Skip to main content

Organic Devices for Electrophysiological Applications

  • Chapter
  • First Online:
Organic Transistor Devices for In Vitro Electrophysiological Applications

Part of the book series: Springer Theses ((Springer Theses))

  • 681 Accesses

Abstract

It is hard to think about something, in the recent past, that affected our lives more than field effect transistors and plastic materials. Interest in field effect transistors, since their invention in 1947 by John Bardeen and Walter Brattain (Phys Rev, 74:230, 1948, [1]), has grown exponentially and revolutionized almost every aspect of human reality, from medicine, to biotechnology and industry, changing the way in which, for example, we communicate with each other, and display or store information. For the discovery of the transistor effect, Bardeen and Brattain were awarded the Nobel Prize in Physics in 1956 (together with William Shockley).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is worth pointing out here that DRG cells does not show any spontaneous activity.

References

  1. Bardeen, J., Brattain, W.H.: The transistor a semi-conductor triode. Phys. Rev. 74, 230 (1948)

    Article  Google Scholar 

  2. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, Alan J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. J. Chem. Soc., Chem. Commun. 16, 578–580 (1977)

    Article  Google Scholar 

  3. Weimer, P.K.: The TFT a new thin-film transistor. Proc. IRE 50(6), 1462–1469 (1962)

    Article  Google Scholar 

  4. Tsumura, A., Koezuka, H., Ando, T.: Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49(18), 1210 (1986)

    Article  Google Scholar 

  5. Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J., Drzaic, P.: Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Nat. Acad. Sci. U. S. A. 98(9), 4835–4840 (2001)

    Article  Google Scholar 

  6. Gelinck, G.H., Huitema, H.E.A., van Veenendaal, E., Cantatore, E., Schrijnemakers, L., van der Putten, J.B.P.H., Geuns, T.C.T., Beenhakkers, M., Giesbers, J.B., Huisman, B.-H., Meijer, E.J., Benito, E.M., Touwslager, F.J., Marsman, A.W., van Rens, B.J.E, de Leeuw, D.M.: Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3(2), 10–106 (2004)

    Google Scholar 

  7. Zhu, Z.-T., Mason, J.T., Dieckmann, R., Malliaras, G.G.: Humidity sensors based on pentacene thin-film transistors. Appl. Phys. Lett. 81(24), 4643 (2002)

    Article  Google Scholar 

  8. Baude, P.F., Ender, D.A., Haase, M.A., Kelley, T.W., Muyres, D.V., Theiss, S.D.: Pentacene-based radio-frequency identification circuitry. Appl. Phys. Lett. 82(22), 3964 (2003)

    Article  Google Scholar 

  9. Someya, T., Dodabalapur, A., Gelperin, A., Katz, H.E., Bao, Z.: Intergation and response of organic electronics with acqueous microfluidics. Langmuir 18, 529–5302 (2002)

    Article  Google Scholar 

  10. Bartic, C.: Monitoring pH with organic-based field-effect transistors. Sens. Actuators B: Chem. 83(1–3), 115–122 (2002)

    Article  Google Scholar 

  11. Bartic, C., Campitelli, A., Borghs, S.: Field-effect detection of chemical species with hybrid organic/inorganic transistors. Appl. Phys. Lett. 82(3), 475–477 (2003)

    Article  Google Scholar 

  12. Loi, A., Manunza, I., Bonfiglio, A.: Flexible, organic, ion-sensitive field-effect transistor. Appl. Phys. Lett. 86(10), 103512 (2005)

    Article  Google Scholar 

  13. Maddalena, F., Kuiper, M.J., Poolman, B., Brouwer, F., Hummelen, J.C., de Leeuw, D.M., De B., Bert, Blom, P.W.M.: Organic field-effect transistor-based biosensors functionalized with protein receptors. J. Appl. Phys. 108(12), 124501 (2010)

    Article  Google Scholar 

  14. Benfenati, V., Toffanin, S., Bonetti, S., Turatti, G., Pistone, A., Chiappalone, M., Sagnella, A., Stefani, A., Generali, G., Ruani, G., Saguatti, D., Zamboni, R., Muccini, M.: A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12(7), 672–680 (2013)

    Article  Google Scholar 

  15. Herlogsson, L., Crispin, X., Robinson, N.D., Sandberg, M., Hagel, O.J., Gustafsson, G., Berggren, M.: Low-voltage polymer field-effect transistors gated via a proton conductor. Advanced Materials 19, 97–101 (2007)

    Article  Google Scholar 

  16. Kergoat, L., Herlogsson, L., Braga, D., Piro, B., Pham, M.-C., Crispin, X., Berggren, M., Horowitz, G.: A water-gate organic field-effect transistor. Adv. Mater. 22(23), 2565–2569 (2010)

    Article  Google Scholar 

  17. Kergoat, L., Battaglini, N., Miozzo, L., Piro, B., Pham, M.-C., Yassar, A., Horowitz, G.: Use of poly(3-hexylthiophene)/poly(methyl methacrylate) (P3HT/PMMA) blends to improve the performance of water-gated organic field-effect transistors. Org. Electron. 12(7), 1253–1257 (2011)

    Article  Google Scholar 

  18. Kergoat, L., Piro, B., Berggren, M., Pham, M.-C., Yassar, A., Horowitz, G.: DNA detection with a water-gated organic field-effect transistor. Org. Electron. 13(1), 1–6 (2012)

    Article  Google Scholar 

  19. Cramer, T., Chelli, B., Murgia, M., Barbalinardo, M., Bystrenova, E., de Leeuw, D.M., Biscarini, F.: Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks. Phys. Chem. Chem. Phys.: PCCP 15(11), 3897–3905 (2013)

    Article  Google Scholar 

  20. White, H.S., Kittlesen, G.P., Wrighton, M.S.: Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Chem. Soc. 106(25), 5375–5377 (1984)

    Article  Google Scholar 

  21. Paul, E.W., Ricco, A.J., Wrighton, M.S.: Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J. Phys. Chem. 89(5), 1441–1447 (1985)

    Article  Google Scholar 

  22. Rani, V., Santhanam, K.S.V.: Polycarbazole-based electrochemical transistor. J. Solid State Electrochem. 2, 99–101 (1998)

    Article  Google Scholar 

  23. Thackeray, J.W., White, H.S., Wrighton, M.S.: Poly(3-methylthiophene)-coated electrodes: optical and electrical properties as a function of redox potential and amplification of electrical and chemical signals using poly(3-methylthiophene)-based microelectrochemical transistors. J. Phys. Chem. 89, 5133–5140 (1985)

    Article  Google Scholar 

  24. Basiricò, L., Cosseddu, P., Fraboni, B., Bonfiglio, A.: Inkjet printing of transparent, flexible, organic transistors. Thin Solid Films 520(4), 1291–1294 (2011)

    Article  Google Scholar 

  25. Hoa, D.T., Suresh, T.N., Kumar, N.S., Punekar, R.S., Lal, S.R., Contractor, A.Q.: A biosensor based on conducting polymers. Anal. Chem. 64(21), 2645–2646 (1992)

    Article  Google Scholar 

  26. Shim, N.A., Bernards, D.A., Macaya, D.J., Defranco, J.A., Nikolou, M., Owens, R.M., Malliaras, G.G.: All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator. Sensors 9(12), 9896–9902 (2009)

    Article  Google Scholar 

  27. Kanungo, M., Srivastava, D.N., Kumar, A., Contractor, A.Q.: Conductimetric immunosensor based on poly(3,4-ethylenedioxythiophene). Chem. Commun. 2002, 680–681 (2002)

    Article  Google Scholar 

  28. Krishnamoorthy, K., Gokhale, R.S., Contractor, A.Q., Kumar, A., Asaf, A., Marg, A.: Novel label-free DNA sensors based on poly(3,4-ethylenedioxythiophene). Chem. Commun. 2004, 820–821 (2004)

    Article  Google Scholar 

  29. Kanungo, M., Kumar, A., Contractor, A.Q.: Microtubule sensors and sensor array based on polyaniline synthesized in the presence of poly(styrene sulfonate). Anal. Chem. 75(21), 5673–5679 (2003)

    Article  Google Scholar 

  30. Lin, P., Yan, F., Yu, J., Chan, H.L.W., Yang, M.: The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 22(33), 3655–3660 (2010)

    Article  Google Scholar 

  31. Campana, A., Cramer, T., Simon, D.T., Berggren, M., Biscarini, F.: Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater. 26(23), 3874–3878 (2014)

    Article  Google Scholar 

  32. Khodagholy, D., Doublet, T., Quilichini, P., Gurfinkel, M., Leleux, P., Ghestem, A., Ismailova, E., Hervé, T., Sanaur, S., Bernard, C., Malliaras, G.G.: In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575–1579 (2013)

    Article  Google Scholar 

  33. Narayan, K.S.: Optimum design of organic electrochemical type transistors for applications in biochemical sensing. J. Sens. 1–5, 2008 (2008)

    Google Scholar 

  34. Tarabella, G., Santato, C., Yoon Yang, S., Lannotta, S., Malliaras, G.G., Cicoira, F.: Effect of the gate electrode on the response of organic electrochemical transistors. Appl. Phys. Lett. 97(12), 123304 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Spanu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spanu, A. (2016). Organic Devices for Electrophysiological Applications. In: Organic Transistor Devices for In Vitro Electrophysiological Applications. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-28880-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28880-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28879-6

  • Online ISBN: 978-3-319-28880-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics