Skip to main content

Efficiency of Non-label Optical Biosensors for the Express Control of Toxic Agents in Food

  • Chapter
  • First Online:
Biosensors for Security and Bioterrorism Applications

Abstract

This chapter is devoted to the analysis of the efficiency of a different types of the immune biosensors for the control of toxic agents among of environmental objects, The main attention is paid to the non-labeled immune biosensors and, in particular, optical ones. Among them the immune biosensors based on the porous silicon (PS), surface plasmon resonance (SPR) and total reflection internal ellipsometry (TIRE) are detailed considered. In additional to, the immune biosensors based on calorimeter and thermistors as well as on the piezocristals are described. As model of toxic elements the synthetic chemicals as pesticides and nonylethoxylates as well as the nature biological substances, in particularly, a number of mycotoxins: T2, aflatoxins, patulin and others are used. It is necessary, to underline that the analysis was fulfilled with the model solutions and with real samples: some corn, vegetables and fruits. At the end of the chapter the perspectives of the developed instrumental analytical devices based on the principles of biosensorics are analyzed. Especially it draws attention to the development of multi-parameter portable biosensors based on the basis of the nano-structured porous silicon (nano-PS) from one side and on the artificial selective template surface, calyx(4)arenas and aptamers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banza R, Rois A, Gomes-Hens A, Valcarcel M (2004) Supercritical fluid immunoextraction: a new approach for immunoassay automation. Anal Chem Acta 518:151–156

    Article  Google Scholar 

  2. Bamburg JR (1976) Mycotoxins and other fungal related food problems. Washington, D.C., pp 144–162

    Google Scholar 

  3. Bamdurg JR, Riggs NV, Strong FM (1968) The structure of toxins from two strains of Fusarium tricinctum. Tetrahedrom 24:3329–333

    Article  Google Scholar 

  4. Barrie LA, Gregor D, Hargrave B, Lake R et al (1992) Arctic contaminants: sources, occurrence and patways. Total Environ 122:1–74

    Article  Google Scholar 

  5. Bhat VR, Ramakrishna J, Sashidhar RB (1989) Outbreak of mycotoxicosis in Kashmir Valley. Nutr News India 10(1):1–3

    Google Scholar 

  6. Blum JL, Xiong JQ, Hoffman C, Zelikoff JT (2012) Cadmium associated with inhaled cadmium 32 oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol Sci 126(2):478–486

    Article  Google Scholar 

  7. Binder J (1999) A yeast bioassay for trichothecenes. Nat Toxins 7(N6):401–406

    Google Scholar 

  8. Birnbaum LS (1995) Workshop on potential exposure to dioxin-like compounds:V. immunologic aspects. Environ Health Persp 103:157–159

    Article  Google Scholar 

  9. Boisen AM, Shipley T, Jackson P et al (2012) NanoTiO(2) (UVTitan) does not induce ESTR mutations in the germline of prenatally exposed female mice. Part Fibre Toxicol 9:9–19

    Article  Google Scholar 

  10. Boltjanskaja EV, Кuvajeva IB, Krojakova EA (1988) Screening of yeast strains which are sensitive to T2-mycotoxin. Probl Nutr N 6:67–68

    Google Scholar 

  11. Brouwer A, Morse DC, Lans MC, Schuur AG et al (1998) Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health 14:59–84

    Article  Google Scholar 

  12. Busby WF Jr, Wogan GN (1980) Trichothecenes. In: Shank RC (ed) Mycotoxins and N-Nitroso compounds: environmental risks, vol 2. Fleering Center: CRC Pressm, Boca Raton, pp 29–41

    Google Scholar 

  13. Chu FS, Grossman S, Wei RD, Microcha CJ (1979) Production of antibody against T-2 toxin. Appl Environ Microbiol 37:104–108

    Google Scholar 

  14. Ciegler A, Bennett JW (2014) Mycotoxins and mycotoxicoses. Bioscience 30(N8):512–515

    Google Scholar 

  15. Colborn T (1991) J. Epidemiology of Great Lakes bald eagles. Tococol Environ Health 33:395–453

    Article  Google Scholar 

  16. Cole RJ, Cox RH (1981) The trichothecenes. In: Cole RJ, Cox RH Handbook of toxic fungal metabolites. Academic Press, New York, pp 152–263

    Google Scholar 

  17. Committee (1983) Committee on Protection Against Mycotoxins, Board on Toxicology and Environmental Health Hazards, Commission on Life Sciences, National Research Council. Protection Against Trichothecene Mycotoxins. National Academy Press, Washington, DC

    Google Scholar 

  18. Council Directive 82/242 EEC of March 31, 1982 on the approximation of the laws of the Member States relating to methods of testing degradability of non-ionic surfactants on amending Directive 73/404/EEC

    Google Scholar 

  19. Daly SJ, Keating GJ, Dillon PP et al (2000) Development of surface plasmon resonance-based immunoassay for aflatoxin B1. J Agric Food Chem 48(N11):5097–5104

    Google Scholar 

  20. De Koe WJ (1995) Natural toxins. Chairman, Panel discussion., No 3, p 280

    Google Scholar 

  21. Demchenko AV, Mel’nik VG, Starodub NF (2007) Thermal biosensor for detecting nonylphenol in the environment. Ukr Biochem J 79(5):173–176

    Google Scholar 

  22. Demchenko AV, Starodub NF (2007) Modification of immune SPR biosensor surface at nonylphenol analysis. Biopolym Cell 23(2):143–147

    Article  Google Scholar 

  23. Ember LR (1984) Yellow rain. Chem Eng News 62:8–34

    Article  Google Scholar 

  24. Eriksson P (1997) Developmental neurotoxicity of environmental agents in the neonate. Neurotoxicology 18:719–726

    Google Scholar 

  25. Eriksson G, Jensen S, Kylin H, Strachan W (1989) The pine needle as a monitor of atmospheric pollution. Nature 341:42–44

    Article  ADS  Google Scholar 

  26. Fan TSL, Zhang GS, Chu FS (1984) An indirect enzyme-linked immunosorbent assay for T-2 toxin in biological fluids. J Food Protect 47(N12):964–967

    Google Scholar 

  27. Gomes SI, Soares AM, Scott-Fordsmand JJ, Amorim MJ (2013) Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile. Hazard Mater 15:254–255

    Google Scholar 

  28. Gendloff EH, Pestka JJ, Swanson SP, Hart L. P. (1984) Detection of T-2 toxin in Fusarium sporotrichioides—infected corn by enzyme-linked immunosorbent assay. Appl Environ Microbiol 1161–1163

    Google Scholar 

  29. Hassanin N, Gabal MA (1990) Biological and chemical characterization of metabolites of Fusarium moniliforme isolates. Vet Hum Toxicol 32(N6):536–540

    Google Scholar 

  30. Hayes MA, Schiefer HB (1990) A method for accurate measurement of cutaneous irritancy of trichothecenesJ. Environ Pathol Toxicol Oncol 10(3):103–105

    Google Scholar 

  31. Hooper HL, Jurkschat K, Morgan AJ et al (2011) Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia 6 veneta in a soil matrix. Environ Int 37(6):1111–1117

    Article  Google Scholar 

  32. Houk VS, Waters MD (1996) Genetic toxicology and risk assessment of complex environmental mixtures. Drug Chem Toxicol 19:187–219

    Article  Google Scholar 

  33. Hsu PC, O’ Callaghan M, Al-Salim N, Hurst MR (2012) Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans. Environ Toxicol Chem 31(10):2366–2374

    Article  Google Scholar 

  34. Jodldauer J, Maier NM, Linder W (2002) To wards ochratoxin A selective molecularly imprinted polymers for solidphase extraction. J Chromatogr 945A:45–63

    Article  Google Scholar 

  35. Kachinskaya TS, Melnichenko MM, Starodub MF, Shmyryeva OM (2008a) Nanobiosensors for the determination of the concentration of mycotoxins. In Proceedings of the Electronic and connection. Issue: “Problems of Electronics”, part 1. “medical devices and systems”, pp 153–159

    Google Scholar 

  36. Kachinskaya TS, Melnichenko MM, Starodub MF et al (2008b) Production of biosensor controls on the basis of nanostructured silicon. In: Abstract of international symposium on surface science and nanotechnology, 9–13 Nov 2008, International Conference Center, Waseda University, Tokyo, Japan, p 550

    Google Scholar 

  37. Kalchenko OI, Solovyov AV, Cherenok SA et al (2003) Complexation of Calix are nephosphonous acids with 2,4-dichlorophenoxyacetic acid and atrazine in water. Incl Phenom Microcyclic Chem 46:19–25

    Article  Google Scholar 

  38. Kataoka H (2002) Automated sample preparation using in#tube solidphase microextraction and its application. Rev Anal Bioanal Chem 373:31–45

    Article  Google Scholar 

  39. Kononenko GP, Burkin AA, Soboleva NA, Zotova EV (1999) Enzyme immunoassy for determination of T-2 toxin in contaminated grain. Appl Biochem Microbiol 35:457–462

    Google Scholar 

  40. Kipopoulou AM, Manoli E, Samara C (1999) Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ Pollut 106:369–380

    Article  Google Scholar 

  41. Kotik AN (1999) Micotoxicosis of avian. Publ. “Donets”, Borki, 267 pp

    Google Scholar 

  42. Kotik AN, Truchanova VA (1997) Events of micotoxicosis among farming birds in Ukraine in 1974–96 years. In: Breeding, interdepartmental proceedings (Borki, Kharkiv destrict), B. 47, pp 92–100

    Google Scholar 

  43. Lee S, Chu FS (1981) Radioimmunoassay of T-2 toxin in corn and wheat. J Assoc Anal Chem 64(1):156–161

    Google Scholar 

  44. Ligler FS, Bredehorst R, Talebian A et al (1987) A homogeneous immunoassay for the mycotoxin T-2 utilizing liposomes, monoclonal antibodies, and complement. Anal Biochem 163(2):369–375

    Article  Google Scholar 

  45. Madhyastha MS, Marquardt RR, Abramson D (1994) Structure-activity relationships and interactions among trichothecene mycotoxins as assessed by yeast bioassay. Toxicon 32(9):1147–1152

    Article  Google Scholar 

  46. Matsumoto H, Ito T, Ueno Y (1978) Toxicological approaches to the metabolites of fusaria, XII: Fate and distribution of T-2 toxin in mice. Jpn J Exp Med 5(N48):393–399

    Google Scholar 

  47. Mirocha CJ, Pawlosky RA, Chatterjee K, Watson S, Hayes W (1983) Analysis for Fusarium toxins in various samples implicated in biological warfare in Southeast Asia. J Assoc Anal Chem 66(6):1485–1499

    Google Scholar 

  48. Mirocha CJ, Panthre SV, Pawlosky RJ, Hewetson DW (1986) Mass spectra of selected trichothecenes. In: Cole RJ (ed) Modern methods in the analysis and structure elucidation of mycotoxins. Academic Press, New York, pp 353–392

    Chapter  Google Scholar 

  49. Mocarelli P, Brambilla P, Gerthoux PM, Patterson DG Jr, Needham LL Jr (1996) Change in sex ration with exposure to dioxin. Lancet 348:409

    Article  Google Scholar 

  50. Morais S, Maquieeira A, Puchades R (1999) Immunofiltration: A new methodology for preconcentration and determination of organic pollutants. Anal Chem 71:1905–1909

    Article  Google Scholar 

  51. Morris BA, Clifford MN (eds) (1985) Immunoassays for Food Analysis. Elsevier Applied Science, London

    Google Scholar 

  52. Morse PM (1999) Soaps and detergents. C&EN, February 1:35–48

    Google Scholar 

  53. Mullett W, Lai EPC, Yeung JM (1998) Immunoassay of fumonisins by a surface plasmon resonance biosensor. Anal Biochem 258:161–167

    Article  Google Scholar 

  54. Mulvad G, Pederson HS, Hansen JC, Dewailly E et al (1996) Exposure of Greenlandic Inuit to organochlorines and heavy metals through the marine food-chain: an international study. Tot Environ 186:137–139

    Article  Google Scholar 

  55. Nabok AV, Starodub NF, Ray AK, Hassan AK (2000a) Registration of immunoglobuline AB/AG reaction with planar polarisation interferometer. Biochemical and biomolecular sensing. In: Liberman RA (ed) Proceedings SPIE 4200, pp 1–9

    Google Scholar 

  56. Nabok AV, Starodub NF, Ray AK, Hassan AK (2000b) Enzyme/indicator optrodes for detection of heavy metal ions and pesticides. Biochemical and biomolecular sensing. In: Liberman RA (ed) Proceedings SPIE 4200, pp 32–41

    Google Scholar 

  57. Nabok AV, Tsargorodskaya A, Holloway A et al (2007a) Registration of T2 mycotoxin with total internal reflection ellipsometry and QCM impedance methods. Biosens Bioelectron 22:885–890

    Google Scholar 

  58. Nabok A, Tsargorodskaya A, Holloway A et al (2007b) Specific binding of large aggregates of amphiphilic molecules to the respective antibodies. Langmuir 23:8485–8490

    Google Scholar 

  59. Nabok A., Tsargorodskaya A., Mustafa M.K., et al (2009) Detection of low molecular weight toxins using optical phase detection techniques. Proc. of the Eurosensors XXIII conference. Procedia Chem www.elsevier.com/locate/procedia, pp 1–4

  60. Ostrŷ V (1999) Micromycetes, mycotoxins and human health. Cas Lek Cesk 138(17):515–521

    Google Scholar 

  61. Paepens C, De Saeger S, Sibanda L et al (2004) A flow-through enzyme immunoassay for the screening of fumonisins in maize. Anal Chem Acta 523:229–235

    Article  Google Scholar 

  62. Peng S, Dong J, Yang J (1996) Studies on relationship between toxicity of trichothecene toxin T-2 and its structure. Chung Hua Yu Fang I Hsueh Tsa Chih 30(N 3):141–143

    Google Scholar 

  63. Powers KW, Brown SC (2006) Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90(2):296–303

    Article  Google Scholar 

  64. Pylypenko LN, Egorova AV, Pylypenko IV et al (2007) Investigation of toxic effect of patulin with the help of biosensorics systems. Food Sci Technol N1:35–38

    Google Scholar 

  65. Pylypenko IV, Pylypenko LN, Starodub NF (2010) Biosensors at the determination of mycoyoxins. In: Proccedingsof 4th International schentific-technical conference “Sensor electronics and microsystem technologies” (SMEST-4), Ukraine, Odessa, 28 June–02 July, p 227

    Google Scholar 

  66. Ramakrishna N, Lacey J, Candlish AA et al (1990) Monoclonal antibody-based enzyme linked immunosorbent assay of aflatoxin B1, T-2 toxin, and ochratoxin A in barley. J. Assoc Anal Chem 73(1):71–76

    Google Scholar 

  67. Romer TR (1984) Chromatographic techniques for mycotoxins. In: Lawrence JF (ed) Food constituents and food residues: their chromatographic determination. Marcel Dekker, New York, pp 393–415

    Google Scholar 

  68. Rosen RT, Rosen JD (1982) Presence of four Fusarium mycotoxins and synthetic material in yellow rain. Evidence for the use of chemical weapons in Laos. Biomed Mass Spectrom 9(10):443–450

    Article  Google Scholar 

  69. Rotter BA, Thompson BK, Prelusky DB, Trenholm HL (1991) Evaluation of potential interactions involving trichothecene mycotoxins using the chick embryotoxicity bioassay. Arch Environ Contam Toxicol 21(4):621–624

    Article  Google Scholar 

  70. Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnol Hum Healthc 3:20–31

    Google Scholar 

  71. Sarkisov A (1954) Ch. Mycotoxicoses. M., Publ. SIAL, 216 pp

    Google Scholar 

  72. Schoening MJ, Ronkel F, Crott M et al (1997) Miniaturization of potentiometric sensors using porous silicon microtechnology. Electrochim Acta 42:3185–3193

    Article  Google Scholar 

  73. Solodkij MV, Melnichenko MM, Starodub MF, Shmyryeva OM (2008) Biosensor for the determination of the concentration of toxic substances with the help of nanostructured silicon. In: Proceedings of the of VI International scientific-technical conference, 21–23 Oct 2008, pp 160–163

    Google Scholar 

  74. Starodub NF, El’skaya AV, Piletsky SA, Lavryk NV (1993) Template sensors for low weight organic molecules based on SiO2 surfaces. Sens Actuat 708–710

    Google Scholar 

  75. Starodub NF, Fedorenko LL, Starodub VM, Dikij SP, Svechnicov SV (1996) Sens Actuat 35:44–47

    Article  Google Scholar 

  76. Starodub VM, Fedorenko LL, Starodub NF (1998) Control of a myoglobin level in solution by the bioaffinic sensor based on the photoluminescence of porous silicon. Eurosensors XII. In: Proceedings of the European conference on solid-state transducers and 9-th UK Conference on sensors and their applications, Southampton, UK, 13–16 September, vol 2, pp 817–820

    Google Scholar 

  77. Starodub VM, Starodub NF (1999) Optical immune sensors for the monitoring protein substances in the air. Eurosensor XII. In: The 13th European conference on solid-state transducers, 12–15 Sept 1999, The Hague, The Netherlands, pp 181–184

    Google Scholar 

  78. Starodub VM, Fedorenko LL, Sisetskiy AP, Starodub NF (1999) Control of mioglobin level in an immune sensor based on the photoluminescence of porous silicon. Sens Actuat B 58:409–414

    Article  Google Scholar 

  79. Starodub NF, Starodub VM, Demchenko AV et al (2004a) Creation of optical immune sensors for the determination of low weight toxic substances in environment. In: Proceedings of the International trade fair for optical and microtechnology products with conference, 25–27 May 2004. Nuremberg Exhibition Center, Germany, pp 335–340

    Google Scholar 

  80. Starodub NF, Demchenko A, Starodub VM et al (2004b) Optical immune sensors for the determination of low weight toxic substances in environment. Sens Electron Microsyst Technol Odessa 2004:150–151

    Google Scholar 

  81. Starodub NF, Pirogova LV, Starodub VM, Demchenko A (2005) Antibody immobilization on the metal and silicon surface. The use of self-assembled layer and specific receptors. Bioelectrochemistry 66:111–115

    Article  Google Scholar 

  82. Starodub NF, Pilipenko LN, Egorova AV et al (2007) Analysis of mycotoxins: selection and preparation of samples. Biotechnology 1(1):106–115

    Google Scholar 

  83. Starodub NF, Nabok AV (2008) Immune biosensors for the express determination of some endocrine disrupting factors in environment. In: Book of Abstracts: Europtrode IX, Ninth European conference on optical chemical sensors and biosensors, Dublin, March 30–April 2, p 241

    Google Scholar 

  84. Starodub NF, Nabok AV, Tsargorodskaya A et al (2006) Control of T2 mycotoxin in solutions and foods by biosensors based on SPR and TIRE. In Proceedings of the Sensor + Test 2006, Nurenberg, pp 87–92

    Google Scholar 

  85. Starodub NF (2008) Biosensor express measurement of chemicals regularly used in agriculture and as terrorist means in the environment to prevent dangerous consequences. In: Jiaguo Q, Evered KT (eds) NATO science for peace and security series: environmental security Proceedings of the Environmental Problems of Central Asia and their Economic, Social and Security Impacts, pp 109–133

    Google Scholar 

  86. Starodub NF, Kanjuk MI, Ivashkevich SP et al (2008a) Patulin toxicity and determination of this toxin in environmental objects by optical biosensor systems. In: Proceedings of 3th International scientific-technical conference “Sensor electronics and microsystem technologies” (SMEST-3), Ukraine, Odessa, 2–6 June, pp 237–238

    Google Scholar 

  87. Starodub NF, Pilipeko LN, Pilipenko IV, Egorova AV (2008b) Mycotoxins and other low weight toxins as instrument of bioterrorists: express instrumental control and some ways to decontaminate polluted environmental objects. Timisoara Med J 58(1–2):9–18

    Google Scholar 

  88. Starodub NF (2009a) Biosensors in a system of instrumental tools to prevent effects of bioterrorism and automotive control of water process purification. In: Jones JAA, Vardanian TG, Hakopian Ch (eds) Proceedings: NATO Science for peace and security, Ser. C: Environmental security. Threats to global water security. Springer Sci. + Business Media B.V., pp 59–71

    Google Scholar 

  89. Starodub NF (2009b) Biosensors in the system of express control of chemicals regularly used as terrorist means to prevent non desirable consequences. In: The role of ecological chemical in pollution research and sustainable development. Springer Sci + Business Media BV, pp. 275–384

    Google Scholar 

  90. Starodub NF, Kanjuk MI, Ivashkevich SP et al (2009a) Determination of patulin toxicity and its control in environment by optical biosensor system. In: Proceedings of OPTO 2009&IRS2, Nurenberg, Germany, 26–28 May 2009, pp 151–156

    Google Scholar 

  91. Starodub NF, Mel’nichenko NN, Shmireva AN (2009b) Biosensors based on the nanostructured silicon: development and practical application. In: Abstract book of Advanced materials and technologies for micro/nano-devices, sensors and actuators”, NATO ARW, NanoDSA’ 2009, St. Petersburg, Russia, June 29–July 02, p 20

    Google Scholar 

  92. Starodub NF, Pylypenko IV, Pylypenko LN et al (2010) Biosensors for the determination of Mycoyoxins: development, efficiency at the analysis of model samples and in case of practical applications. Lect Notes ICB 86:81–101

    Google Scholar 

  93. Starodub NF, Sitnik JA, Melnichenko MM, Shmyryeva OM (2011) Optical immune biosensors based on the nanostructured silicon and intended the diagnostics of retroviral bovine leucosis. The SENSOR + TEST 2011. AMA Service GmBH, Nurenberg, pp 127–132

    Google Scholar 

  94. Starodub NF (2013) New ways to develop biosensors towards addressing practical problems. Biophotonics—Riga 2013, edited by Janis Spigulis, Ilona Kuzmina. Proc SPIE 9032, 90320Y © 2013 SPIE CCC code: 1605–7422/13/$18. doi:10.1117/12.2044651

  95. Swanson SP, Helaszek C, Buck WB, Rood HDJ, Haschek WM (1988) The role of intestinal microflora in the metabolism of trichothecene mycotoxins. Food Chem Toxicol 26(10):823–830

    Article  Google Scholar 

  96. Takeda K, Shinkai Y, Suzuki K et al (2011) Health effects of nanomaterials on next generation. Yakugaku Zasshi 131(2):229–236

    Article  Google Scholar 

  97. Tanaka T, Yoneda A, Inoue S et al (2000) Simultaneous determination of trichothecene mycotoxins and zearalenone in cereals by gas chromatog raphymass spectrometry. J Chromatogr 882(1–2):23–28

    Article  Google Scholar 

  98. Thomann RV, Connolly JP, Parkerton TF (1992) An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. Environ Toxicol Chem 11:615–629

    Article  Google Scholar 

  99. Tuteljan VA, Eller КS, Sobolev VS (1984) Methodical recommendation for revealing, identification and determination of T2 content in foods and bread grain. pp 1–9

    Google Scholar 

  100. Ueno Y (1985) The toxicity of mycotoxins. CRC Crit Rev Toxicol 14(2):99–132

    Article  MathSciNet  Google Scholar 

  101. Vallack HW, Bakker DJ, Brandt I, Brostrom-Lunden E et al (1998) Controlling persistent organic pollutants-what next? Env Toxicol Pharmacol 6:143–175

    Article  Google Scholar 

  102. Vesonder RF, Rohwedder WK (1986) Gas chromatographic-mass spectrometric analysis of mycotoxins. In: Cole RJ (ed) Modern methods in the analysis and structure elucidation of mycotoxins. Academic Press, New York, pp 335–352

    Chapter  Google Scholar 

  103. Wannemacher RW Jr, Pace JG (1987) Medical defence against biological warfare: Exploratory immunotherapy studies on toxins of potential BW threat. In: US Army Medical Research Institute of Infectious Diseases Annual Report 1987. Fort Detrick, Frederick, Md: USAMRIID, pp 129–135

    Google Scholar 

  104. Wannemacher RW Jr, Bunner DL, Dinterman RE (1989) Inactivation of low molecular weight agents of biological origin. In: Proceedings for the symposium on agents of biological origins, 1989. US Army Chemical Research Development and Engineering Center, Aberdeen Proving Ground

    Google Scholar 

  105. Wannemacher RW Jr, Bunner DL, Neufeld HA (1991) Toxicity of trichothecenes and other related mycotoxins in laboratory animals. In: Smith JE, Henderson RS (eds) Mycotoxins and animal foods. CRC Press, Boca Raton, pp 499–552

    Google Scholar 

  106. Westlake K, Mackie RI, Dutton MF (1987) T-2 toxin metabolism by ruminal bacteria and its effect on their growth. Appl Environ Microbiol 53(3):587–592

    Google Scholar 

  107. Wilkes JG, Sutherland JB (1998) Sample preparation and high resolution separation of mycotoxins possessing carboxyl groups. J Chromatogr 717B:135–156

    Article  Google Scholar 

  108. Yagen B, Bialer M, Sintov A (1985) Gas chromatographic assay with pharmacokinetic pplications for monitoring T-2 and HT-2 toxins in plasma. J Chromatogr 343(1):67

    Article  Google Scholar 

  109. Yoshizawa T, Sakamoto T, Okamkoto K (1984) In vitro formation of 3’ -hydroxy T-2 and 3′ -hydroxy HT-2 toxins from T-2 toxin by liver homogenates from mice and monkeys. Appl Environ Microbiol 47(1):130–134

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by EU funded BIOSENSORS-AGRICULT project (Development of nanotechnology based biosensors for agriculture FP7-PEOPLE-2012-IRSES, contract N. 318520) and NATO multi-year Science for Peace Project NUKR.SFPP 984637—“Development of Optical Bio-Sensors for Detection of Bio-Toxins” as well as National University of Life and Environmental Sciences of Ukraine, projects “Development of new generation of the instrumental analytical approaches based on the principles of nano-biotechnology and biosensorics for providing systems of biosafety” and “Creation of effective methods for the construction of artificial selective sites for the instrumental analytical devices of new generation based on the principles of biosensorics”, N 110/476-Appl. and № 110/71-fund., appropriate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickolaj F. Starodub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Starodub, N.F., Shpirka, N.F. (2016). Efficiency of Non-label Optical Biosensors for the Express Control of Toxic Agents in Food. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_18

Download citation

Publish with us

Policies and ethics