (2010) Optical monitoring of stem cellsubstratum interactions. J Biomed Opt 14:010501CrossRefGoogle Scholar
  10. 10.
    Aref A, Horvath R, Ramsden JJ (2010) Spreading kinetics for quantifying cell state during stem cell differentiation. J Biol Phys Chem 10:1–7CrossRefGoogle Scholar
  11. 11.
    Bata-Vidács I, Adányi N, Beczner J, Farkas J, Székács A (2013) Nanotechnology and microbial food safety. In: Mendez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex, Zubaran, pp 155–159Google Scholar
  12. 12.
    Bellapadrona G, Tesler AB, Grunstein D, Hossain LH, Kikkeri R, Seeberger PH, Vaskevich A, Rubinstein I (2012) Optimization of localized surface plasmon resonance transducers for studying carbohydrate-protein interactions. Anal Chem 84:232–240CrossRefGoogle Scholar
  13. 13.
    Bergoend I, Colomb T, Pavillon N, Emery Y, Depeursinge C (2009) Depth-of-field extension and 3D reconstruction in digital holographic microscopy. Proc SPIE 7390:73901C-1Google Scholar
  14. 14.
    Bishara W, Hongying Zhu H, Ozcan A (2010) Holographic opto-fluidic microscopy. Opt Express 18(26):27499ADSCrossRefGoogle Scholar
  15. 15.
    Bishara W, Sikora U, Mudanyali O, Su T-W, Yaglidere O, Luckhart S, Ozcan A (2011) Holographic pixel super-resolution in portable lensless on-chip microscopyusing a fiber-optic array. Lab Chip 11:1276–1279CrossRefGoogle Scholar
  16. 16.
    Brecht A, Gauglitz G (1995) Optical probes and transducers. Biosens Bioelectron 10:923–936CrossRefGoogle Scholar
  17. 17.
    Bremer C, Ntziachristos V, Weissleder R (2003) Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 13:231–243Google Scholar
  18. 18.
    Carl D, Kemper B, Wernicke G, Bally GV (2004) Parameter optimized digital holographic microscope for high resolution living cell analysis. Appl Opt 43:6536–6544ADSCrossRefGoogle Scholar
  19. 19.
    Chen S, Svedendahl M, Van Duyne RP, Käll M (2011) Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett 11:1826–1830ADSCrossRefGoogle Scholar
  20. 20.
    Cheong W-F, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Elect 26:2166–2185ADSCrossRefGoogle Scholar
  21. 21.
    Choi M, Choi JW, Kim S, Nizamoglu S, Hahn SK, Yun SH (2013) Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat Photon 7:987–994ADSCrossRefGoogle Scholar
  22. 22.
    Citartan M, Gopinath SC, Tominaga J, Tang TH (2013) Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst 138:3576–3592ADSCrossRefGoogle Scholar
  23. 23.
    Codex Alimentarius (2001) Principles and guidelines for the conduct of microbiological risk assessment. In: Food hygiene baic texts. Food and Agricultural Organizaton/World Health Organization, RomeGoogle Scholar
  24. 24.
    Colomb T, Pavillon N, Kühn J, Cuche E, Depeursinge C, Emery Y (2010) Extended depth-of-focus by digital holographic microscopy. Opt Lett 35(11):1840–1842ADSCrossRefGoogle Scholar
  25. 25.
    Comley J (2004) Label-free detection: New biosensors facilitate broader range of drug discovery applications. Drug Discov World Winter 2004(5):63–74Google Scholar
  26. 26.
    Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ (2009) Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 20:10–26CrossRefGoogle Scholar
  27. 27.
    Cooper MA (2006) Optical biosensors: where next and how soon? Drug Discovery Today 11(23–24):1061–1067CrossRefGoogle Scholar
  28. 28.
    Cooper MA (2009) Signal transduction profiling using label-free biosensors. J Recept Signal Transduction 29(3–4):224–233CrossRefGoogle Scholar
  29. 29.
    Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H, Ozcan A (2014) Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep 4:6789ADSCrossRefGoogle Scholar
  30. 30.
    Cunningham B, Li P, Lin B, Pepper J (2002) Colorimetric resonant reflection as a direct biochemical assay technique. Sens Actuators B 81(2–3):316–328CrossRefGoogle Scholar
  31. 31.
    D’Agata R, Grasso G, Iacono G, Spoto G, Vecchio G (2006) Lectin recognition of a new SOD mimic bioconjugate studied with surface plasmon resonance imaging. Org Biomol Chem 4:610–612CrossRefGoogle Scholar
  32. 32.
    de Jong LAA, Uges DRA, Franke JP, Bischoff R (2005) Receptor-ligand binding assays: technologies and applications. J Chromatogr B 829:1–25CrossRefGoogle Scholar
  33. 33.
    Duffus JH (1993) Glossary for chemists of terms used in toxicology. Pure Appl Chem 65:2003–2122CrossRefGoogle Scholar
  34. 34.
    Endo T, Yamamura S, Tamiya E (2008) Label-free cell-based assay using localized surface plasmon resonance biosensor. Anal Chim Acta 614:182–189CrossRefGoogle Scholar
  35. 35.
    Erdélyi K, Frutos AG, Ramsden JJ, Szendrő I, Voirin G (2008) Grating-based optical biosensors. In: Marks RS, Cullen DC, Karube I, Lowe CR Weetall HH (eds) Handbook of biosensors and biochips. Wiley, New York, pp 569–586Google Scholar
  36. 36.
    Commission European (2000) First Report on the Harmonisation of Risk Assessment Procedures (SSC 2000). European Commission, BrusselsGoogle Scholar
  37. 37.
    Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26CrossRefGoogle Scholar
  38. 38.
    Fang XY, Liu CL, Cheng XL, Wang YL, Yang YC (2011) A spectral imaging array biosensor and its application in detection of leukemia cell. Sens Actuat B-Chem 156:760–764CrossRefGoogle Scholar
  39. 39.
    Fang Y (2006) Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Devel Technol 4(5):583–595CrossRefGoogle Scholar
  40. 40.
    Fang Y (2007) Non-invasive optical biosensor for probing cell signaling. Sensors 7(10):2316–2329CrossRefGoogle Scholar
  41. 41.
    Fang Y (2010) Label-free receptor assays. Drug Discov Today Technol 7(1):e5–e11CrossRefGoogle Scholar
  42. 42.
    Fang Y (2010) Probing cancer signaling with resonant waveguide grating biosensors. Exp Opin Drug Discov 5(12):1237–1248CrossRefGoogle Scholar
  43. 43.
    Fang Y (2010) Resonant waveguide grating biosensor for microarrays. In: Zourob M, Lakhtakia A (eds) Optical guided-wave chemical and biosensors II. Springer, Berlin, pp 27–42CrossRefGoogle Scholar
  44. 44.
    Fang Y (2011) Label-free biosensors for cell biology. Int J Electrochem (2011: Article ID 460850, 16 p)Google Scholar
  45. 45.
    Fang Y (2013) Biosensors: On the origin of label-free cell phenotypic profiles of drug-target interactions. J Biochip Tissue Chip 3:e126CrossRefGoogle Scholar
  46. 46.
    Fang Y (2013) Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J Pharmacol Toxicol Meth 67:69–81CrossRefGoogle Scholar
  47. 47.
    Fang Y, Ferrie AM, Fontaine NH, Mauro J, Balakrishnan J (2006) Resonant waveguide grating biosensor for living cell sensing. Biophys J 91(5):1925–1940CrossRefGoogle Scholar
  48. 48.
    Fang Y, Ferrie AM, Li G (2005) Probing cytoskeleton modulation by optical biosensors. FEBS Lett 579:4175–4180CrossRefGoogle Scholar
  49. 49.
    Fang Y, Ferrie AM, Tran E (2009) Resonant waveguide grating biosensor for whole-cell GPCR assays. In: Leifert WR (ed) G Protein-coupled receptors in drug discovery. Methods in molecular biology 552 (pp 239–252). Humana Press, New YorkGoogle Scholar
  50. 50.
    Feng J, Siu VS, Pacifici D (2012) Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing. Nano Lett 12:602–609ADSCrossRefGoogle Scholar
  51. 51.
    Garcia D, Ghansah I, LeBlanc J, Butte MJ (2012) Counting cells with a low-cost integrated microfluidics-waveguide sensor. Biomicrofluidics 6:014115CrossRefGoogle Scholar
  52. 52.
    Garcia-Sucerquia J, Xu W, Jericho S, Klages P, Jericho M, Kreuzer H (2006) Digital in-line holographic microscopy. Appl Optics 45(5):836–850ADSCrossRefGoogle Scholar
  53. 53.
    Ghosh N, Gupta G, Boopathi M, Pal V, Singh AK, Gopalan N, Goe AK (2013) Surface plasmon resonance biosensor for detection of Bacillus anthracis, the causative agent of anthrax from soil samples targeting protective antigen. Indian J Microbiol 53(1):48–55CrossRefGoogle Scholar
  54. 54.
    Gnanaprakasa TJ, Oyarzabal OA, Olsen EV, Pedrosa VA, Simonian AL (2011) Tethered DNA scaffolds on optical sensor platforms for detection of hipo gene from Campylobacter jejuni. Sens Actuat B-Chem 156:304–311CrossRefGoogle Scholar
  55. 55.
    Golosovsky M, Lirtsman V, Yashunsky V, Davidov D, Aroeti B (2009) Midinfrared surface-plasmon resonance: a novel biophysical tool for studying living cells. J Appl Phys 105:102036ADSCrossRefGoogle Scholar
  56. 56.
    Göröcs Z, Kiss M, Tóth V, Orzó L, Tőkés S (2010) Multicolor digital holographic microscope (DHM) for biological purposes. Proc SPIE 7568:75681PCrossRefGoogle Scholar
  57. 57.
    Göröcs Z, McLeod E, Ozcan A (2015) Enhanced light collection in fluorescence microscopy using self-assembled micro-reflectors. Sci Rep 5:10999CrossRefGoogle Scholar
  58. 58.
    Göröcs Z, Orzó L, Kiss M, Tóth V, Tőkés S (2010) In-line color digital holographic microscope for water quality measurements. Proc SPIE 7376:737614CrossRefGoogle Scholar
  59. 59.
    Grandin HM, Städtler B, Textor M, Vörös J (2006) Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface. Biosens Bioelectron 21:1476–1482CrossRefGoogle Scholar
  60. 60.
    Grasso G, D’Agata R, Zanoli L, Spoto G (2009) Microfluidic networks for surface plasmon resonance. Microchem J 93:82–86CrossRefGoogle Scholar
  61. 61.
    Gustafsson M, Sebesta M (2004) Refractometry of microscopic objects with digital holography. Appl Opt 43:4796–4801ADSCrossRefGoogle Scholar
  62. 62.
    Haes AJ, Van Duyne RP (2004) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379:920–930CrossRefGoogle Scholar
  63. 63.
    Hassanzadeh A, Armstrong S, Dixon SJ, Mittler S (2009) Multimode waveguide evanescent field fluorescence microscopy: Measurement of cell-substratum separation distance. Appl Phys Lett 94:033503ADSCrossRefGoogle Scholar
  64. 64.
    Hassanzadeh A, Azami D (2014) Waveguide evanescent field fluorescence microscopy: theoretical investigation of optical pressure on a cell. J Nanophoton 8:083076CrossRefGoogle Scholar
  65. 65.
    Hassanzadeh A, Ma HK, Armstrong S, Dixon SJ, Sims SM, Mittler S (2009) Waveguide evanescent field fluorescence microscopy: from cell-substratum distances to kinetic cell behavior. Proc SPIE 2009:73220AADSCrossRefGoogle Scholar
  66. 66.
    Hassanzadeh A, Ma HK, Dixon SJ, Mittler S (2012) Visualization of the solubilization process of the plasma membrane of a living cell by waveguide evanescent field fluorescence microscopy. J Biomed Opt 17(7):076025CrossRefGoogle Scholar
  67. 67.
    Hassanzadeh A, Mittler S (2011) Waveguide evanescent field fluorescence microscopy: high contrast imaging of a domain forming mixed lipid Langmuir-Blodgett monolayer mimicking lung surfactant. J Biomed Opt 16(4):046022CrossRefGoogle Scholar
  68. 68.
    Hassanzadeh A, Nitsche M, Armstrong S, Nabavi N, Harrison R, Dixon SJ, Langbein U, Mittler S (2010) Optical waveguides formed by silver ion exchange in Schott SG11 glass for waveguide evanescent field fluorescence microscopy: evanescent images of HEK293 cells. J Biomed Opt 15(3):036018CrossRefGoogle Scholar
  69. 69.
    Hassanzadeh A, Nitsche M, Mittler S, Armstrong S, Dixon J, Langbein U (2008) Waveguide evanescent field fluorescence microscopy: Thin film fluorescence intensities and its application in cell biology. Appl Phys Lett 92:233503ADSCrossRefGoogle Scholar
  70. 70.
    Hessel A, Oliner AA (1965) A new theory of Wood’s anomalies on optical gratings. Appl Opt 4(10):1275–1297ADSCrossRefGoogle Scholar
  71. 71.
    Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14:71–79CrossRefGoogle Scholar
  72. 72.
    Hong Y, Huh Y-M, Yoon DS, Yang J (2012) Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J Nanomater (Article ID 759830, 13 p)Google Scholar
  73. 73.
    Horvath R, Cottier K, Pedersen HC, Ramsden JJ (2008) Multidepth screening of living cells using optical waveguides. Biosens Bioelectron 24(4):799–804CrossRefGoogle Scholar
  74. 74.
    Horvath R, Lindvold LR, Larsen NB (2002) Reverse-symmetry waveguides: theory and fabrication. Appl Phys B 74:383–393ADSCrossRefGoogle Scholar
  75. 75.
    Horvath R, Pedersen HC, Skivesen N, Selmeczi D, Larsen NB (2003) Optical waveguide sensor for on-line monitoring of bacteria. Opt Lett 28:1233–1235ADSCrossRefGoogle Scholar
  76. 76.
    Horvath R, Pedersen HC, Skivesen N, Selmeczi D, Larsen NB (2005) Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing. Appl Phys Lett 86:071101ADSCrossRefGoogle Scholar
  77. 77.
    Horvath R, Pedersen HC, Skivesen N, Svanberg C, Larsen NB (2005) Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating. J Micromech Microeng 15:1260–1264CrossRefGoogle Scholar
  78. 78.
    Hu R, Yong K-T, Roy I, Ding H, He S, Prasad PN (2009) Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells. J Phys Chem C 113:2676–2684CrossRefGoogle Scholar
  79. 79.
    Huang K-W, Su T-W, Ozcan A, Chiou P-Y (2013) Optoelectronic tweezers integrated with lensfree holographic microscopyfor wide-field interactive cell and particle manipulation on a chip. Lab Chip 13:2278–2284CrossRefGoogle Scholar
  80. 80.
    Hug TS, Prenosil JE, Maier P, Morbidelli M (2002) Optical waveguide lightmode spectroscopy (OWLS) to monitor cell proliferation quantitatively. Biotechnol Bioeng 80:213–221CrossRefGoogle Scholar
  81. 81.
    Hug TS, Prenosil JE, Morbidelli M (2001) Optical waveguide lightmode spectroscopy as a new method to study adhesion of anchorage-dependent cells as an indicator of metabolic state. Biosens Bioelectron 16:865–874CrossRefGoogle Scholar
  82. 82.
    Isikman SO, Greenbaum A, Lee M, Bishara W, Mudanyali O, Su T-W, Ozcan A (2012) Lensfree computational microscopy tools for cell and tissue imaging at the point-of-care and in low-resource settings. Anal Cell Path 35:229–247CrossRefGoogle Scholar
  83. 83.
    Isikman SO, Greenbaum A, Luo W, Coskun AF, Ozcan A (2012) Giga-pixel lensfree holographic microscopy and tomography using color image sensors. PLoS ONE 7(9):e45044ADSCrossRefGoogle Scholar
  84. 84.
    Joseph S, Gineste J-M, Whelan M, Newport D (2010) A heterodyne Mach-Zehnder Interferometer employing static and dynamic phase demodulation techniques for live-cell imaging. Proc SPIE 7554:75540PCrossRefGoogle Scholar
  85. 85.
    Joung CK, Kim HN, Lim MC, Jeon TJ, Kim HY, Kim YR (2013) A nanoporous membrane based impedimetric immunosensor for label free detection of pathogenic bacteria in whole milk. Biosens Bioelectron 44:210–215CrossRefGoogle Scholar
  86. 86.
    Kaul RA, Mahlmann DM, Loosen P (2010) Mach-Zehnder interference microscopy optically records electrically stimulated cellular activity in unstained nerve cells. J Microsc 240(1):60–74MathSciNetCrossRefGoogle Scholar
  87. 87.
    Kemper B, Carl D, Schnekenburger J, Bredebusch I, Schäfer M, Domschke W, von Bally G (2006) Investigation of living pancreas tumor cells by digital holographic microscopy. J Biomed Optics 11(3):034005ADSCrossRefGoogle Scholar
  88. 88.
    Kiss M, Nagy B, Lakatos P, Göröcs Z, Tőkés S, Wittner B, Orzó L (2014) Special multicolor illumination and numerical tilt correction in volumetric digital holographic microscopy. Opt Express 22:7559–7573ADSCrossRefGoogle Scholar
  89. 89.
    Kozma P, Kehl F, Ehrentreich-Förster E, Stamm C, Bier FF (2014) Integrated planar optical waveguide interferometer biosensors: A comparative review. Biosens Bioelectron 58:287–307CrossRefGoogle Scholar
  90. 90.
    Kramer MF, Tims TB, DeMarco DR, Lim DV (2002) Recovery of Escherichia coli 0157:H7 from fiber optic waveguides used for rapid biosensor detection. J Rapid Meth Autom Microbiol 10:93–106CrossRefGoogle Scholar
  91. 91.
    Kühn J, Shaffer E, Mena J, Breton B, Parent J, Rappaz B, Chambon M, Emery Y, Magistretti P, Depeursinge C, Marquet P, Turcatti G (2013) Label-free cytotoxicity screening assay by digital holographic microscopy. Assay Drug Devel Technol 11(2):101–107CrossRefGoogle Scholar
  92. 92.
    Lan Y, Wang S, Yin Y, Hoffmann WC (2008) Using a surface plasmon resonance biosensor for rapid detection of Salmonella typhimurium in chicken carcass. J Bionic Eng 5:239–246CrossRefGoogle Scholar
  93. 93.
    Lechuga LM (2000) Optical sensors based on evanescent field sensing Part I. Surface plasmon resonance sensors. Quim Anal 19:54–60Google Scholar
  94. 94.
    Lechuga LM (2000) Optical sensors based on evanescent field sensing Part II. Integrated optical sensors. Quim Anal 19:61–67Google Scholar
  95. 95.
    Lee M, Yaglidere O, Ozcan A (2011) Field-portable reflection and transmission microscopy based on lensless holography. Biomed Opt Express 2(9):2721CrossRefGoogle Scholar
  96. 96.
    Lee PH (2009) Label-free optical biosensor: a tool for G protein coupled receptors pharmacology profiling and inverse agonists identification. J Recept Sign Transduct 29(3–4):146–153CrossRefGoogle Scholar
  97. 97.
    Leskinen SD, Lim DV (2008) Rapid ultrafiltration concentration and biosensor detection of enterococci from large volumes of Florida recreational water. Appl Environ Microbiol 74(15):4792–4798CrossRefGoogle Scholar
  98. 98.
    Lin B, Li P, Cunningham BT (2006) A label-free biosensor-based cell attachment assay for characterization of cell surface molecules. Sens Actuat B-Chem 114:559–564CrossRefGoogle Scholar
  99. 99.
    Liu F, Wong MM, Chiu SK, Lin H, Ho JC, Pang SW (2014) Effects of nanoparticle size and cell type on high sensitivity cell detection using a localized surface plasmon resonance biosensor. Biosens Bioelectron 55:141–148CrossRefGoogle Scholar
  100. 100.
    Luo W, Greenbaum A, Zhang Y, Ozcan A (2015) Synthetic aperture-based on-chip microscopy. Sci Appl 4:e261Google Scholar
  101. 101.
    Mao X, Yang L, Su X, Li Y (2006) Nanoparticles amplification based quartz crystal microbalance DNA sensor for detection of E. coli O157:H7. Biosens Bioelectron 7:1178–1185Google Scholar
  102. 102.
    Marquet P, Rappaz B, Magistretti PJ, Cuche E, Emery Y, Colomb T, Depeursinge C (2005) Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with sub wavelength accuracy. Opt Lett 30:468–470ADSCrossRefGoogle Scholar
  103. 103.
    McLeod E, Ozcan A (2014) Nano-imaging enabled via self-assembly. Nano Today 9:560–573CrossRefGoogle Scholar
  104. 104.
    Mo XT, Zhou YP, Lei H, Deng L (2002) Microbalance-DNA probe method for the detection of specific bacteria in water. Enzyme Microb Technol 5:583–589CrossRefGoogle Scholar
  105. 105.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826ADSCrossRefGoogle Scholar
  106. 106.
    Mrksich M (2000) Model organic surfaces for mechanistic studies of cell adhesion. Chem Soc Rev 29(4):267–273CrossRefGoogle Scholar
  107. 107.
    Mudanyali O, Bishara W, Ozcan A (2011) Lensfree super-resolution holographic microscopy using wetting films on a chip. Opt Express 19(18):17378ADSCrossRefGoogle Scholar
  108. 108.
    Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I, Bishara W, Oztoprak C, Seo S, Khademhosseini B, Ozcan A (2010) Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10:1417–1428CrossRefGoogle Scholar
  109. 109.
    Mukundan H, Anderson AS, Grace WK, Grace KM, Hartman N, Martinez JS, Swanson BI (2009) Waveguide-based biosensors for pathogen detection. Sensors 9:5783–5809CrossRefGoogle Scholar
  110. 110.
    Németh E, Adányi N, Halász A, Váradi M, Szendrő I (2007) Real-time study of the effect of different stress factors on lactic acid bacteria by electrochemical optical waveguide lightmode spectroscopy. Biomol Eng 24:631–637CrossRefGoogle Scholar
  111. 111.
    Nikolelis DP (ed) (2012) Portable biosensors: weapons against bioterrorism. NATO science for peace and security series a: chemistry and biology. Springer Verlag, DordrechtGoogle Scholar
  112. 112.
    Nirschl M, Reuter F, Vörös J (2011) Review of transducer principles for label-free biomolecular interaction analysis. Biosensors 1:70–91CrossRefGoogle Scholar
  113. 113.
    Oh B-R, Huang N-T, Chen W, Seo JH, Chen P, Cornell TT, Shanley TP, Fu J, Kurabayashi K (2014) Integrated nanoplasmonic sensing for cellular functional immunoanalysis using human blood. ACS Nano 8(3):2667–2676CrossRefGoogle Scholar
  114. 114.
    Oh C, Serhan SO, Khademhosseinieh B, Ozcan A (2010) On-chip differential interference contrast microscopy using lensless digital holography. Opt Express 18(5):4717ADSCrossRefGoogle Scholar
  115. 115.
    Orgovan N, Peter B, Sz Bősze, Ramsden JJ, Szabó B, Horvath R (2014) Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci Reports 4:4034ADSGoogle Scholar
  116. 116.
    Orgovan N, Salánki R, Sándor N, Bajtay Z, Erdei A, Szabó B, Horvath R (2013) In-situ and label-free optical monitoring of the adhesion and spreading of primary monocytes isolated from human blood: dependence on serum concentration levels. Biosens Bioelectron 54:339–344CrossRefGoogle Scholar
  117. 117.
    Orzó L, Göröcs Z, Fehér A, Tőkés S (2013) In-line hologram segmentation for volumetric samples. Appl Optics 52(1):A45–A55CrossRefGoogle Scholar
  118. 118.
    Orzó L, Wittner B, Tőkés S (2013b) High speed water monitoring systems based on digital holographic microscopy. In: Computer Science and Information Technologies (CSIT), pp. 1–9Google Scholar
  119. 119.
    Ozcan A, Isikman S, Mudanyali O, Tseng D, Sencan I (2010) Lensfree on-chip holography facilitates novel microscopy applications. SPIE Newsroom, 2010 May 19:00294Google Scholar
  120. 120.
    Patko D, Cottier K, Hamori A, HorvatH R (2012) Single beam grating coupled interferometry: high resolution miniaturized label-free sensor for plate based parallel screening. Opt Express 20:23162ADSCrossRefGoogle Scholar
  121. 121.
    Patko D, Gyorgy B, Nemeth A, Szabó-Taylor KE, Kittel A, Buzas EI, Horvath R (2013) Label-free optical monitoring of surface adhesion of extracellular vesicles by grating coupled interferometry. Sens Actuat B-Chem 188:697–701CrossRefGoogle Scholar
  122. 122.
    Patko D, Hamori A, Cottier K, Kurunczi S, Horvath R (2011) Label free biosensing using Grating Coupled Interferometry. Eur Biophys J with Biophys Lett 40:230–231Google Scholar
  123. 123.
    Peter B, Nador J, Juhasz K, Dobos A, Körösi L, Székács I, Patko D, Horvath R (2015) Incubator proof miniaturized Holomonitor to in situ monitor cancer cells exposed to green tea polyphenol and preosteoblast cells adhering on nanostructured titanate surfaces: validity of the measured parameters and their corrections. J Biomed Opt 20(6):067002. 10 pGoogle Scholar
  124. 124.
    Peters MF, Vaillancourt F, Heroux M, Valiquette M, Scott CW (2010) Comparing label-free biosensors for pharmacological screening with cell-based functional assays. ASSAY Drug Devel Technol 8(2):219–227CrossRefGoogle Scholar
  125. 125.
    Rabus DG, Welle A, R. Seger A, Ichihashi Y, Bruendel M, Hieb J, Isaacson M (2006) Determination of living cell characteristics and behavior using biophotonic methods. Proc of SPIE 6329:63290HGoogle Scholar
  126. 126.
    Ramsden JJ, Horvath R (2009) Optical biosensors for cell adhesion. J Recept Sign Transduct Res 29:211–223CrossRefGoogle Scholar
  127. 127.
    Ramsden JJ, Li SY, Heinzle E, Prenosil JE (1995) Optical method for measurement of number and shape of attached cells in real time. Cytom 19:97–102CrossRefGoogle Scholar
  128. 128.
    Raphael MP, Christodoulides JA, Delehanty JB, Long JP, Pehrsson PE, Byers JM (2013) Quantitative LSPR imaging for biosensing with single nanostructure resolution. Biophys J 104:30–36CrossRefGoogle Scholar
  129. 129.
    Rice JM, Stern LJ, Guignon EF, Lawrence DA, Lynes MA (2012) Antigen-specific T cell phenotyping microarrays using grating coupled surface plasmon resonance imaging and surface plasmon coupled emission. Biosens Bioelectron 31:264–269CrossRefGoogle Scholar
  130. 130.
    Rich RL, Myszka DG (2006) Survey of the year 2005 commercial optical biosensor literature. J Mol Recogn 19(6):478–534CrossRefGoogle Scholar
  131. 131.
    Rivet C, Lee H, Hirsch A, Hamilton S, Lu H (2011) Microfluidics for medical diagnostics and biosensors. Chem Eng Sci 66:1490–1507CrossRefGoogle Scholar
  132. 132.
    Rizzo MA, Davidson MW, Piston DW (2010) Fluorescent protein tracking and detection. In: Goldman RD, Swedlow JR, Spector DL (eds) Live cell imaging: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 3–34Google Scholar
  133. 133.
    Rocheville M, Jerman JC (2009) 7TM pharmacology measured by label-free: a holistic approach to cell signaling. Curr Opinion Pharmacol 9(5):643–649CrossRefGoogle Scholar
  134. 134.
    Sencan I, Coskun AF, Sikora U, Ozcan A (2014) Spectral demultiplexing in holographic and fluorescent on-chip microscopy. Sci Reports 4:3760ADSGoogle Scholar
  135. 135.
    Seo S, Su T-W, Tseng DK, Erlinger A, Ozcan A (2009) Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip 9:777–787CrossRefGoogle Scholar
  136. 136.
    Shamah SM, Cunningham BT (2011) Label-free cell-based assays using photonic crystal optical biosensors. Analyst 136:1090–102Google Scholar
  137. 137.
    Shiau AK, Massari ME, Ozbal CC (2008) Back to basics: label-free technologies for small molecule screening. Comb Chem High T Scr 11(3):231–237Google Scholar
  138. 138.
    Sim JH, Kwak YH, Choi CH, Paek S-H, Park SS, Seo S (2012) A birefringent waveguide biosensor platform for label-free live cell detection of Listeria monocytogenes. Sens Actuat B-Chem 173:752–759CrossRefGoogle Scholar
  139. 139.
    Simonnet C, Groisman A (2005) Two-dimensional hydrodynamic focusing in a simple microfluidic device. Appl Phys Lett 87:114104ADSCrossRefGoogle Scholar
  140. 140.
    Simpson-Stroot JM, Kearns EA, Stroot PG, Magaña S, Lim DV (2008) Monitoring biosensor capture efficiencies: Development of a model using GFP-expressing Escherichia coli O157:H7. J Microbiol Meth 72:29–37CrossRefGoogle Scholar
  141. 141.
    Singh V, Kumar D (2009) Theoretical modeling of a metal-clad planar waveguide based biosensor for the detection of pseudomonas-like bacteria. Progr Electromagn Res M 6:167–184CrossRefGoogle Scholar
  142. 142.
    Spichiger-Keller UE (1998) Chemical sensors and biosensors for medical and biological applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  143. 143.
    Starodub NF, Ogorodniichuk YA, Sitnik YA, Slishik NF (2012) Biosensors for the control of some toxins, viral and microbial infections to prevent actions of bioterrorists. In: Nikolelis DP (ed) Portable chemical sensors. NATO science for peace and security series a: chemistry and biology. Springer, Dordrecht, pp 95–117Google Scholar
  144. 144.
    Stybayeva G, Mudanyali O, Seo S, Silangcruz J, Macal M, Ramanculov E, Dandekar S, Erlinger A, Ozcan A, Revzin A (2010) Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function. Anal Chem 82(9):3736–3744CrossRefGoogle Scholar
  145. 145.
    Su T, Ozcan A (2013) On-Chip holographic microscopy and its application for automated semen analysis. In: Shaked NT, Zalevsky Z, Satterwhite LL (eds) Biomedical optical phase microscopy and nanoscopy. Elsevier, Amsterdam, pp 153–171Google Scholar
  146. 146.
    Su T-W, Choi I, Feng J, Huang K, McLeod E, Ozcan A (2013) Sperm trajectories form chiral ribbons. Sci Rep 3:1664ADSGoogle Scholar
  147. 147.
    Su T-W, Isikman SO, Bishara W, Tseng D, Erlinger A, Ozcan A (2010) Multi-angle lensless digital holography for depth resolved imaging on a chip. Opt Express 18(9):9690ADSCrossRefGoogle Scholar
  148. 148.
    Su TW, Xue L, Ozcan A (2012) High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc Natl Aacad Sci USA 109:16018–16022ADSCrossRefGoogle Scholar
  149. 149.
    Subramanian A (2006) A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157H7. Biosens Bioelectron 7:998–1006CrossRefGoogle Scholar
  150. 150.
    Sykes EA, Albanese A, Chan WCW (2013) Implantable waveguides. Nat Photon 7:940–941ADSCrossRefGoogle Scholar
  151. 151.
    Székács I, Fejes Á, Sz Klátyik, Takács E, Patkó D, Pomóthy J, Mörtl M, Horvath R, Madarász E, Darvas B, Székács A (2014) Environmental and toxicological impacts of glyphosate with its formulating adjuvant. Intl J Biol Food Vet Agric Food Engineer 8(3):213–218Google Scholar
  152. 152.
    Székács I, Pál I, Zs Környei, Szendrő I, Madarász E (2010) Initial cell attachment: events and kinetics of surface adhesion of NE-4C neural stem cells. Eur Cells Mater 20(3):252Google Scholar
  153. 153.
    Szendrő I, Erdélyi K, Puskás Z, Fábián M, Adányi N, Somogyi K (2012) Development and experiments with conductive oxide nanofilm coated planar waveguide sensors. Nanopages 7:17–24CrossRefGoogle Scholar
  154. 154.
    Taitt CR, Anderson GP, Ligler FS (2005) Evanescent wave fluorescence biosensors. Biosens Bioelectron 20:2470–2487CrossRefGoogle Scholar
  155. 155.
    Tan F, Leung PHM, Liud Z, Zhang Y, Xiao L, Ye W, Zhang X, Yi L, Yang M (2011) A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane. Sensor Actuat B-Chem 159:328–335CrossRefGoogle Scholar
  156. 156.
    Teifenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am 6(2):209–220CrossRefGoogle Scholar
  157. 157.
    Testa G, Persichettia G, Zenib L, Sarroc PM, Berninia R (2013) Optofluidics: a new tool for sensing. Proc SPIE 8794:879402CrossRefGoogle Scholar
  158. 158.
    Thoma F, Langbein U, Mittler-Neher S (1997) Waveguide scattering microscopy. Opt Commun 134:16–20ADSCrossRefGoogle Scholar
  159. 159.
    Thuy NT, Tam PD, Tuan MA, Le AT, Tam LT, Thu VV, Hieu NV, Chien ND (2012) Detection of 32 pathogenic microorganisms using biosensor based on multi-walled carbon nanotubes dispersed in DNA solution. Curr Appl Phys 12:1553–1560ADSCrossRefGoogle Scholar
  160. 160.
    Tiefenthaler K, Lukosz W (1985) Grating couplers as integrated optical humidity and gas sensors. Thin Solid Films 126(3–4):205–211ADSCrossRefGoogle Scholar
  161. 161.
    Tims TB, Lim DV (2004) Rapid detection of Bacillus anthracis spores directly from powders with an evanescent wave fiber-optic biosensor. J Microbiol Methods 59(1):127–130CrossRefGoogle Scholar
  162. 162.
    Tóth AE, Walter FR, Bocsik A, Sántha P, Veszelka S, Nagy L, Puskás LG, Couraud PO, Takata F, Dohgu S, Kataoka Y, Deli MA (2014) Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells. PLoS ONE 9(7):e100152ADSCrossRefGoogle Scholar
  163. 163.
    Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2:26–40CrossRefGoogle Scholar
  164. 164.
    Tung Y-C, Huang N-T, Oh B-R, Patra B, Pan C-C, Qiu T, Chu PK, Zhang W, Kurabayashi K (2012) Optofluidic detection for cellular phenotyping. Lab Chip 12:3552–3565CrossRefGoogle Scholar
  165. 165.
    Unser S, Bruzas I, He J, Sagle L (2015) Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15:15684–15716CrossRefGoogle Scholar
  166. 166.
    van Leeuwen CJ, Vermeire TG (eds) (2007) Risk assessment of chemicals. In: An introduction 2nd edn. Springer, DordrechtGoogle Scholar
  167. 167.
    Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A (2014) Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem 406(14):3263–3277CrossRefGoogle Scholar
  168. 168.
    Velasco-Garcia MN (2009) Optical biosensors for probing at the cellular level: A review of recent progress and future prospects. Semin Cell Develop Biol 20:27–33CrossRefGoogle Scholar
  169. 169.
    Vörös J, Graf R, Kenausis GL, Bruinink A, Mayer J, Textor M, Wintermantel E, Spencer ND (2000) Feasibility study of an online toxicological sensor based on the optical waveguide technique. Biosens Bioelectron 15:423–429CrossRefGoogle Scholar
  170. 170.
    Wan Y, Zhang D, Hou B (2009) Monitoring microbial populations of sulfate-reducing bacteria using an impedimetric immunosensor based on agglutination assay. Talanta 80:218–223CrossRefGoogle Scholar
  171. 171.
    Wang DB, Bi LJ, Zhang ZP, Chen YY, Yang RF, Wei HP, Zhou YF, Zhang XE (2009) Label-free detection of B. anthracis spores using a surface plasmon resonance biosensor. Analyst 134(4):738–742ADSCrossRefGoogle Scholar
  172. 172.
    Wang J, Wu C, Hu N, Zhou J, Du L, Wang P (2012) Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro. Biosensors 2:127–170ADSCrossRefGoogle Scholar
  173. 173.
    Washa JW, Debroy C, Irudayaraj J (2006) Rapid detection of Salmonella enteritidis and Escherichia coli using surface plasmon resonance biosensor. J Food Process Eng 4:373–385CrossRefGoogle Scholar
  174. 174.
    Wei D, Oyarzabal OA, Huang TS (2007) Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni. J Microbiol Meth 69:78–85CrossRefGoogle Scholar
  175. 175.
    Wei Q, McLeod E, Qi H, Wan Z, Sun R, Ozcan A (2013) On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography. Sci Reports 3:1699ADSGoogle Scholar
  176. 176.
    Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z, Göröcs Z, Bentolila LA, Wu T-T, Sun R, Ozcan A (2013) Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7(10):9147–9155CrossRefGoogle Scholar
  177. 177.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297ADSCrossRefGoogle Scholar
  178. 178.
    Wood RW (1902) Remarkable spectrum from a diffraction grating. Phil Mag 4(40):396–402Google Scholar
  179. 179.
    Wu M, Coblitz B, Shikano S, Long S, Spieker M, Frutos AG, Mukhopadhyay S, Li M (2006) Phospho-specific recognition by 14-3-3 proteins and antibodies monitored by a high throughput label-free optical biosensor. FEBS Lett 580(24):5681–5689CrossRefGoogle Scholar
  180. 180.
    Xi F, Gao J, Wang J, Wang Z (2011) Discrimination and detection of bacteria with a label-free impedimetric biosensor based on self-assembled lectin monolayer. J Electroanal Chem 656:252–257CrossRefGoogle Scholar
  181. 181.
    Yanase Y, Araki A, Suzuki A, Tsutsui T, Kimura T, Okamoto K, Nakatani T, Hiragun T, Hide M (2010) Development of an optical fiber SPR sensor for living cell activation. Biosens Bioelectron 25:1244–1247CrossRefGoogle Scholar
  182. 182.
    Yashunsky V, Lirtsman V, Golosovsky M, Davidov D, Aroeti B (2010) Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy. Biophys J 99:4028–4036CrossRefGoogle Scholar
  183. 183.
    Yashunsky V, Lirtsman V, Zilbershtein A, Bein A, Schwartz B, Aroeti B, Golosovsky M, Davidov D (2012) Surface plasmon-based infrared spectroscopy for cell biosensing. J Biomed Optics 17(8):081409ADSCrossRefGoogle Scholar
  184. 184.
    Yashunsky V, Marciano T, Lirtsman V, Golosovsky M, Davidov D, Aroeti B (2012b) Real-time sensing of cell morphology by infrared waveguide spectroscopy. Plos ONE 7(10):e48454 10 pGoogle Scholar
  185. 185.
    Yetisen AK, Naydenova I, da Cruz Vasconcellos F, Blyth J, Lowe CR (2014) Holographic sensors: Three-dimensional analyte-sensitive nanostructures and their applications. Chem Rev 114:10654–10696CrossRefGoogle Scholar
  186. 186.
    Zaytseva N, Miller W, Goral V, Hepburn J, Fang Y (2011) Microfluidic resonant waveguide grating biosensor system for whole cell sensing. Appl Phys Lett 98:163703ADSCrossRefGoogle Scholar
  187. 187.
    Zhao J, Zhang XY, Van Duyne RP (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1:219–228CrossRefGoogle Scholar
  188. 188.
    Zhao W, Lu J, Ma W, Xu C, Kuang H, Zhu S (2011) Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor. Biosens Bioelectron 26:4241–4244CrossRefGoogle Scholar
  189. 189.
    Zhao YJ, Zhao XW, Gu ZZ (2010) Photonic crystals in bioassays. Adv Funct Mater 20(18):2970–2988CrossRefGoogle Scholar
  190. 190.
    Zhu P, Shelton DR, Karns JS, Sundaram A, Li S, Amstutz P, Tang C-M (2005) Detection of water-borne E. coli O157 using the integrating waveguide biosensor. Biosens Bioelectron 21:678–683CrossRefGoogle Scholar
  191. 191.
    Zourob M, Elwary S, Turner A (eds) (2008) Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer Science+Business Media LLC, New YorkGoogle Scholar
  192. 192.
    Zourob M, Mohr S, Brown BJT, Fielden PR, McDonnell MB, Goddard NJ (2005) An integrated metal clad leaky waveguide sensor for detection of bacteria. Anal Chem 77:232–242CrossRefGoogle Scholar
  193. 193.
    Madarasz E, Levkovets I, Erdelyi K, Szendro I (2007) Label free biosensor assay on the kinetics of cellsubstrate interactions. Eur. Cells. Mater. 14(Suppl 3):100Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Inna Székács
    • 1
  • Robert Horvath
    • 1
  • András Székács
    • 2
  1. 1.Nanobiosensorics Group, Institute for Technical Physics and Material Science, Centre for Energy ResearchHungarian Academy of SciencesBudapestHungary
  2. 2.Agro-Environmental Research InstituteNational Agricultural Research and Innovation CentreBudapestHungary

Personalised recommendations