Skip to main content

Background

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The principal role of skin is to act as a barrier against evaporative water loss and against the entry of harmful foreign agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Schaefer, T.E. Redelmeier, Skin Barrier: Principles of Percutaneous Absorption (Karger, Basel, New York, 1996)

    Google Scholar 

  2. D.H. Kim, N.S. Lu, R. Ma, Y.S. Kim, R.H. Kim, S.D. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L.Z. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y.G. Huang, T. Coleman, J.A. Rogers, Epidermal electronics. Science 333(6044), 838–843 (2011)

    Article  ADS  Google Scholar 

  3. A. Williams, Transdermal and Topical Drug Delivery from Theory to Clinical Practice (Pharmaceutical Press, London, 2003)

    Google Scholar 

  4. C. Ehrhardt, K. Kim, Drug Absorption Studies : In Situ, In Vitro and In Silico Models. Biotechnology : Pharmaceutical Aspects (Springer, New York, 2008)

    Google Scholar 

  5. P.M. Elias, Epidermal lipids, membranes, and keratinization. Int. J. Dermatol. 20(1), 1–19 (1981)

    Article  Google Scholar 

  6. R.J. Scheuplein, A personal view of skin permeation (1960–2013). Skin Pharmacol. Physiol. 26(4–6), 199–212 (2013)

    Article  Google Scholar 

  7. R.H. Guy, Skin—‘that unfakeable young surface’. Skin Pharmacol. Physiol. 26(4–6), 181–189 (2013)

    Article  Google Scholar 

  8. A.V. Rawlings, I.R. Scott, C.R. Harding, P.A. Bowser, Stratum-corneum moisturization at the molecular-level. J. Invest. Dermatol. 103(5), 731–740 (1994)

    Article  Google Scholar 

  9. N. Sekkat, Y.N. Kalia, R.H. Guy, Porcine ear skin as a model for the assessment of transdermal drug delivery to premature neonates. Pharm. Res. 21(8), 1390–1397 (2004)

    Article  Google Scholar 

  10. K.C. Madison, Barrier function of the skin: "la raison d’etre" of the epidermis. J. Invest. Dermatol. 121(2), 231–241 (2003)

    Article  Google Scholar 

  11. M.B. Delgado-Charro, R.H. Guy, Effective use of transdermal drug delivery in children. Adv. Drug Delivery Rev. 73, 63–82 (2014)

    Article  Google Scholar 

  12. V.V. Ranade, J.B. Cannon, Drug Delivery Systems, 3rd edn. (CRC Press, Boca Raton, 2011)

    Google Scholar 

  13. M.R. Prausnitz, R. Langer, Transdermal drug delivery. Nat. Biotech. 26(11), 1261–1268 (2008)

    Article  Google Scholar 

  14. J.D. Bos, M.M.H.M. Meinardi, The 500 dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 9(3), 165–169 (2000)

    Article  Google Scholar 

  15. R. Scheuplein, L. Ross, Effects of surfactants and solvents on the permeability of epidermis. J. Soc. Cosmet. Chem. 21(13), 853–873 (1970)

    Google Scholar 

  16. B.G. Saar, L.R. Contreras-Rojas, X.S. Xie, R.H. Guy, Imaging drug delivery to skin with stimulated raman scattering microscopy. Mol. Pharm. 8(3), 969–975 (2011)

    Article  Google Scholar 

  17. N.B. Shelke, M. Sairam, S.B. Halligudi, T.M. Aminabhavi, Development of transdermal drug-delivery films with castor-oil-based polyurethanes. J. Appl. Polym. Sci. 103(2), 779–788 (2007)

    Article  Google Scholar 

  18. K. Frederiksen, R.H. Guy, K. Petersson, Formulation considerations in the design of topical, polymeric film-forming systems for sustained drug delivery to the skin. Eur. J. Pharm. Biopharm. 91, 9–15 (2015)

    Article  Google Scholar 

  19. M. Donkerwolcke, F. Burny, D. Muster, Tissues and bone adhesives—historical aspects. Biomaterials 19(16), 1461–1466 (1998)

    Article  Google Scholar 

  20. D.K. Jeng, A new, water-resistant, film-forming, 30-second, one-step application iodophor preoperative skin preparation. Am. J. Infect. Control 29(6), 370–376 (2001)

    Article  Google Scholar 

  21. J. Stephen-Haynes, C. Stephens, Evaluation of clinical and financial outcomes of a new no-sting barrier film and barrier cream in a large uk primary care organisation. Int. Wound J. 10(6), 689–696 (2013)

    Article  Google Scholar 

  22. I.Z. Schroeder, P. Franke, U.F. Schaefer, C.M. Lehr, Delivery of ethinylestradiol from film forming polymeric solutions across human epidermis in vitro and in vivo in pigs. J. Controlled Release 118(2), 196–203 (2007a)

    Article  Google Scholar 

  23. A. Misra, R.S. Raghuvanshi, S. Ganga, M. Diwan, G.P. Talwar, O. Singh, Formulation of a transdermal system for biphasic delivery of testosterone. J. Controlled Release 39(1), 1–7 (1996)

    Article  Google Scholar 

  24. C. Padula, G. Colombo, S. Nicoli, P.L. Catellani, G. Massimo, P. Santi, Bioadhesive film for the transdermal delivery of lidocaine: in vitro and in vivo behavior. J. Controlled Release 88(2), 277–285 (2003)

    Article  Google Scholar 

  25. H.O. Ammar, M. Ghorab, A.A. Mahmoud, T.S. Makram, A.M. Ghoneim, Rapid pain relief using transdermal film forming polymeric solution of ketorolac. Pharm. Dev. Technol. 18(5), 1005–1016 (2013)

    Article  Google Scholar 

  26. I.Z. Schroeder, P. Franke, U.F. Schaefer, C.M. Lehr, Development and characterization of film forming polymeric solutions for skin drug delivery. Eur. J. Pharm. Biopharm. 65(1), 111–121 (2007b)

    Article  Google Scholar 

  27. X. Tan, S.R. Feldman, J.W. Chang, R. Balkrishnan, Topical drug delivery systems in dermatology: a review of patient adherence issues. Expert Opin. Drug Delivery 9(10), 1263–1271 (2012)

    Article  Google Scholar 

  28. J.W. McGinity, L.A. Felton, Aqueous Polymeric Coatings For Pharmaceutical Dosage Forms Drugs and the pharmaceutical sciences, 3rd edn. (Informa Healthcare, New York, 2008)

    Google Scholar 

  29. F. Lecomte, J. Siepmann, M. Walther, R.J. MacRae, R. Bodmeier, Polymer blends used for the aqueous coating of solid dosage forms: importance of the type of plasticizer. J. Controlled Release 99(1), 1–13 (2004)

    Article  Google Scholar 

  30. D. Lunter, R. Daniels, In vitro skin permeation and penetration of nonivamide from novel film-forming emulsions. Skin Pharmacol. Physiol. 26(3), 139–146 (2013)

    Article  Google Scholar 

  31. P.J. Eaton, P. West, Atomic Force Microscopy (Oxford University Press, Oxford, New York, 2010)

    Book  Google Scholar 

  32. R. Price, P.M. Young, Visualization of the crystallization of lactose from the amorphous state. J. Pharm. Sci. 93(1), 155–164 (2004)

    Article  Google Scholar 

  33. M.D. Louey, P. Mulvaney, P.J. Stewart, Characterisation of adhesional properties of lactose carriers using atomic force microscopy. J. Pharm. Biomed. Anal. 25(3–4), 559–567 (2001)

    Article  Google Scholar 

  34. H.Q.G. Shi, L. Farber, J.N. Michaels, A. Dickey, K.C. Thompson, S.D. Shelukar, P.N. Hurter, S.D. Reynolds, M.J. Kaufman, Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharm. Res. 20(3), 479–484 (2003)

    Article  Google Scholar 

  35. S. Ward, M. Perkins, J.X. Zhang, C.J. Roberts, C.E. Madden, S.Y. Luk, N. Patel, S.J. Ebbens, Identifying and mapping surface amorphous domains. Pharm. Res. 22(7), 1195–1202 (2005)

    Article  Google Scholar 

  36. Z. zur Muhlen, E. zur Muhlen, H. Niehus, W. Mehnert. Atomic force microscopy studies of solid lipid nanoparticles. Pharm. Res., 13(9), 1411–1416 (1996)

    Google Scholar 

  37. M.L. Crichton, X.F. Chen, H. Huang, M.A.F. Kendall, Elastic modulus and viscoelastic properties of full thickness skin characterised at micro scales. Biomaterials 34(8), 2087–2097 (2013)

    Article  Google Scholar 

  38. B. Bhushan, W. Tang, S. Ge, Nanomechanical characterization of skin and skin cream. J. Microsc. 240(2), 135–144 (2010)

    Article  MathSciNet  Google Scholar 

  39. R.M. Gaikwad, S.I. Vasilyev, S. Datta, I. Sokolov, Atomic force microscopy characterization of corneocytes: effect of moisturizer on their topology, rigidity, and friction. Skin Res. Technol. 16(3), 275–282 (2010)

    Google Scholar 

  40. S. Sasic, Pharmaceutical Applications of Raman Spectroscopy. Wiley Series on Technologies for the Pharmaceutical Industry. (Wiley-Interscience, Hoboken, 2008)

    Google Scholar 

  41. A.C. Williams, H.G.M. Edwards, B.W. Barry, Fourier-transform raman-spectroscopy—a novel application for examining human stratum-corneum. Int. J. Pharm. 81(2–3), R11–R14 (1992)

    Article  Google Scholar 

  42. C.M. McGoverin, T. Rades, K.C. Gordon, Recent pharmaceutical applications of raman and terahertz spectroscopies. J. Pharm. Sci. 97(11), 4598–4621 (2008)

    Article  Google Scholar 

  43. F.C. Clarke, J.M. Jamieson, D.A. Clark, S.V. Hammond, R.D. Jee, A.C. Moffat, Chemical image fusion. the synergy of ft-nir and raman mapping microscopy to enable a more complete visualization of pharmaceutical formulations (vol 73, p 2157, 2001). Anal. Chem. 73(10), 2369–2369 (2001)

    Article  Google Scholar 

  44. G.L. Armstrong, H.G.M. Edwards, D.W. Farwell, A.C. Williams, Fourier transform raman microscopic study of drug distribution in a transdermal drug delivery device. Vib. Spectrosc. 11(2), 105–113 (1996)

    Article  Google Scholar 

  45. P. T. Treado, M. P. Nelson, Raman Imaging, vol. 2 (Wiley and Sons, Chichester, 2001), pp. 1429–1459

    Google Scholar 

  46. M.E. Auer, U.J. Griesser, J. Sawatzki, Qualitative and quantitative study of polymorphic forms in drug formulations by near infrared ft-raman spectroscopy. J. Mol. Struct. 661, 307–317 (2003)

    Article  ADS  Google Scholar 

  47. R. Weiss, M. Hessenberger, S. Kitzmuller, D. Bach, E.E. Weinberger, W.D. Krautgartner, C. Hauser-Kronberger, B. Malissen, C. Boehler, Y.N. Kalia, J. Thalhamer, S. Scheiblhofer, Transcutaneous vaccination via laser microporation. J. Controlled Release 162(2), 391–399 (2012)

    Article  Google Scholar 

  48. Y.G. Bachhav, A. Heinrich, Y.N. Kalia, Controlled intra- and transdermal protein delivery using a minimally invasive erbium:yag fractional laser ablation technology. Eur. J. Pharm. Biopharm. 84(2), 355–364 (2013)

    Article  Google Scholar 

  49. R.F. Donnelly, T.R.R. Singh, M.J. Garland, K. Migalska, R. Majithiya, C.M. McCrudden, P.L. Kole, T.M.T. Mahmood, H.O. McCarthy, A.D. Woolfson, Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater. 22(23), 4879–4890 (2012)

    Article  Google Scholar 

  50. Yannic B. Schuetz, Aarti Naik, Richard H. Guy, Yogeshvar N. Kalia, Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert opin. Drug Delivery 2(3), 533–548 (2005)

    Article  Google Scholar 

  51. T.M. Tuan-Mahmood, M.T.C. McCrudden, B.M. Torrisi, E. McAlister, M.J. Garland, T.R.R. Singh, R.F. Donnelly, Microneedles for intradermal and transdermal drug delivery. Eur. J. Pharm. Sci. 50(5), 623–637 (2013)

    Article  Google Scholar 

  52. H. Shapiro, L. Harris, F.W. Hetzel, D. Bar-Or, Laser assisted delivery of topical anesthesia for intramuscular needle insertion in adults. Lasers Surg. Med. 31(4), 252–256 (2002)

    Article  Google Scholar 

  53. J. Yu, Y.G. Bachhav, S. Summer, A. Heinrich, T. Bragagna, C. Bohler, Y.N. Kalia, Using controlled laser-microporation to increase transdermal delivery of prednisone. J. Controlled Release 148(1), E71–E73 (2010)

    Article  Google Scholar 

  54. S. Scheiblhofer, J. Thalhamer, R. Weiss, Laser microporation of the skin: prospects for painless application of protective and therapeutic vaccines. Expert Opin. Drug Delivery 10(6), 761–773 (2013)

    Article  Google Scholar 

  55. M. Haedersdal, F.H. Sakamoto, W.A. Farinelli, A.G. Doukas, J. Tam, R.R. Anderson, Fractional CO\(_2\) laser-assisted drug delivery. Lasers Surg. Med. 42(2), 113–122 (2010)

    Article  Google Scholar 

  56. A. Vogel, V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103(2), 577–644 (2003)

    Article  Google Scholar 

  57. X.H. Hu, Q.Y. Fang, M.J. Cariveau, X.N. Pan, G.W. Kalmus, Mechanism study of porcine skin ablation by nanosecond laser pulses at 1064, 532, 266, and 213 nm. IEEE J. Quant. Electron. 37(3), 322–328 (2001)

    Article  ADS  Google Scholar 

  58. J.S. Nelson, J.L. Mccullough, T.C. Glenn, W.H. Wright, L.H.L. Liaw, S.L. Jacques, Midinfrared laser ablation of stratum-corneum enhances in vitro percutaneous transport of drugs. J. Invest. Dermatol. 97(5), 874–879 (1991)

    Article  Google Scholar 

  59. C. Gomez, A. Costela, I. Garcia-Moreno, F. Llanes, J.M. Teijon, M.D. Blanco, Skin laser treatments enhancing transdermal delivery of ala. J. Pharm. Sci. 100(1), 223–231 (2011)

    Article  Google Scholar 

  60. R. Srinivasan, Ablation of polymers and biological tissue by ultraviolet-lasers. Science 234(4776), 559–565 (1986)

    Article  ADS  Google Scholar 

  61. R.R. Anderson, J.A. Parrish, Selective photothermolysis - precise microsurgery by selective absorption of pulsed radiation. Science 220(4596), 524–527 (1983)

    Article  ADS  Google Scholar 

  62. B. Brazzini, G. Hautmann, I. Ghersetich, J. Hercogova, T. Lotti, Laser tissue interaction in epidermal pigmented lesions. J. Eur. Acad. Dermatol. Venereol. 15(5), 388–391 (2001)

    Article  Google Scholar 

  63. G. Paltauf, P.E. Dyer, Photomechanical processes and effects in ablation. Chem. Rev. 103(2), 487–518 (2003)

    Article  Google Scholar 

  64. Y.G. Yingling, B.J. Garrison, Photochemical ablation of organic solids. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 202, 188–194 (2003)

    Google Scholar 

  65. D.X. Hammer, R.J. Thomas, G.D. Noojin, B.A. Rockwell, P.K. Kennedy, W.P. Roach, Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media. IEEE J. Quantum Electron. 32(4), 670–678 (1996)

    Article  ADS  Google Scholar 

  66. A. Vogel, J. Noack, G. Huttman, G. Paltauf, Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B-Lasers Opt. 81(8), 1015–1047 (2005)

    Article  ADS  Google Scholar 

  67. P.K. Kennedy, A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous-media.1. theory. IEEE J. Quantum Electron. 31(12), 2241–2249 (1995)

    Article  ADS  Google Scholar 

  68. P.S. Tsai, P. Blinder, B.J. Migliori, J. Neev, Y.S. Jin, J.A. Squier, D. Kleinfeld, Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems. Curr. Opin. Biotechnol. 20(1), 90–99 (2009)

    Article  Google Scholar 

  69. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G.D. Noojin, B.A. Rockwell, R. Birngruber, Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B-Lasers Opt. 68(2), 271–280 (1999)

    Article  ADS  Google Scholar 

  70. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187(4736), 493–494 (1960)

    Article  ADS  Google Scholar 

  71. M.M. Zaret, G.M. Breinin, I.M. Siegel, H. Ripps, H. Schmidt, Ocular lesions produced by an optical maser (laser). Science 134(348), 1525–1526 (1961)

    Article  ADS  Google Scholar 

  72. L. Goldman, D.J. Blaney, D.J. Kindel, E.K. Franke, Effect of the laser beam on the skin. J. Invest. Dermatol. 40(3), 121–122 (1963a)

    Article  Google Scholar 

  73. L. Goldman, E.K. Franke, D.J. Kindel, D.J. Blaney, D. Richfield, Pathology of effect of laser beam on skin. Nature 197(487), 912–914 (1963b)

    Article  ADS  Google Scholar 

  74. L. Goldman, A. Freemond, P. Hornby, D.J. Blaney, Biomedical aspects of lasers. Jama-J. Am. Med. Assoc. 188(3), 302–306 (1964)

    Article  Google Scholar 

  75. L. Goldman, Biomedical Aspects of the Laser: the Introduction of Laser Applications into Biology and Medicine (Springer, Berlin, 1967)

    Book  Google Scholar 

  76. S.L. Jacques, D.J. Mcauliffe, I.H. Blank, J.A. Parrish, Controlled removal of human stratum-corneum by pulsed laser. J. Invest. Dermatol. 88(1), 88–93 (1987)

    Article  Google Scholar 

  77. J.T. Walsh, T.J. Flotte, R.R. Anderson, T.F. Deutsch, Pulsed co\(_{2}\)-laser tissue ablation—effect of tissue-type and pulse duration on thermal-damage. Lasers Surg. Med. 8(2), 108–118 (1988)

    Article  Google Scholar 

  78. J.T. Walsh, T.J. Flotte, T.F. Deutsch, Er yag laser ablation of tissue—effect of pulse duration and tissue-type on thermal-damage. Lasers Surg. Med. 9(4), 314–326 (1989)

    Article  Google Scholar 

  79. W.R. Lee, S.C. Shen, K.H. Wang, C.H. Hu, J.Y. Fang, The effect of laser treatment on skin to enhance and control transdermal delivery of 5-fluorouracil. J. Pharm. Sci. 91(7), 1613–1626 (2002)

    Article  Google Scholar 

  80. A.J. Singer, R. Weeks, R. Regev, Laser-assisted anesthesia reduces the pain of venous cannulation in children and adults: a randomized controlled trial. Acad. Emerg. Med. 13(6), 623–628 (2006)

    Article  Google Scholar 

  81. C. Gomez, A. Costela, I. Garcia-Moreno, F. Llanes, J.M. Teijon, D. Blanco, Laser treatments on skin enhancing and controlling transdermal delivery of 5-fluorouracil. Lasers Surg. Med. 40(1), 6–12 (2008)

    Article  Google Scholar 

  82. B. Forster, A. Klein, R.M. Szeimies, T. Maisch, Penetration enhancement of two topical 5-aminolaevulinic acid formulations for photodynamic therapy by erbium:yag laser ablation of the stratum corneum: continuous versus fractional ablation. Exp. Dermatol. 19(9), 806–812 (2010)

    Article  Google Scholar 

  83. Y.G. Bachhav, S. Summer, A. Heinrich, T. Bragagna, C. Bohler, Y.N. Kalia, Effect of controlled laser microporation on drug transport kinetics into and across the skin. J. Controlled Release 146(1), 31–36 (2010)

    Article  Google Scholar 

  84. Y.G. Bachhav, A. Heinrich, Y.N. Kalia, Using laser microporation to improve transdermal delivery of diclofenac: increasing bioavailability and the range of therapeutic applications. Eur. J. Pharm. Biopharm. 78(3), 408–414 (2011)

    Article  Google Scholar 

  85. J. Yu, D.R. Kalaria, Y.N. Kalia, Erbium: yag fractional laser ablation for the percutaneous delivery of intact functional therapeutic antibodies. J. Controlled Release 156(1), 53–59 (2011)

    Article  Google Scholar 

  86. M. Hessenberger, R. Weiss, E.E. Weinberger, C. Boehler, J. Thalhamer, S. Scheiblhofer, Transcutaneous delivery of CPG-adjuvanted allergen via laser-generated micropores. Vaccine 31(34), 3427–3434 (2013)

    Article  Google Scholar 

  87. W.R. Lee, S.C. Shen, M.H. Pai, H.H. Yang, C.Y. Yuan, J.Y. Fang, Fractional laser as a tool to enhance the skin permeation of 5-aminolevulinic acid with minimal skin disruption: A comparison with conventional erbium:yag laser. J. Controlled Release 145(2), 124–133 (2010)

    Article  Google Scholar 

  88. C.S. Haak, B. Bhayana, W.A. Farinelli, R.R. Anderson, M. Haedersdal, The impact of treatment density and molecular weight for fractional laser-assisted drug delivery. J. Controlled Release 163(3), 335–341 (2012)

    Article  Google Scholar 

  89. X.Y. Chen, D. Shah, G. Kositratna, D. Manstein, R.R. Anderson, M.X. Wu, Facilitation of transcutaneous drug delivery and vaccine immunization by a safe laser technology. J. Controlled Release 159(1), 43–51 (2012)

    Article  Google Scholar 

  90. J. Lippert, R. Smucler, M. Vlk, Fractional carbon dioxide laser improves nodular basal cell carcinoma treatment with photodynamic therapy with methyl 5-aminolevulinate. Dermatol. Surg. 39(8), 1202–1208 (2013)

    Article  Google Scholar 

  91. G. Nicolodelli, D. P. Angarita, N. M. Inada, L. F. Tirapelli, V. S. Bagnato. Effect of photodynamic therapy on the skin using the ultrashort laser ablation. J. Biophotonics (2013)

    Google Scholar 

  92. P.A. Todd, K.L. Goa, Interferon gamma-1b—a review of its pharmacology and therapeutic potential in chronic granulomatous-disease. Drugs 43(1), 111–122 (1992)

    Article  Google Scholar 

  93. M.H. Tan, J.S. Dover, T.S. Hsu, K.A. Arndt, B. Stewart, Clinical evaluation of enhanced nonablative skin rejuvenation using a combination of a 532 and a 1,064 nm laser. Lasers Surg. Med. 34(5), 439–445 (2004)

    Article  Google Scholar 

  94. C.H. Lin, I.A. Aljuffali, J.Y. Fang, Lasers as an approach for promoting drug delivery via skin. Expert Opin. Drug Delivery 11(4), 599–614 (2014)

    Article  Google Scholar 

  95. D. Manstein, G.S. Herron, R.K. Sink, H. Tanner, R.R. Anderson, Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg. Med. 34(5), 426–438 (2004)

    Article  Google Scholar 

  96. Clinical results—P.L.E.A.S.E. professional (2014)

    Google Scholar 

  97. U. Paasch, M. Haedersdal, Laser systems for ablative fractional resurfacing. Expert Rev. Med. Devices 8(1), 67–83 (2011)

    Article  Google Scholar 

  98. E.M. Graber, E.L. Tanzi, T.S. Alster, Side effects and complications of fractional laser photothermolysis: experience with 961 treatments. Dermatol. Surg. 34(3), 301–307 (2008)

    Google Scholar 

  99. L.R. Sklar, C.T. Burnett, J.S. Waibel, R.L. Moy, D.M. Ozog, Laser assisted drug delivery: a review of an evolving technology. Lasers Surg. Med. 46(4), 249–262 (2014)

    Article  Google Scholar 

  100. J. Neev, L.B. DaSilva, M.D. Feit, M.D. Perry, A.M. Rubenchik, B.C. Stuart, Ultrashort pulse lasers for hard tissue ablation. IEEE J. Sel. Top. Quantum Electron. 2(4), 790–800 (1996)

    Article  Google Scholar 

  101. K.M. Kent, E.M. Graber, Laser tattoo removal: a review. Dermatol. Surg. 38(1), 1–13 (2012)

    Article  Google Scholar 

  102. T. Juhasz, H. Frieder, R.M. Kurtz, C. Horvath, J.F. Bille, G. Mourou, Corneal refractive surgery with femtosecond lasers. IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999)

    Article  Google Scholar 

  103. M. Dutra-Correa, G. Nicolodelli, J.R. Rodrigues, C. Kurachi, V.S. Bagnato, Femtosecond laser ablation on dental hard tissues-analysis of ablated profile near an interface using local effective intensity. Laser Phys. 21(5), 965–971 (2011)

    Article  ADS  Google Scholar 

  104. K.S. Frederickson, W.E. White, R.G. Wheeland, D.R. Slaughter, Precise ablation of skin with reduced collateral damage using the femtosecond-pulsed, terawatt titanium-sapphire laser. Arch. Dermatol. 129(8), 989–993 (1993)

    Article  Google Scholar 

  105. H. Huang, Z. X. Guo, Human dermis separation via ultra-short pulsed laser plasma-mediated ablation. J. Phys. D-Appl. Phys. 42(16) (2009)

    Google Scholar 

  106. N. Suhm, M.H. Gotz, J.P. Fischer, F. Loesel, W. Schlegel, V. Sturm, J. Bille, R. Schroder, Ablation of neural tissue by short-pulsed lasers—a technical report. Acta Neurochir. 138(3), 346–349 (1996)

    Article  Google Scholar 

  107. A.A. Oraevsky, L.B. DaSilva, A.M. Rubenchik, M.D. Feit, M.E. Glinsky, M.D. Perry, B.M. Mammini, W. Small, B.C. Stuart, Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption. IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996)

    Article  Google Scholar 

  108. C.C. Sumian, F.B. Pitre, B.E. Gauthier, M. Bouclier, S.R. Mordon, Laser skin resurfacing using a frequency doubled nd : yag laser after topical application of an exogenous chromophore. Lasers Surg. Med. 25(1), 43–50 (1999)

    Article  Google Scholar 

  109. J.Y. Jung, J.S. Hong, C.H. Ahn, J.Y. Yoon, H.H. Kwon, D.H. Suh, Prospective randomized controlled clinical and histopathological study of acne vulgaris treated with dual mode of quasi-long pulse and q-switched 1064-nm nd:yag laser assisted with a topically applied carbon suspension. J. Am. Acad. Dermatol. 66(4), 626–633 (2012)

    Article  Google Scholar 

  110. M.R. Roh, H.J. Chung, K.Y. Chung, Effects of various parameters of the 1064 nm nd:yag laser for the treatment of enlarged facial pores. J. Dermatol. Treat. 20(4), 223–228 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazel Garvie-Cook .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garvie-Cook, H. (2016). Background. In: Novel (Trans)dermal Drug Delivery Strategies. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-28901-4_2

Download citation

Publish with us

Policies and ethics