Advertisement

Drought Stress in Plants: Causes, Consequences, and Tolerance

  • Seyed Yahya Salehi-LisarEmail author
  • Hamideh Bakhshayeshan-AgdamEmail author
Chapter

Abstract

Drought (water stress) is one of the most important environmental stresses and occurs for several reasons, including low rainfall, salinity, high and low temperatures, and high intensity of light, among others. Drought stress is a multidimensional stress and causes changes in the physiological, morphological, biochemical, and molecular traits in plants. Many plants have improved their resistance mechanisms to tolerate drought stress, but these mechanisms are varied and depend on the plant species. Typically, mechanisms involved in plant tolerance to drought follow a general plan: maintaining cell homeostasis in water-deficit situations, which is possible by increasing the water inlet to the cells. Drought avoidance is other common drought resistance mechanism in annual plants. With this mechanism, escape from stress conditions is the main strategy for plant growth under drought conditions.

Keywords

Drought Cause Effects Tolerance Management 

References

  1. 1.
    Abdelmoneim TS, Tarek AAM, Almaghrabi OA, Alzahrani HS, Abdelbagi I. Increasing plant tolerance to drought stress by inoculation with arbuscular mycorrhizal fungi. Life Sci J. 2014;11:10–7.Google Scholar
  2. 2.
    Akhtar I, Nazir N. Effect of waterlogging and drought stress in plants. Int J Water Res Environ Sci. 2013;2:34–40.Google Scholar
  3. 3.
    Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci. 2013;14:4885–911.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ashraf M, Ozturk M, Athar HR. Salinity and water stress, improving crop efficiency. the Netherlands: Springer; 2009.CrossRefGoogle Scholar
  5. 5.
    Barriopedro D, Gouveia C, Trigo RM, Wang L. The 2009/10 drought in China: possible causes and impacts on vegetation. Amer Meteor Soc. 2012;13:1251–67.Google Scholar
  6. 6.
    Bej S, Basak J. MicroRNAs: the potential biomarkers in plant stress response. Amer J Plant Sci. 2014;5:748–59.CrossRefGoogle Scholar
  7. 7.
    Bernacchia G, Furini A. Biochemical and molecular responses to water stress in resurrection plants. Physiol Plant. 2004;121:175–81.CrossRefPubMedGoogle Scholar
  8. 8.
    Bhargava S, Sawant K. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding. 2013;132:21–32.CrossRefGoogle Scholar
  9. 9.
    Bray EA. Plant response to water-deficit stress. Encycl Life Sci. 2001. 10.1002/9780470015902.a0001298.pub2.Google Scholar
  10. 10.
    Chepsergon J, Mwamburi L, KipkemboiKassim M. Mechanism of drought tolerance in plants using Trichoderma spp. Int J Sci Res. 2012;3:1592–5.Google Scholar
  11. 11.
    Chernyad’ev II. Effect of water stress on the photosynthetic apparatus of plants and the protective role of cytokinins: a review. Appl Biochem Microbiol. 2005;41:115–28.CrossRefGoogle Scholar
  12. 12.
    Dai A. Drought under global warming: a review. Wires Clim Chg. 2012;2:45–65.CrossRefGoogle Scholar
  13. 13.
    Ding Y, Tao Y, Zhu C. Emerging roles of MicroRNAs in the mediation of drought stress response in plants. J Exp Bot. 2013;64:3077–86.CrossRefPubMedGoogle Scholar
  14. 14.
    Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 2009;29:185–212.CrossRefGoogle Scholar
  15. 15.
    Franco JA. Root development under drought stress. Technol Knowl Transf e-Bull. 2011;2:1–3.Google Scholar
  16. 16.
    Hirt H, Shinozaki K, editors. Plant responses to abiotic stress. Germany: Springer; 2004.Google Scholar
  17. 17.
    Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R. Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol. 2009;11:100–5.Google Scholar
  18. 18.
    Keyvan S. The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J Anim Plant Sci. 2010;8:1051–60.Google Scholar
  19. 19.
    Khan MA, Iqbal M, Jameel M, Nazeer W, Shakir S, Aslam MT, Iqbal B. Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.). Afr J Biotechnol. 2011;10:11340–4.CrossRefGoogle Scholar
  20. 20.
    Khan MA, Iqbal M, Akram M, Ahmad M, Hassan MW, Jameel M. Recent advances in molecular tool development for drought tolerance breeding in cereal crops: a review. Zemdirbyste. 2013;100:325–34.CrossRefGoogle Scholar
  21. 21.
    Kheradmand MA, Shahmoradzadeh Fahraji S, Fatahi E, Raoofi MM. Effect of water stress on oil yield and some characteristics of Brassica napus. Intl Res J Appl Basic Sci. 2014;8:1447–53.Google Scholar
  22. 22.
    Labudda M, SafiulAzam FM. Glutathione-dependent responses of plants to drought: a review. Acta Soc Bot Pol. 2014;83:3–12.CrossRefGoogle Scholar
  23. 23.
    Madhava Rao KV, Raghavendra AS, Janardhan Reddy K, editors. Physiology and molecular biology of stress tolerance in plants. the Netherlands: Springer; 2006.Google Scholar
  24. 24.
    Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi E. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Amer J Chin Stud. 2010;4:580–5.Google Scholar
  25. 25.
    Mishra AK, Singh VP. Drought modeling—a review. J Hydrol. 2011;403:157–75.CrossRefGoogle Scholar
  26. 26.
    Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci. 2014;5:1–8.CrossRefGoogle Scholar
  27. 27.
    Nezhadahmadi A, Hossain Prodhan Z, Faruq G. Drought tolerance in wheat. Scientific World J. 2013;2013:1–12.CrossRefGoogle Scholar
  28. 28.
    Osakabe Y, Osakabe K, Shinozaki K, Tran LSP. Response of plants to water stress. Front Plant Sci. 2014;5:1–7.CrossRefGoogle Scholar
  29. 29.
    Rahdari P, Hoseini SM. Drought stress: a review. Intl J Agron Plant Prod. 2012;3:443–6.Google Scholar
  30. 30.
    Rana RM, Rehman SU, Ahmed J, Bilal M. A comprehensive overview of recent advances in drought stress tolerance research in wheat (Triticum aestivum L.). Asian J Agric Biol. 2013;1:29–37.Google Scholar
  31. 31.
    Rangan P, Subramani R, Kumar R, Singh AK, Singh R. Recent advances in polyamine metabolism and abiotic stress tolerance. BioMed Res Int. 2014;2014:1–9.CrossRefGoogle Scholar
  32. 32.
    Rauf M, Shahzad K, Ali R, Ahmad M, Habib I, Mansoor S, Berkowitz GA, Saeed NA. Cloning and characterization of Na+/H+antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance. Mol Biol Rep. 2014;41:1669–82.CrossRefPubMedGoogle Scholar
  33. 33.
    Salehi-lisar SY, Motafakkerazad R, Hossain MM, Rahman IMM. Water stress in plants: causes, effects and responses, water stress. In: Ismail Md. Mofizur Rahman, editor. InTech, 2012.Google Scholar
  34. 34.
    Sapeta H, Costa M, Lourenc T, Marocod J, Van der Linde P, Oliveiraa MM. Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot. 2013;85:76–84.CrossRefGoogle Scholar
  35. 35.
    Shao HB, Chu LY, Jaleel CA, Zhao CX. Water-deficit stress-induced anatomical changes in higher plants. C R Biol. 2008;331:215–25.CrossRefPubMedGoogle Scholar
  36. 36.
    Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J. Global warming and changes in drought. Nat Clim Chg. 2014;4:17–22.CrossRefGoogle Scholar
  37. 37.
    Xoconostle-Cazares B, Ramirez-Ortega FA, Flores-Elenes L, Ruiz-Medrano R. Drought tolerance in crop plants. Am J Plant Physiol. 2010;5:241–56.CrossRefGoogle Scholar
  38. 38.
    Zare M, Azizi MH, Bazrafshan F. Effect of drought stress on some agronomic traits in ten barley (Hordeum vulgare) cultivars. Tech J Eng Appl Sci. 2011;1:57–62.Google Scholar
  39. 39.
    Zlatev Z, Lidon FC. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric. 2012;24:57–72.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Plant Sciences, Faculty of Natural SciencesUniversity of TabrizTabrizIran

Personalised recommendations