Skip to main content

Biosensing of Neurotoxicity to Prevent Bioterrorist Threats and Harmful Algal Blooms

  • 1257 Accesses

Part of the Advanced Sciences and Technologies for Security Applications book series (ASTSA)

Abstract

The chapter discusses the different types of amperometric sensors based on the inhibition of butyrylcholinesterase for the analysis of neurotoxins. Analytical characteristics of sensors based on the manganese dioxide allow determining the neurotoxins in the nanomolar concentration range. The authors of this publication examined in detail the application of such sensors for monitoring of water samples. The data obtained indicates the presence of anatoxin A(s) in the analyzed samples. The study revealed the potential of the developed sensors to monitor the neurotoxic cyanobacteria at water “blooms”.

Keywords

  • Amperometric biosensors
  • Manganise dioxide
  • Nanoparticles
  • Thiol compounds
  • Neurotoxines
  • Harmful algal blooms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-28926-7_16
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-28926-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Andreescu S, Marty JL (2006) Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol Eng 23:1

    CrossRef  Google Scholar 

  2. Lee JH, Mitchell RJ, Kim BC, Cullen DC, Gu MB (2005) A cell array biosensor for environmental toxicity analysis. Biosens Bioelectron 21:500

    CrossRef  Google Scholar 

  3. Rodriguez-Mozaz S, de Alda MJL, Barcelo D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025

    Google Scholar 

  4. Kurochkin IN, Eremenko AV, Makhaeva GF, Sigolaeva LV, Dubacheva GV, Richardson RJ (2009) Multi-strip assay and multimodal biosensors for environmental and medical monitoring of neurotoxicants. In: Dishovsky CH, Pivovarov A (eds) Counteraction to chemical and biological terrorism in the East Europe countries. NATO science for peace and security, series A: chemistry and biology. Springer, Dordrecht

    Google Scholar 

  5. Mannino S, Cosio MS, Ratti S (1993) Cobalt (II, III)-oxide chemically modified electrode as amperometric detector in flow injection systems. Electroanalysis 5:145

    CrossRef  Google Scholar 

  6. Salimi A, Hallaj R, Soltanian S, Mamkhezri H (2007) Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal Chim Acta 594:24

    CrossRef  Google Scholar 

  7. Karyakin AA, Karyakina EE (1999) Prussian Blue-based ‘artificial peroxidase’ as a transducer for hydrogen peroxide detection. Application to biosensors. Sens Actuators B Chem 57:268

    Google Scholar 

  8. Ricci F, Amine A, Palleschi G, Moscone D (2003) Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens Bioelectron 18:165

    CrossRef  Google Scholar 

  9. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389

    CrossRef  Google Scholar 

  10. Schachl K, Alemu H, Kalcher K, Jeozkova J, Svancara I, Vytoras K (1997) Amperometric determination of hydrogen peroxide with a manganese dioxide-modified carbon paste electrode using flow injection analysis. Analyst 122:985

    ADS  CrossRef  Google Scholar 

  11. Schachl K, Alemu H, Kalcher K, Moderegger H, Svancara I, Vytoras K (1998) Amperometric determination of hydrogen peroxide with a manganese dioxide film-modified screen printed electrode. Fresenius J Anal Chem 362:194

    CrossRef  Google Scholar 

  12. Yao S, Xua J, Wang Y, Chena X, Xua Y, Hua S (2006) A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Anal Chim Acta 557:78

    Google Scholar 

  13. Yao S, Yuan S, Xu Y, Wang Y, Luo J, Hu S (2006) A hydrogen peroxide sensor based on colloidal MnO2/Na-montmorillonite. Appl Clay Sci 33:35

    Google Scholar 

  14. Cox JA, Jaworski RK (1989) Voltammetric reduction and determination of hydrogen peroxide at an electrode modified with a film containing palladium and iridium. Anal Chem 61:2176

    CrossRef  Google Scholar 

  15. Domenech A, Alarcon J (2002) Determination of hydrogen peroxide using glassy carbon and graphite/polyester composite electrodes modifi ed by vanadium-doped zirconias. Anal Chim Acta 452:11

    CrossRef  Google Scholar 

  16. Dontsova E, Zeifman Y, Budashov I, Eremenko A, Kalnov S, Kurochkin I (2011) Screen-printed carbon electrode for choline based MnO2 nanoparticles and choline oxidase/polyelectrolyte layers. Sens Actuators B 159:261

    CrossRef  Google Scholar 

  17. Eremenko AV, Dontsova EA, Nazarov AP, Evtushenko EG, Amitonov SV, Savilov SV, Martynova LF, Lunin VV, Kurochkin IN (2012) Manganese dioxide nanostructures as a Novel electrochemical mediator for thiol sensors. Electroanalysis 3:573

    CrossRef  Google Scholar 

  18. Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:31

    CrossRef  Google Scholar 

  19. Blaha G, Stanley RE, Steitz TA (2009) Formation of the first peptide bond: the structure of EF-P bound to the 70 S Ribosome. Science 325:966

    ADS  CrossRef  Google Scholar 

  20. Skulberg OM, Codd GA, Carmichael WW (1984) Blue-green algal (Cyanobacteria) Toxins: water. Quality and health problem in Europe. Asian Bus Manage 10(B):244

    Google Scholar 

  21. Botana LM (ed) (2008) Seafood and Freshwater Toxins Pharmacology, Physiology and Detection, 2nd edn

    Google Scholar 

  22. Carmichael WW (1994) The toxins of cyanobacteria. Sci Am 270(1):78

    ADS  CrossRef  Google Scholar 

  23. Trifonova IS, Pavlova OA (2008) Phytoplankton succession in urban water-bodies of St Petersburg as an indicator of their ecological conditions. Limnol Rev 8(3):137

    Google Scholar 

  24. Russkikh YV, Chernova EN, Voyakina EJu, Nikiforov VA, Zhakovskaya ZA (2012) [Pyccкиx Я.B., Чepнoвa E.H., BoякинaE.Ю., Hикифopoв B.A., Жaкoвcкaя З.A.]. [Cyanotoxin determination in natural water matrix by the method of high performance liquid chromatography-mass-spectrometry of high resolution]. Izvestiya St. Peterburgskogo gosudarstvennogo technologicheskogo instituta (tekhnicheskogo universiteta) 17(43):61 (in Russian). http://science.spb.ru/files/IzvetiyaTI/2012/17/Articles/15/files/assets/downloads/publication.pdf

  25. Ezhova E, Lange E, Russkikh Y, Chernova E, Zhakovskaya Z (2014) Dynamics of toxic HABs in the Curonian Lagoon, Baltic Sea during 2010–2013. Book of abstracts. In: ICES annual science conference (ASC) 15–19 September, La Coruna, Spain:26

    Google Scholar 

  26. Sidelev SI, Golokolenova TB, Chernova EN, IaV R (2015) Analysis of phytoplankton in Tsimlyansk Reservoir (RUSSIA) for the presence of cyanobacterial hepato- and neurotoxins. Mikrobiologiya 84(6):732 [in Russian with English abstract]

    Google Scholar 

  27. Chernova EN, Russkikh IV, Voyakina EU, Zhakovskaya ZA (2013) Research of natural ecotoxicants—methabolites of blue-green algae in various water-bodies of the north-west of Russia. Regionalnaya Ekologiya 1–2(35):88 [in Russian with English abstract]

    Google Scholar 

  28. Araoz R, Molgo J, de Marsac NT (2010) Neurotoxic cyanobacterial toxins. Toxicon 56:813

    CrossRef  Google Scholar 

  29. Mahmood NA, Carmichael WW (1986) The pharmacology of anatoxin-a(s), a neurotoxin produced by the freshwater cyanobacterium Anabaena flos-aquae NRC 525–17. Toxicon 24(5):425

    CrossRef  Google Scholar 

  30. Demirel Z, Sukatar A (2012) Cyanobacterial toxin. Int J Toxicol 8(2):1

    Google Scholar 

  31. Carmichael WW, Azevedo SMFO, An JS, Molica RJR, Jochimsen EM, Lau S, Rinehart KL, Shaw GR, Eaglesham GK (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Perspect 109(7):663

    CrossRef  Google Scholar 

  32. Wood SA, Stirling DJ, Briggs LR, Sprosen J, Holland PT, Ruck JG, Wear RG (2006) Survey of cyanotoxins in New Zealand waterbodies between 2001 and 2004. NZ J Mar Freshw Res 40:585

    CrossRef  Google Scholar 

  33. Harada K-I, Kondo F, Lawton L (1999) Laboratory analysis of cyanotoxins/ Toxic cyanobacteria in water, London 1999:369

    Google Scholar 

  34. Carmichael WW, Gorham PR (1978) Anatoxins from clones of Anabaena flos-aquae isolated from lakes of western Canada. Mitt Int Verein Limnol 21:285

    Google Scholar 

  35. Mahmood NA, Carmichael WW, Pfahler D (1988) Anticholinesterase poisonings in dogs from a cyanobacterial (blue-green algae) bloom dominated by Anabaena flos-aquae. Am J Vet Res 49(4):500

    Google Scholar 

  36. Edwards C, Beattie KA, Scrimgeour CM, Codd GA (1992) Identification of anatoxin-a in benthic cyanobacteria (blue-green algae) and in associated dog poisonings at Loch Insh, Scotland. Toxicon 30:1165

    Google Scholar 

  37. Gugger M, Lenoir S (2005) First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated with dog neurotoxicosis. Toxicon 45:919

    CrossRef  Google Scholar 

  38. Cadel-Six S, Peyraud-Thomas C, Brient L, Tandeau de Marsac N, Rippka R, Mejean A (2007) Different genotypes of anatoxin-producing cyanobacteria co-exist in the Tarn River France. Appl Environ Microbiol 73(23):7605

    CrossRef  Google Scholar 

  39. Henriksen P, Carmichael WW, An JS, Moestrup O (1997) Detection of an anatoxin-a(s)-like anticholinesterase in natural blooms and cultures of Cyanobacteria/blue-green algae from Danish lakes and in the stomach contents of poisoned birds. Toxicon 35(6):901

    CrossRef  Google Scholar 

  40. Wood SA, Selwood AI, Rueckert A, Holland PT, Milne JR, Smith KF, Smits B, Watts LF, Cary CS (2007) First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand. Toxicon 50(2):292

    CrossRef  Google Scholar 

  41. Krienitz L, Ballot A, Kotut K, Wiegand C, Pütz S, Metcalf JS, Codd G, Pflugmacher AS (2003) Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser flamingos at lake Bogoria, Kenya. FEMS Microbiol Ecol 43(2):141

    Google Scholar 

  42. Molica RJR, Oliveira EJA, Carvalho PVC, Costa A, Cunha MCC, Melo GL, Azevedo S (2005) Occurrence of saxitoxins and an anatoxin-a(s)-like anticholinesterase in a Brazilian drinking water supply. Harmful Algae 4(4):743

    CrossRef  Google Scholar 

  43. Hallegraeff GM, Anderson DM, Cembella AD (1995) Manual on Harmful Algal Blooms—UNESCO press

    Google Scholar 

  44. Mahmood NA, Carmichael WW (1986) Paralytic shellfish poisons produced by the freshwater cyanobacterium Aphanizomenon flos-aquae NH-5. Toxicon 24(2):175

    CrossRef  Google Scholar 

  45. Metcalf JS, Codd GA (2003) Analysis of cyanobacterial toxins by immunological methods Chem Res. Toxicol 16:103

    Google Scholar 

  46. Manger RL, Leja LS, Lee SY, Hungerford JM, Wekell M (1997) Assessment of marine toxins by cell bioassay. In: Shahidi F, Jones Y, Kitts DD (eds) Seafood safety, processing and biotechnology. Technomic Publishing Co, Basel

    Google Scholar 

  47. Oshima Y (1995) Postcolumn derivatisation liquid chromatographic method for paralytic shellfish toxins. J AOAC Int 78:528

    Google Scholar 

  48. Dell’Aversano C, Eaglesham GK, Quilliam MA (2004) Analysis of cyanobacterial toxins by hydrophilic interaction liquid chromatography-mass spectrometry. J Chromatogr A 1028:155

    Google Scholar 

  49. James KJ, Crowley J, Hamilton B, Lehane M, Skulberg O, Furey A (2005) Anatoxins and degradation products, determined using hybrid quadrupole time-of-flight and quadrupole ion-trap mass spectrometry: forensic investigations of cyanobacterial neurotoxin poisoning. Rapid Commun Mass Spectrom 19(9):1167

    CrossRef  Google Scholar 

  50. Boyer G, Dyble J (2009) Harmful Algal Blooms, A newly emerging pathogen in water. Water Sci Technol 59(8):1531

    Google Scholar 

  51. Dörr FA, Rodríguez V, Molica R, Henriksen P, Krock B, Pinto E (2010) Methods for detection of anatoxin-a(s) by liquid chromatography coupled to electrospray ionization-tandem mass spectrometry. Toxicon 24, 55(1):92

    Google Scholar 

  52. Matsunaga S, Moore RE, Niemczura WP, Carmichael WW (1989) Anatoxin-a(s), a potent anticholinesterase from Anabaena flos-aquae. J Am Chem Soc 111(20):8021

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Kurochkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eremenko, A. et al. (2016). Biosensing of Neurotoxicity to Prevent Bioterrorist Threats and Harmful Algal Blooms. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_16

Download citation