Fast Secure Scalar Product Protocol with (almost) Optimal Efficiency

  • Youwen Zhu
  • Zhikuan Wang
  • Bilal Hassan
  • Yue Zhang
  • Jian Wang
  • Cheng Qian
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 163)


Secure scalar product protocol has wide applications for privacy-preservation in collaborative computation. In this paper, we propose a new secure scalar product protocol, which does not employ any public-key encryption and third party. Compared to scalar product computation without privacy-preservation, our proposed scheme introduces no extra communication overheads and little extra computation cost. That is, the new scheme can achieve almost optimal running efficiency, and thus is much applicable to privacy-preservation for large-scale data in collaborative computation. Theoretical analysis and evaluation indicate the security and efficiency of our scheme.


Privacy preserving Collaborative computation Security Scalar product protocol 



This work is partly supported by the Fundamental Research Funds for the Central Universities (No. NZ2015108), the Natural Science Foundation of Jiangsu Province of China (No. BK20150760), the China Postdoctoral Science Foundation funded project (No. 2015M571752), and the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1402033C). We want to thank Prof. Wei Yang for his helpful discussion with us.


  1. 1.
    HIPAA: The health insurance portability and accountability act of 1996, October 1998.
  2. 2.
    Cios, K.J., Moore, G.W.: Uniqueness of medical data mining. Artif. Intell. Med. 26(1–2), 1–24 (2002)CrossRefGoogle Scholar
  3. 3.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptology 15(3), 177–206 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Goldreich, O.: Foundations of Cryptography: Volume II, Basic Applications. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  5. 5.
    Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confidentiality 1(1), 59–98 (2009)Google Scholar
  6. 6.
    Xiao, M., Huang, L., Xu, H., Wang, Y., Pei, Z.: Privacy preserving hop-distance computation in wireless sensor networks. Chin. J. Electron. 19(1), 191–194 (2010)Google Scholar
  7. 7.
    Agrawal, R., Imieliski, T., Swami, T.: Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 207–216 (1993)Google Scholar
  8. 8.
    Yuan, X., Huang, L., Yang, W.: Privacy preserving computation of trust-value in wireless sensor networks. In: IEEE 3rd International Conference on Communication Software and Networks, pp. 573–576 (2011)Google Scholar
  9. 9.
    Murugesan, M., Jiang, W., Clifton, C., Si, L., Vaidya, J.: Efficient privacy-preserving similar document detection. VLDB J. 19(4), 457–475 (2010)CrossRefGoogle Scholar
  10. 10.
    Chen, T., Zhong, S.: Privacy-preserving back-propagation neural network learning. IEEE Trans. Neural Netw. 20(10), 1554–1564 (2009)CrossRefGoogle Scholar
  11. 11.
    Bansal, A., Chen, T., Zhong, S.: Privacy preserving back-propagation neural network learning over arbitrarily partitioned data. Neural Comput. Appl. 20(1), 143–150 (2011)CrossRefGoogle Scholar
  12. 12.
    Zhu, Y., Huang, L., Dong, L., Yang, W.: Privacy-preserving text information hiding detecting algorithm. J. Electron. Inf. Technol. 33(2), 278–283 (2011)CrossRefGoogle Scholar
  13. 13.
    Smaragdis, P., Shashanka, M.: A framework for secure speech recognition. IEEE Trans. Audio Speech Lang. Process. 15(4), 1404–1413 (2007)CrossRefGoogle Scholar
  14. 14.
    Du, W., Zhan, Z.: A practical approach to solve secure multi-party computation problems. In: 2002 Workshop on New Security Paradigms, pp. 127–135. ACM, New York (2002)Google Scholar
  15. 15.
    Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 639–644. ACM, New York (2002)Google Scholar
  16. 16.
    Goethals, B., Laur, S., Lipmaa, H., Mielikainen, T.: On private scalar product computation for privacy-preserving data mining. In: 7th Annual International Conference on Information Security and Cryptology, pp. 104–120 (2004)Google Scholar
  17. 17.
    Zhu, Y., Huang, L., Yang, W.: Relation of PPAtMP and scalar product protocol and their applications. In: IEEE symposium on Computers and Communications, pp. 184–189 (2010)Google Scholar
  18. 18.
    Zhu, Y., Huang, L., Yang, W., Li, D., Luo, Y., Dong, F.: Three new approaches to privacy-preserving add to multiply protocol and its application. In: Second International Workshop on Knowledge Discovery and Data Mining, pp. 554–558 (2009)Google Scholar
  19. 19.
    Amirbekyan, A., Estivill-Castro, V.: A new efficient privacy-preserving scalar product protocol. In: Sixth Australasian Conference on Data Mining and Analytics, vol. 70, pp. 209–214. Australian Computer Society (2007)Google Scholar
  20. 20.
    Shaneck, M., Kim, Y.: Efficient cryptographic primitives for private data mining. In: 2010 43rd Hawaii International Conference on System Sciences, pp. 1–9. IEEE Computer Society (2010)Google Scholar
  21. 21.
    Dong, C., Chen, L.: A fast secure dot product protocol with application to privacy preserving association rule mining. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014, Part I. LNCS, vol. 8443, pp. 606–617. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    Zhu, Y., Takagi, T., Huang, L.: Efficient secure primitive for privacy preserving distributed computations. In: Hanaoka, G., Yamauchi, T. (eds.) IWSEC 2012. LNCS, vol. 7631, pp. 233–243. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Zhu, Y., Takagi, T.: Efficient scalar product protocol and its privacy-preserving application. Int. J. Electron. Secur. Digit. Forensics 7(1), 1–19 (2015)CrossRefGoogle Scholar

Copyright information

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Authors and Affiliations

  • Youwen Zhu
    • 1
  • Zhikuan Wang
    • 1
  • Bilal Hassan
    • 1
  • Yue Zhang
    • 1
  • Jian Wang
    • 1
  • Cheng Qian
    • 1
  1. 1.College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations