Insect Hearing pp 159-175 | Cite as

Auditory Transduction

  • Daniel F. EberlEmail author
  • Azusa Kamikouchi
  • Joerg T. Albert
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 55)


Auditory transduction, the process of converting acoustic energy into a nerve signal, couples the sound-evoked motion of an external receiver structure to the gate of a mechanosensitive ion channel. This chapter summarizes the physiological landscape of insect chordotonal auditory receptors, highlighting features that have informed the understanding of the central mechanisms and specializations of insect auditory transducers and their variation. Primarily based on combined genetic and functional experiments in the Johnston’s organ of Drosophila, we present the current understanding of the molecular complexes associated with auditory transduction. The roles of the ciliary dendritic structures are integrated with those of the ion channels and associated complexes in the ciliary membrane. Finally, the chapter includes speculation on the foci of these mechanisms that may contribute to diverse physiological responses in insect auditory receptors.


Active mechanical amplification Chordotonal organ Drosophila Johnston’s organ Katydid crista acustica Locust Müller’s organ Mechanosensitive channel Mechanotransduction Moth ultrasonic hearing NompC Receptor lymph Scolopale cell Scolopidia Stick insect TRP channel 



D. F. E. thanks the Iowa Center for Molecular Auditory Neuroscience for support, facilitated by NIH P30 Grant DC010362 to Steven Green. A. K. thanks the Ministry of Education, Culture, Sports, Science and Technology, Japan, for support from the Grant-in-Aid for Scientific Research on Innovative Areas “Memory Dynamism.” J. T. A. thanks the Human Frontier Science Program (RGY0070/2011) and the Biotechnology and Biological Sciences Research Council, UK (BB/L02084X/1 and BB/M008533/1) for support.


  1. Adams, W. B. (1972). Mechanical tuning of the acoustic receptor of Prodenia eridania (Cramer) (Noctuidae). Journal of Experimental Biology, 57, 297–304.Google Scholar
  2. Albert, J. T., & Göpfert, M. C. (2015). Hearing in Drosophila. Current Opinion in Neurobiology, 34, 79–85.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Albert, J. T., Nadrowski, B., & Göpfert, M. C. (2007). Mechanical signatures of transducer gating in the Drosophila ear. Current Biology, 17, 1000–1006.CrossRefPubMedGoogle Scholar
  4. Baker, J. D., Adhikarakunnathu, S., & Kernan, M. J. (2004). Mechanosensory-defective, male-sterile unc mutants identify a novel basal body protein required for ciliogenesis in Drosophila. Development, 131, 3411–3422.CrossRefPubMedGoogle Scholar
  5. Bechstedt, S., Albert, J. T., Kreil, D. P., Müller-Reichert, T., Göpfert, M. C., & Howard, J. (2010). A doublecortin containing microtubule-associated protein is implicated in mechanotransduction in Drosophila sensory cilia. Nature Communications, 1, 11.CrossRefPubMedGoogle Scholar
  6. Boekhoff-Falk, G., & Eberl, D. F. (2014). The Drosophila auditory system. WIREs Developmental Biology, 3(2), 179–191.CrossRefPubMedGoogle Scholar
  7. Cao, G., Platisa, J., Pieribone, V. A., Raccuglia, D., Kunst, M., & Nitabach, M. N. (2013). Genetically targeted optical electrophysiology in intact neural circuits. Cell, 154(4), 904–913.CrossRefPubMedGoogle Scholar
  8. Chalfie, M. (2009). Neurosensory mechanotransduction. Nature Reviews Molecular Cell Biology, 10(1), 44–52.CrossRefPubMedGoogle Scholar
  9. Chalfie, M., & Sulston, J. (1981). Developmental genetics of mechanosensory neurons of Caenorhabditis elegans. Developmental Biology, 82, 358–370.CrossRefPubMedGoogle Scholar
  10. Chalfie, M., & Au, M. (1989). Genetic control of differentation of the Caenorhabditis elegans touch receptor neurons. Science, 243, 1027–1033.CrossRefPubMedGoogle Scholar
  11. Chung, Y. D., Zhu, J., Han, Y.-G., & Kernan, M. J. (2001). nompA encodes a PNS-specific, ZP domain protein required to connect mechanosensory dendrites to sensory structures. Neuron, 29, 415–428.CrossRefPubMedGoogle Scholar
  12. Corey, D. P., & Hudspeth, A. J. (1979). Response latency of vertebrate hair cells. Biophysical Journal, 26(3), 499–506.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Corey, D. P., & Hudspeth, A. J. (1983). Kinetics of the receptor current in bullfrog saccular hair cells. Journal of Neuroscience, 3(5), 962–976.PubMedGoogle Scholar
  14. Durand, B., Vandaele, C., Spencer, D., Pantalacci, S., & Couble, P. (2000). Cloning and characterization of dRFX, the Drosophila member of the RFX family of transcription factors. Gene, 246, 285–293.CrossRefPubMedGoogle Scholar
  15. Eberl, D. F., Duyk, G. M., & Perrimon, N. (1997). A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 94, 14837–14842.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Eberl, D. F., Hardy, R. W., & Kernan, M. (2000). Genetically similar transduction mechanisms for touch and hearing in Drosophila. Journal of Neuroscience, 20, 5981–5988.PubMedGoogle Scholar
  17. Effertz, T., Wiek, R., & Göpfert, M. C. (2011). NompC TRP channel is essential for Drosophila sound receptor function. Current Biology, 21, 592–597.CrossRefPubMedGoogle Scholar
  18. Effertz, T., Nadrowski, B., Piepenbrock, D., Albert, J. T., & Göpfert, M. C. (2012). Direct gating and mechanical integrity of Drosophila auditory transducers require TRPN1. Nature Neuroscience, 15(9), 1198–1200.CrossRefPubMedGoogle Scholar
  19. Enjolras, C., Thomas, J., Chhin, B., Cortier, E., Duteyrat, J. L., Soulavie, F., et al. (2012). Drosophila chibby is required for basal body formation and ciliogenesis but not for Wg signaling. Journal of Cell Biology, 197(2), 313–325.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Field, L. H., & Matheson, T. (1998). Chordotonal organs of insects. In P. D. Evans (Ed.), Advances in insect physiology (Vol. 27, pp. 1–228). San Diego: Academic Press.Google Scholar
  21. Frolenkov, G. I. (2006). Regulation of electromotility in the cochlear outer hair cell. Journal of Physiology, 576, 43–48.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fuchs, J., Stettler, O., Alvarez-Fischer, D., Prochiantz, A., Moya, K. L., & Joshi, R. L. (2012). Engrailed signaling in axon guidance and neuron survival. European Journal of Neuroscience, 35(12), 1837–1845.CrossRefPubMedGoogle Scholar
  23. Fullard, J. H., & Yack, J. E. (1993). The evolutionary biology of insect hearing. Trends in Ecology & Evolution, 8, 248–252.CrossRefGoogle Scholar
  24. Furukawa, T., & Ishii, Y. (1967). Neurophysiological studies of hearing in goldfish. Journal of Neurophysiology, 30(6), 1377–1403.PubMedGoogle Scholar
  25. Gong, Z., Son, W., Chung, Y. D., Kim, J., Shin, D. W., McClung, C. A., et al. (2004). Two interdependent TRPV channel subunits, Inactive and Nanchung, mediate hearing in Drosophila. Journal of Neuroscience, 24, 9059–9066.CrossRefPubMedGoogle Scholar
  26. Göpfert, M. C., & Robert, D. (2003). Motion generation by Drosophila mechanosensory neurons. Proceedings of the National Academy of Sciences of the USA, 100, 5514–5519.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Göpfert, M. C., Humphris, A. D. L., Albert, J. T., Robert, D., & Hendrich, O. (2005). Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proceedings of the National Academy of Sciences of the USA, 102, 325–330.CrossRefPubMedGoogle Scholar
  28. Göpfert, M. C., Albert, J. T., Nadrowski, A., & Kamikouchi, A. (2006). Specification of auditory sensitivity by Drosophila TRP channels. Nature Neuroscience, 9, 999–1000.CrossRefPubMedGoogle Scholar
  29. Han, Y.-G., Kwok, B. H., & Kernan, M. J. (2003). Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm. Current Biology, 13, 1679–1686.CrossRefPubMedGoogle Scholar
  30. Hill, K. G. (1983). The physiology of locust auditory receptors. II. Membrane potentials associated with the response of the receptor cell. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 152, 483–493.CrossRefGoogle Scholar
  31. Howard, J., & Hudspeth, A. J. (1988). Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog saccular hair cell. Neuron, 1(3), 189–199.CrossRefPubMedGoogle Scholar
  32. Kamikouchi, A., Shimada, T., & Ito, K. (2006). Comprehensive classification of auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. Journal of Comparative Neurology, 499, 317–356.CrossRefPubMedGoogle Scholar
  33. Kamikouchi, A., Albert, J. T., & Göpfert, M. C. (2010). Mechanical feedback amplification in Drosophila hearing is independent of synaptic transmission. European Journal of Neuroscience, 31(4), 697–703.CrossRefPubMedGoogle Scholar
  34. Kavlie, R. G., & Albert, J. T. (2013). Chordotonal organs. Current Biology, 23(9), R334–R335.CrossRefPubMedGoogle Scholar
  35. Kavlie, R. G., Kernan, M. J., & Eberl, D. F. (2010). Hearing in Drosophila requires TilB, a conserved protein associated with ciliary motility. Genetics, 185, 177–188.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kernan, M., Cowan, D., & Zuker, C. (1994). Genetic dissection of mechanosensory transduction: Mechanoreception-defective mutations of Drosophila. Neuron, 12, 1195–1206.CrossRefPubMedGoogle Scholar
  37. Kim, J., Chung, Y. D., Park, D.-Y., Choi, S., Shin, D. W., Soh, H., et al. (2003). A TRPV family ion channel required for hearing in Drosophila. Nature, 424, 81–84.CrossRefPubMedGoogle Scholar
  38. Kondoh, Y., Okuma, J., & Newland, P. L. (1995). Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. Journal of Neurophysiology, 73(5), 1829–1842.PubMedGoogle Scholar
  39. Küppers, J., & Thurm, U. (1979). Active ion transport by a sensory epithelium. I. Transepithelial short circuit current, potential difference, and their dependence on metabolism. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 134, 131–136.CrossRefGoogle Scholar
  40. Laurençon, A., Dubruille, R., Efimenko, E., Grenier, G., Bissett, R., Cortier, E., et al. (2007). Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species. Genome Biology, 8, R195.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lee, E., Sivan-Loukianova, E., Eberl, D. F., & Kernan, M. J. (2008). An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Current Biology, 18, 1899–1906.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lehnert, B. P., Baker, A. E., Gaudry, Q., Chiang, A.-S., & Wilson, R. I. (2013). Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron, 77(1), 115–128.CrossRefPubMedGoogle Scholar
  43. Ma, L., & Jarman, A. P. (2011). Dilatory is a Drosophila protein related to AZI1 (CEP131) that is located at the ciliary base and required for cilium formation. Journal of Cell Science, 124(Pt 15), 2622–2630.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mason, A. C., & Faure, P. A. (2004). The physiology of insect auditory afferents. Microscopy Research & Technique, 63, 338–350.CrossRefGoogle Scholar
  45. Moir, H. M., Jackson, J. C., & Windmill, J. F. C. (2013). Extremely high frequency sensitivity in a 'simple' ear. Biology Letters, 9(4), 20130241.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Montealegre-Z, F., Jonsson, T., Robson-Brown, K. A., Postles, M., & Robert, D. (2012). Convergent evolution between insect and mammalian audition. Science, 338, 968–971.CrossRefPubMedGoogle Scholar
  47. Nadrowski, B., Albert, J. T., & Göpfert, M. C. (2008). Tranducer-based force generation explains active process in Drosophila hearing. Current Biology, 18, 1365–1372.CrossRefPubMedGoogle Scholar
  48. Nadrowski, B., Effertz, T., Senthilan, P. R., & Göpfert, M. C. (2011). Antennal hearing in insects: New findings, new questions. Hearing Research, 273, 7–13.CrossRefPubMedGoogle Scholar
  49. Nakano, R., Takanashi, T., & Surlykke, A. (2015). Moth hearing and sound communication. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 201(1), 111–121.CrossRefPubMedGoogle Scholar
  50. Newton, F. G., zur Lage, P. I., Karak, S., Moore, D. J., Göpfert, M. C., & Jarman, A. P. (2012). Forkhead transcription factor Fd3F cooperates with Rfx to regulate a gene expression program for mechanosensory cilia specialization. Developmental Cell, 22(6), 1221–1233.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Oldfield, B. P. (1982). Tonotopic organisation of auditory receptors in Tettigoniidae (Orthoptera: Ensifera). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 147, 461–469.CrossRefGoogle Scholar
  52. Oldfield, B. P., & Hill, K. G. (1986). Functional organization of insect auditory sensilla. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 158, 27–34.CrossRefGoogle Scholar
  53. Park, J., Lee, J., Shim, J., Han, W., Lee, J., Bae, Y. C., et al. (2013). dTULP, the Drosophila melanogaster homolog of Tubby, regulates transient receptor potential channel localization in cilia. Public Library of Science Genetics, 9(9), e1003814.PubMedPubMedCentralGoogle Scholar
  54. Pézier, A., & Blagburn, J. M. (2013). Auditory responses of engrailed and invected-expressing Johnston's organ neurons in Drosophila melanogaster. PLoS ONE, 8(8), e71419.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pézier, A., Jezzini, S. H., Marie, B., & Blagburn, J. M. (2014). Engrailed alters the specificity of synaptic connections of Drosophila auditory neurons with the giant fiber. Journal of Neuroscience, 34(35), 11691–11704.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pollack, G. S. (2015). Neurobiology of acoustically mediated predator detection. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 201(1), 99–109.CrossRefPubMedGoogle Scholar
  57. Roeder, K. D. (1967). Nerve cells and insect behavior (rev. ed.). Cambridge, MA: Harvard University Press.Google Scholar
  58. Roy, M., Sivan-Loukianova, E., & Eberl, D. F. (2013). Cell-type–specific roles of Na+/K+ ATPase subunits in Drosophila auditory mechanosensation. Proceedings of the National Academy of Sciences of the USA, 110(1), 181–186.CrossRefPubMedGoogle Scholar
  59. Sarpal, R., Todi, S. V., Sivan-Loukianova, E., Shirolikar, S., Subramanian, N., Raff, E. C., et al. (2003). Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails. Current Biology, 13(19), 1687–1696.CrossRefPubMedGoogle Scholar
  60. Senthilan, P. R., Piepenbrock, D., Ovezmyradov, G., Nadrowski, B., Bechstedt, S., Pauls, S., et al. (2012). Drosophila auditory organ genes and genetic hearing defects. Cell, 150(5), 1042–1054.CrossRefPubMedGoogle Scholar
  61. Sun, Y., Liu, L., Ben-Shahar, Y., Jacobs, J. S., Eberl, D. F., & Welsh, M. J. (2009). TRPA channels distinguish gravity sensing from hearing in Johnston's organ. Proceedings of the National Academy of Sciences of the USA, 106, 13606–13611.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Walker, R. G., Willingham, A. T., & Zuker, C. S. (2000). A Drosophila mechanosensory transduction channel. Science, 287, 2229–2234.CrossRefPubMedGoogle Scholar
  63. Yack, J. E. (2004). The structure and function of auditory chordotonal organs in insects. Microscopy Research & Technique, 63, 315–337.CrossRefGoogle Scholar
  64. Yan, Z., Zhang, W., He, Y., Gorczyca, D., Xiang, Y., Cheng, L. E., et al. (2013). Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature, 493(7431), 221–225.CrossRefPubMedGoogle Scholar
  65. Zanini, D., & Göpfert, M. C. (2014). TRPs in hearing. Handbook of Experimental Pharmacology, 223, 899–916.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Daniel F. Eberl
    • 1
    Email author
  • Azusa Kamikouchi
    • 2
  • Joerg T. Albert
    • 3
  1. 1.Department of BiologyUniversity of IowaIowa CityUSA
  2. 2.Graduate School of ScienceNagoya UniversityNagoyaJapan
  3. 3.The Ear InstituteUniversity College LondonLondonUK

Personalised recommendations