Multi-vehicle Dynamic Pursuit Using Underwater Acoustics

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 114)


Marine robots communicating wirelessly is an increasingly attractive means for observing and monitoring the ocean, but acoustic communication remains a major impediment to real-time control. In this paper we address through experiments the capability of acoustics to sustain highly dynamic, multi-agent missions, in particular range-only pursuit in a challenging shallow-water environment. We present in detail results comparing the tracking performance of three different communication configurations, at operating speeds near 1.5 m/s. A “lower bound” case with RF wireless communication, a 4-second cycle and no quantization has a tracking bandwidth of \(\approx \)0.5 rad/s. When using full-sized modem packets with negligible quantization and a 23-second cycle time, the tracking bandwidth is \(\approx \)0.065 rad/s. With 13-bit mini-packets, we employ logarithmic quantization to achieve a cycle time of 12 s and a tracking bandwidth of \(\approx \)0.13 rad/s. These outcomes show definitively that aggressive dynamic control of multi-agent systems underwater is tractable today.


Packet Loss Mobile Agent Acoustic Communication Total Cycle Time Acoustic Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work is supported by the Office of Naval Research, Grant N00014-09-1-0700, the National Science Foundation, Contract CNS-1212597, and the Finmeccanica Career Development Professorship. We thank Mei Cheung for providing Fig. 4 and help with experimental implementation. We thank Toby Schneider and Mike Benjamin at MIT, and Keenan Ball and Sandipa Singh at WHOI, for their help on technical items. We also acknowledge MIT Sailing Master Fran Charles.


  1. 1.
    Bahr, A., Leonard, J., Fallon, M.: Cooperative localization for autonomous underwater vehicles. Int. J. Robot. Res. 28(6), 714 (2009)CrossRefGoogle Scholar
  2. 2.
    Baillieul, J., Antsaklis, P.: Control and communication challenges in networked real-time systems. Proc. IEEE 95(1), 9–28 (2007)CrossRefGoogle Scholar
  3. 3.
    Bean, T., Canning, J., Beidler, G., O’Rourke, M., Edwards, D.: Designing and implementing collaborative behaviors for autonomous underwater vehicles. In: Proceedings of the International Symposium on Unmanned Untethered Submersible Technology (UUST) (2007)Google Scholar
  4. 4.
    Benjamin, M., Leonard, J., Schmidt, H., Newman, P.: An overview of MOOS-IvP and a brief users guide to the IvP helm autonomy software. Massachusetts Institute of Technology, MIT CSAIL, Technical report TR-2009-28-07 (2009)Google Scholar
  5. 5.
    Bingham, B.: Predicting the navigation performance of underwater vehicles. In: Proceedings of the IEEE/RSJ Intelligent Robots and Systems (2009)Google Scholar
  6. 6.
    Brignone, L., Alves, J., Opderbecke, J.: GREX sea trials: first experiences in multiple underwater vehicle coordination based on acoustic communication. In: Proceedings of the MTS/IEEE OCEANS (2009)Google Scholar
  7. 7.
    Caiti, A., Calabro, V., Dini, G., Duca, A., Munafo, A.: AUVs as mobile nodes in acoustic communication networks: field experience at the UAN10 experiments. In: Proceedings of the MTS/IEEE OCEANS (2011)Google Scholar
  8. 8.
    Camilli, R., Reddy, C., Yoerger, D., Van Mooy, B., Jakuba, M., Kinsey, J., McIntyre, C., Sylva, S., Maloney, J.: Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330(6001), 201 (2010)CrossRefGoogle Scholar
  9. 9.
    Canning, J., Anderson, M., Edwards, D., O’Rourke, M., Bean, T., Pentzer, J., Odell, D.: A low bandwidth acoustic communication strategy for supporting collaborative behaviors in a fleet of autonomous underwater vehicles. US Navy J. Underw. Acoust. 59(3), 285–299 (2009)Google Scholar
  10. 10.
    Chen, B., Pompili, D.: Team formation and steering algorithms for underwater gliders using acoustic communications. Comput. Commun. 35(9), 1017–1028 (2012)CrossRefGoogle Scholar
  11. 11.
    Chung, T., Burdick, J., Murray, R.: A decentralized motion coordination strategy for dynamic target tracking. In: Proceedings of the IEEE International Conference on Robotics and Automation (2006)Google Scholar
  12. 12.
    Clark, C.M., Forney, C., Manii, E., Shinzaki, D., Gage, C., Farris, M., Lowe, C.G., Moline, M.: Tracking and following a tagged leopard shark with an autonomous underwater vehicle. J. Field Robot. 30(3), 309–322 (2013)CrossRefGoogle Scholar
  13. 13.
    Cruz, N.A., Ferreira, B.M., Matos, A.C., Petrioli, C., Petroccia, R., Spaccini, D.: Implementation of an underwater acoustic network using multiple heterogeneous vehicles. In: Proceedings of the MTS/IEEE Oceans (2012)Google Scholar
  14. 14.
    Curcio, J., Leonard, J., Vaganay, J., Patrikalakis, A., Bahr, A., Battle, D., Schmidt, H., Grund, M.: Experiments in moving baseline navigation using autonomous surface craft. In: Proceedings of the MTS/IEEE OCEANS (2005)Google Scholar
  15. 15.
    Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization for mobile robots. In: Proceedings of the International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1322–1328. IEEE (1999)Google Scholar
  16. 16.
    Dunbabin, M., Marques, L.: Robots for environmental monitoring: significant advancements and applications. IEEE Robot. Autom. Mag. 19(1), 24–39 (2012)CrossRefGoogle Scholar
  17. 17.
    Eickstedt, D., Benjamin, M., Schmidt, H., Leonard, J.: Adaptive tracking of underwater targets with autonomous sensor networks. US Navy J. Underw. Acoust. 56, 465–495 (2006)Google Scholar
  18. 18.
    Eustice, R.M., Singh, H., Whitcomb, L.L.: Synchronous-clock one-way-travel-time acoustic navigation for underwater vehicles. Special issue on state of the art in maritime autonomous surface and underwater vehicles, J. Field Robot. 28(1), 121–136 (2011)Google Scholar
  19. 19.
    Farrell, J., Pang, S., Li, W., Arrieta, R.: Chemical plume tracing experimental results with a REMUS AUV. In: Proceedings of the MTS/IEEE OCEANS, vol. 2, pp. 962–968. IEEE (2003)Google Scholar
  20. 20.
    Freitag, L., Grund, M., Singh, S., Partan, J., Koski, P., Ball, K.: The WHOI micro-modem: an acoustic communications and navigation system for multiple platforms. In: Proceedings of the MTS/IEEE OCEANS (2005)Google Scholar
  21. 21.
    Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gadre, A., Maczka, D., Spinello, D., McCarter, B., Stilwell, D., Neu, W., Roan, M., Hennage, J.: Cooperative localization of an acoustic source using towed hydrophone arrays. In: Proceedings of the IEEE/OES Autonomous Underwater Vehicles, pp. 1–8 (2008)Google Scholar
  23. 23.
    Gilbertson, E., Reed, B., Leighton, J., Cheung, M., Hover, F.: Experiments in dynamic control of autonomous marine vehicles using acoustic modems. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2013)Google Scholar
  24. 24.
    Heidemann, J., Stojanovic, M., Zorzi, M.: Underwater sensor networks: applications, advances and challenges. Philos. Trans. R. Soc.: Math. Phys. Eng. Sci. 370(1958), 158–175 (2012)CrossRefGoogle Scholar
  25. 25.
    Julier, S., Uhlmann, J.: New extension of the Kalman filter to nonlinear systems. In: AeroSense’97. International Society for Optics and Photonics (1997)Google Scholar
  26. 26.
    Leonard, N., Paley, D., Lekien, F., Sepulchre, R., Fratantoni, D., Davis, R.: Collective motion, sensor networks, and ocean sampling. Proc. IEEE 95(1), 48–74 (2007)CrossRefGoogle Scholar
  27. 27.
    Liao, E., Hollinger, G., Djugash, J., Singh, S.: Preliminary results in tracking mobile targets using range sensors from multiple robots. Distrib. Auton. Robot. Syst. 7, 125–134 (2006)zbMATHGoogle Scholar
  28. 28.
    Mostofi, Y., Chung, T., Murray, R., Burdick, J.: Communication and sensing trade-offs in decentralized mobile sensor networks: a cross-layer design approach. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (2005)Google Scholar
  29. 29.
    Rife, J., Rock, S.: Design and validation of a robotic control law for observation of deep-ocean jellyfish. IEEE Trans. Robot. 22(2), 282–291 (2006)CrossRefGoogle Scholar
  30. 30.
    Schneider, T., Schmidt, H.: Unified command and control for heterogeneous marine sensing networks. J. Field Robot. 27(6), 876–889 (2010)CrossRefGoogle Scholar
  31. 31.
    Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Skomal, G., Benz, G.: Ultrasonic tracking of Greenland sharks, Somniosus microcephalus, under Arctic ice. Mar. Biol. 145(3), 489–498 (2004)CrossRefGoogle Scholar
  33. 33.
    Soares, J., Aguiar, A., Pascoal, A., Martinoli, A.: Joint ASV/AUV range-based formation control: theory and experimental results. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2013)Google Scholar
  34. 34.
    Takasu, T., Yasuda, A.: Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In: Proceedings of the International Symposium on GPS/GNSS, International Convention Center Jeju, Korea (2009)Google Scholar
  35. 35.
    Vázquez-Rowe, I., Iribarren, D., Moreira, M.T., Feijoo, G.: Combined application of life cycle assessment and data envelopment analysis as a methodological approach for the assessment of fisheries. Int. J. Life Cycle Assess. 15(3), 272–283 (2010)CrossRefGoogle Scholar
  36. 36.
    Vidal, R., Shakernia, O., Kim, H., Shim, D., Sastry, S.: Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE Trans. Robot. Autom. 18(5), 662–669 (2002)CrossRefGoogle Scholar
  37. 37.
    Voegeli, F., Smale, M., Webber, D., Andrade, Y., O’Dor, R.: Ultrasonic telemetry, tracking and automated monitoring technology for sharks. Environ. Biol. Fishes 60(1), 267–282 (2001)Google Scholar
  38. 38.
    Zhou, K., Roumeliotis, S.: Optimal motion strategies for range-only constrained multisensor target tracking. IEEE Trans. Robot. 24(5), 1168–1185 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.MIT/WHOI Joint Program in Oceanographic EngineeringCambridgeUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.Northeastern UniversityBostonUSA

Personalised recommendations