Skip to main content

Multi-vehicle Dynamic Pursuit Using Underwater Acoustics

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 114))

Abstract

Marine robots communicating wirelessly is an increasingly attractive means for observing and monitoring the ocean, but acoustic communication remains a major impediment to real-time control. In this paper we address through experiments the capability of acoustics to sustain highly dynamic, multi-agent missions, in particular range-only pursuit in a challenging shallow-water environment. We present in detail results comparing the tracking performance of three different communication configurations, at operating speeds near 1.5 m/s. A “lower bound” case with RF wireless communication, a 4-second cycle and no quantization has a tracking bandwidth of \(\approx \)0.5 rad/s. When using full-sized modem packets with negligible quantization and a 23-second cycle time, the tracking bandwidth is \(\approx \)0.065 rad/s. With 13-bit mini-packets, we employ logarithmic quantization to achieve a cycle time of 12 s and a tracking bandwidth of \(\approx \)0.13 rad/s. These outcomes show definitively that aggressive dynamic control of multi-agent systems underwater is tractable today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The linear form written is based on approximation of the tangent function. For errors less than 1 m, the MOOS Trackline controller increases the lead distance proportionally, effectively lowering the gain to limit oscillations.

  2. 2.

    When range measurements do not interfere with modem packets and the cycle consists of just two-way communications (e.g. using GPS and wifi for ranges), we have achieved a 6-second total cycle time with mini-packets in the field.

  3. 3.

    As we were submitting this paper we became aware of several modifications in the operation of the Micro-Modems that likely will allow for slightly faster cycle times.

  4. 4.

    Other nonlinear, range-only filters, such as particle filters, could also be used [15].

  5. 5.

    The ranges are set relative to the distance the target can drive in a time step, so that the target is unlikely to cross the baseline before the control system can react.

  6. 6.

    This data set, along with videos, is publicly available at http://web.mit.edu/hovergroup/resources.html.

References

  1. Bahr, A., Leonard, J., Fallon, M.: Cooperative localization for autonomous underwater vehicles. Int. J. Robot. Res. 28(6), 714 (2009)

    Article  Google Scholar 

  2. Baillieul, J., Antsaklis, P.: Control and communication challenges in networked real-time systems. Proc. IEEE 95(1), 9–28 (2007)

    Article  Google Scholar 

  3. Bean, T., Canning, J., Beidler, G., O’Rourke, M., Edwards, D.: Designing and implementing collaborative behaviors for autonomous underwater vehicles. In: Proceedings of the International Symposium on Unmanned Untethered Submersible Technology (UUST) (2007)

    Google Scholar 

  4. Benjamin, M., Leonard, J., Schmidt, H., Newman, P.: An overview of MOOS-IvP and a brief users guide to the IvP helm autonomy software. Massachusetts Institute of Technology, MIT CSAIL, Technical report TR-2009-28-07 (2009)

    Google Scholar 

  5. Bingham, B.: Predicting the navigation performance of underwater vehicles. In: Proceedings of the IEEE/RSJ Intelligent Robots and Systems (2009)

    Google Scholar 

  6. Brignone, L., Alves, J., Opderbecke, J.: GREX sea trials: first experiences in multiple underwater vehicle coordination based on acoustic communication. In: Proceedings of the MTS/IEEE OCEANS (2009)

    Google Scholar 

  7. Caiti, A., Calabro, V., Dini, G., Duca, A., Munafo, A.: AUVs as mobile nodes in acoustic communication networks: field experience at the UAN10 experiments. In: Proceedings of the MTS/IEEE OCEANS (2011)

    Google Scholar 

  8. Camilli, R., Reddy, C., Yoerger, D., Van Mooy, B., Jakuba, M., Kinsey, J., McIntyre, C., Sylva, S., Maloney, J.: Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330(6001), 201 (2010)

    Article  Google Scholar 

  9. Canning, J., Anderson, M., Edwards, D., O’Rourke, M., Bean, T., Pentzer, J., Odell, D.: A low bandwidth acoustic communication strategy for supporting collaborative behaviors in a fleet of autonomous underwater vehicles. US Navy J. Underw. Acoust. 59(3), 285–299 (2009)

    Google Scholar 

  10. Chen, B., Pompili, D.: Team formation and steering algorithms for underwater gliders using acoustic communications. Comput. Commun. 35(9), 1017–1028 (2012)

    Article  Google Scholar 

  11. Chung, T., Burdick, J., Murray, R.: A decentralized motion coordination strategy for dynamic target tracking. In: Proceedings of the IEEE International Conference on Robotics and Automation (2006)

    Google Scholar 

  12. Clark, C.M., Forney, C., Manii, E., Shinzaki, D., Gage, C., Farris, M., Lowe, C.G., Moline, M.: Tracking and following a tagged leopard shark with an autonomous underwater vehicle. J. Field Robot. 30(3), 309–322 (2013)

    Article  Google Scholar 

  13. Cruz, N.A., Ferreira, B.M., Matos, A.C., Petrioli, C., Petroccia, R., Spaccini, D.: Implementation of an underwater acoustic network using multiple heterogeneous vehicles. In: Proceedings of the MTS/IEEE Oceans (2012)

    Google Scholar 

  14. Curcio, J., Leonard, J., Vaganay, J., Patrikalakis, A., Bahr, A., Battle, D., Schmidt, H., Grund, M.: Experiments in moving baseline navigation using autonomous surface craft. In: Proceedings of the MTS/IEEE OCEANS (2005)

    Google Scholar 

  15. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization for mobile robots. In: Proceedings of the International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1322–1328. IEEE (1999)

    Google Scholar 

  16. Dunbabin, M., Marques, L.: Robots for environmental monitoring: significant advancements and applications. IEEE Robot. Autom. Mag. 19(1), 24–39 (2012)

    Article  Google Scholar 

  17. Eickstedt, D., Benjamin, M., Schmidt, H., Leonard, J.: Adaptive tracking of underwater targets with autonomous sensor networks. US Navy J. Underw. Acoust. 56, 465–495 (2006)

    Google Scholar 

  18. Eustice, R.M., Singh, H., Whitcomb, L.L.: Synchronous-clock one-way-travel-time acoustic navigation for underwater vehicles. Special issue on state of the art in maritime autonomous surface and underwater vehicles, J. Field Robot. 28(1), 121–136 (2011)

    Google Scholar 

  19. Farrell, J., Pang, S., Li, W., Arrieta, R.: Chemical plume tracing experimental results with a REMUS AUV. In: Proceedings of the MTS/IEEE OCEANS, vol. 2, pp. 962–968. IEEE (2003)

    Google Scholar 

  20. Freitag, L., Grund, M., Singh, S., Partan, J., Koski, P., Ball, K.: The WHOI micro-modem: an acoustic communications and navigation system for multiple platforms. In: Proceedings of the MTS/IEEE OCEANS (2005)

    Google Scholar 

  21. Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)

    Article  MathSciNet  Google Scholar 

  22. Gadre, A., Maczka, D., Spinello, D., McCarter, B., Stilwell, D., Neu, W., Roan, M., Hennage, J.: Cooperative localization of an acoustic source using towed hydrophone arrays. In: Proceedings of the IEEE/OES Autonomous Underwater Vehicles, pp. 1–8 (2008)

    Google Scholar 

  23. Gilbertson, E., Reed, B., Leighton, J., Cheung, M., Hover, F.: Experiments in dynamic control of autonomous marine vehicles using acoustic modems. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

  24. Heidemann, J., Stojanovic, M., Zorzi, M.: Underwater sensor networks: applications, advances and challenges. Philos. Trans. R. Soc.: Math. Phys. Eng. Sci. 370(1958), 158–175 (2012)

    Article  Google Scholar 

  25. Julier, S., Uhlmann, J.: New extension of the Kalman filter to nonlinear systems. In: AeroSense’97. International Society for Optics and Photonics (1997)

    Google Scholar 

  26. Leonard, N., Paley, D., Lekien, F., Sepulchre, R., Fratantoni, D., Davis, R.: Collective motion, sensor networks, and ocean sampling. Proc. IEEE 95(1), 48–74 (2007)

    Article  Google Scholar 

  27. Liao, E., Hollinger, G., Djugash, J., Singh, S.: Preliminary results in tracking mobile targets using range sensors from multiple robots. Distrib. Auton. Robot. Syst. 7, 125–134 (2006)

    MATH  Google Scholar 

  28. Mostofi, Y., Chung, T., Murray, R., Burdick, J.: Communication and sensing trade-offs in decentralized mobile sensor networks: a cross-layer design approach. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (2005)

    Google Scholar 

  29. Rife, J., Rock, S.: Design and validation of a robotic control law for observation of deep-ocean jellyfish. IEEE Trans. Robot. 22(2), 282–291 (2006)

    Article  Google Scholar 

  30. Schneider, T., Schmidt, H.: Unified command and control for heterogeneous marine sensing networks. J. Field Robot. 27(6), 876–889 (2010)

    Article  Google Scholar 

  31. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)

    Article  MathSciNet  Google Scholar 

  32. Skomal, G., Benz, G.: Ultrasonic tracking of Greenland sharks, Somniosus microcephalus, under Arctic ice. Mar. Biol. 145(3), 489–498 (2004)

    Article  Google Scholar 

  33. Soares, J., Aguiar, A., Pascoal, A., Martinoli, A.: Joint ASV/AUV range-based formation control: theory and experimental results. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

  34. Takasu, T., Yasuda, A.: Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In: Proceedings of the International Symposium on GPS/GNSS, International Convention Center Jeju, Korea (2009)

    Google Scholar 

  35. Vázquez-Rowe, I., Iribarren, D., Moreira, M.T., Feijoo, G.: Combined application of life cycle assessment and data envelopment analysis as a methodological approach for the assessment of fisheries. Int. J. Life Cycle Assess. 15(3), 272–283 (2010)

    Article  Google Scholar 

  36. Vidal, R., Shakernia, O., Kim, H., Shim, D., Sastry, S.: Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE Trans. Robot. Autom. 18(5), 662–669 (2002)

    Article  Google Scholar 

  37. Voegeli, F., Smale, M., Webber, D., Andrade, Y., O’Dor, R.: Ultrasonic telemetry, tracking and automated monitoring technology for sharks. Environ. Biol. Fishes 60(1), 267–282 (2001)

    Google Scholar 

  38. Zhou, K., Roumeliotis, S.: Optimal motion strategies for range-only constrained multisensor target tracking. IEEE Trans. Robot. 24(5), 1168–1185 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Work is supported by the Office of Naval Research, Grant N00014-09-1-0700, the National Science Foundation, Contract CNS-1212597, and the Finmeccanica Career Development Professorship. We thank Mei Cheung for providing Fig. 4 and help with experimental implementation. We thank Toby Schneider and Mike Benjamin at MIT, and Keenan Ball and Sandipa Singh at WHOI, for their help on technical items. We also acknowledge MIT Sailing Master Fran Charles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brooks Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reed, B., Leighton, J., Stojanovic, M., Hover, F. (2016). Multi-vehicle Dynamic Pursuit Using Underwater Acoustics. In: Inaba, M., Corke, P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28872-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28870-3

  • Online ISBN: 978-3-319-28872-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics