Skip to main content

Emerging Biosensor for Pesticide Detection

  • Chapter
  • First Online:

Abstract

Biosensors are considered interesting devices for pesticides monitoring. The peculiar characteristics of biosensors allow them to complement current screening and monitoring methods, especially when continuous, real-time, in situ monitoring is required. However, biosensors still faces to stability and detection sensitivity of the biomolecular recognition element. In the recent years, innovative catalytic biosensors have been proposed to solve this aspect. In this chapter, some of these innovative enzyme based biosensors will be reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Palchetti I, Mascini M (2011) Biosensor techniques for environmental monitoring. In: R.S. of Chemistry (ed) Nucleic Acid Biosens. Environ Pollut Monit

    Google Scholar 

  2. Liu S, Zheng Z, Li X (2013) Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal Bioanal Chem 405:63–90

    Article  Google Scholar 

  3. Sassolas B, Prieto-Simón J-L (2012) Marty, enw_18264. Am J Anal Chem 3:210–232

    Article  Google Scholar 

  4. Carullo P, Cetrangolo GP, Mandrich L, Manco G, Febbraio F (2015) Fluorescence spectroscopy approaches for the development of a real-time organophosphate detection system using an enzymatic sensor. Sensors 15:3932

    Article  Google Scholar 

  5. Verma N, Bhardwaj A (2015) Biosensor technology for pesticides—a review. Appl Biochem Biotechnol 175:3093–3119

    Article  Google Scholar 

  6. Kumar P, Kim K-H, Deep A (2015) Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosens Bioelectron 70:469–481

    Article  Google Scholar 

  7. Rogers KR (2006) Recent advances in biosensor techniques for environmental monitoring. Anal Chim Acta 568:222–231

    Article  Google Scholar 

  8. Rodriguez-Mozaz S, Lopez de Alda M, Barceló D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041

    Article  Google Scholar 

  9. Campàs M, Prieto-Simón B, Marty J-L (2009) A review of the use of genetically engineered enzymes in electrochemical biosensors. Semin Cell Dev Biol 20:3–9

    Article  Google Scholar 

  10. Tudorache M, Bala C (2007) Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Anal Bioanal Chem 388:565–578

    Article  Google Scholar 

  11. Rodriguez-Mozaz S, de Alda MJL, Marco M-P, Barceló D (2005) Biosensors for environmental monitoring: A global perspective. Talanta 65:291–297

    Google Scholar 

  12. Ron EZ (2007) Biosensing environmental pollution. Curr Opin Biotechnol 18:252–256

    Article  Google Scholar 

  13. Amine A, Arduini F, Moscone D, Palleschi G (2016) Recent advances in biosensors based on enzyme inhibition. Biosens Bioelectron 76:180–194

    Article  Google Scholar 

  14. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification1. Biosens Bioelectron 16:121–131

    Article  Google Scholar 

  15. Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  Google Scholar 

  16. Palchetti I, Mascini M, Escarpa A, González MC, López MÁ (2015) Electrochemical enzyme biosensors. In: Agricultural and food electroanalysis. Wiley, New York, 207–221

    Google Scholar 

  17. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45

    Article  ADS  Google Scholar 

  18. Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988

    Google Scholar 

  19. Guilbault GG, Montalvo JG (1969) Urea-specific enzyme electrode. J Am Chem Soc 91:2164–2165

    Google Scholar 

  20. Danielsson B, Mosbach K (1974) An enzyme thermistor. Biocim Biophys Acta 364:140–145

    Google Scholar 

  21. Völkl KP, Opitz N, Lübbers DW (1980) Continuous measurementof concentration of alcohol using a fluorescence-photometric enzymatic method. Fresen Z Anal Chem 301:162–163

    Google Scholar 

  22. Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu F-S (2011) Technology behind commercial devices for blood glucose monitoring in diabetes management: a review. Anal Chim Acta 703:124–136

    Article  Google Scholar 

  23. Newman JD, Turner APF (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20:2435–2453

    Article  Google Scholar 

  24. Eggins B (2002) Chemical sensors and biosensors. Wiley, Chichester

    Google Scholar 

  25. Tran MC (1993) Biosensors, Chapman & Hall, London

    Google Scholar 

  26. Cagnini A, Palchetti I, Mascini M, Turner APF (1995) Ruthenized screen-printed choline oxidase-based biosensors for measurement of anticholinesterase activity. Mikrochim Acta 121:155–166

    Article  Google Scholar 

  27. Cagnini A, Palchetti I, Lionti I, Mascini M, Turner APF (1995) Disposable ruthenized screen-printed biosensors for pesticides monitoring. Sens Actuators B Chem 24:85–89

    Article  Google Scholar 

  28. Hernandez S, Palchetti I, Mascini M (2000) Determination of anticholinesterase activity for pesticides monitoring using a thiocholine sensor. Int J Environ Anal Chem 78:263–278

    Article  Google Scholar 

  29. Laschi S, Ogończyk D, Palchetti I, Mascini M (2007) Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors. Enzyme Microb Technol 40:485–489

    Article  Google Scholar 

  30. Palchetti I, Cagnini A, Del Carlo M, Coppi C, Mascini M, Turner APF (1997) Determination of anticholinesterase pesticides in real samples using a disposable biosensor. Anal Chim Acta 337:315–321

    Article  Google Scholar 

  31. Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F et al (2015) Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim Acta 182:643–651

    Article  Google Scholar 

  32. Guilbault GG, Sadar MH, Kuan SS, Casey D (1970) Enzymatic methods of analysis: Trace analysis of various pesticides with insect cholinesterases. Anal Chim Acta 52:75–82

    Article  Google Scholar 

  33. de Oliveira PRB, Marques GS, dos Nunes TCR, Santos S, Andreescu J-L (2004) Marty, Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster: Application in amperometric biosensors for methamidophos pesticide detection. Biosens Bioelectron 20:825–832

    Article  Google Scholar 

  34. Campas M, Garibo D, Prieto-Simon B (2012) Novel nanobiotechnological concepts in electrochemical biosensors for the analysis of toxins. Analyst. 137:1055–1067

    Article  ADS  Google Scholar 

  35. Valdés-Ramírez G, Fournier D, Ramírez-Silva MT, Marty J-L (2008) Sensitive amperometric biosensor for dichlorovos quantification: Application to detection of residues on apple skin. Talanta 74:741–746

    Article  Google Scholar 

  36. Mandrich L, Manco G, Rossi M, Floris E, Jansen-van den Bosch T, Smit G et al (2006) Alicyclobacillus acidocaldarius thermophilic esterase EST2’s activity in milk and cheese models. Appl Environ Microbiol 72:3191–3197

    Article  Google Scholar 

  37. Febbraio F, Merone L, Cetrangolo GP, Rossi M, Nucci R, Manco G (2011) Thermostable esterase 2 from alicyclobacillus acidocaldarius as biosensor for the detection of organophosphate pesticides. Anal Chem 83:1530–1536

    Article  Google Scholar 

  38. Mulchandani A (2011) Rajesh, microbial biosensors for organophosphate pesticides. Appl Biochem Biotechnol 165:687–699

    Article  Google Scholar 

  39. Mulchandani P, Chen W, Mulchandani A (2006) Microbial biosensor for direct determination of nitrophenyl-substituted organophosphate nerve agents using genetically engineered Moraxella sp. Anal Chim Acta 568:217–221

    Article  Google Scholar 

  40. Deo RP, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M et al (2005) Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 530:185–189

    Article  Google Scholar 

  41. Nakamura H (2010) Recent organic pollution and its biosensing methods. Anal Methods 2:430–444

    Article  Google Scholar 

  42. Xia L, Liang B, Li L, Tang X, Palchetti I, Mascini M et al (2013) Direct energy conversion from xylose using xylose dehydrogenase surface displayed bacteria based enzymatic biofuel cell. Biosens Bioelectron 44:160–163

    Article  Google Scholar 

  43. Liang B, Li L, Tang X, Lang Q, Wang H, Li F et al (2013) Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosens Bioelectron 45:19–24

    Article  Google Scholar 

  44. Mulchandani P, Chen W, Mulchandani A, Wang J, Chen L (2001) Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. Biosens Bioelectron 16:433–437

    Article  Google Scholar 

  45. Fukuda T, Tsuchiya K, Makishima H, Tsuchiyama K, Mulchandani A, Kuroda K et al (2010) Organophosphorus compound detection on a cell chip with yeast coexpressing hydrolase and eGFP. Biotechnol J 5:515–519

    Article  Google Scholar 

  46. Vidal JC, Esteban S, Gil J, Castillo JR (2006) A comparative study of immobilization methods of a tyrosinase enzyme on electrodes and their application to the detection of dichlorvos organophosphorus insecticide. Talanta 68:791–799

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Palchetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palchetti, I. (2016). Emerging Biosensor for Pesticide Detection. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_20

Download citation

Publish with us

Policies and ethics