Skip to main content

Optimal Control of Nonlinear Systems with Temporal Logic Specifications

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 114))

Abstract

We present a mathematical programming-based method for optimal control of nonlinear systems subject to temporal logic task specifications. We specify tasks using a fragment of linear temporal logic (LTL) that allows both finite- and infinite-horizon properties to be specified, including tasks such as surveillance, periodic motion, repeated assembly, and environmental monitoring. Our method directly encodes an LTL formula as mixed-integer linear constraints on the system variables, avoiding the computationally expensive process of creating a finite abstraction. Our approach is efficient; for common tasks our formulation uses significantly fewer binary variables than related approaches and gives the tightest possible convex relaxation. We apply our method on piecewise affine systems and certain classes of differentially flat systems. In numerical experiments, we solve temporal logic motion planning tasks for high-dimensional (10\(+\) continuous state) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. IEEE 88(7), 971–984 (2000)

    Article  Google Scholar 

  2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    Google Scholar 

  3. Belta, C., Habets, L.C.G.J.M.: Controlling of a class of nonlinear systems on rectangles. IEEE Trans. Autom. Control 51, 1749–1759 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35, 407–427 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edition. SIAM (2000)

    Google Scholar 

  6. Bhatia, A., Maly, M.R., Kavraki, L.E., Vardi, M.Y.: Motion planning with complex goals. IEEE Robot. Autom. Mag. 18, 55–64 (2011)

    Article  Google Scholar 

  7. Blair, C.E., Jeroslow, R.G., Lowe, J.K.: Some results and experiments in programming techniques for propositional logic. Comput. Oper. Res. 13, 633–645 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Earl, M.G., D’Andrea, R.: Iterative MILP methods for vehicle-control problems. IEEE Trans. Robot. 21, 1158–1167 (2005)

    Article  Google Scholar 

  9. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for dynamic robots. Automatica 45, 343–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Habets, L., Collins, P.J., van Schuppen, J.H.: Reachability and control synthesis for piecewise-affine hybrid systems on simplices. IEEE Trans. Autom. Control 51, 938–948 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hooker, J.N., Fedjki, C.: Branch-and-cut solution of inference problems in propositional logic. Ann. Math. Artif. Intell. 1, 123–139 (1990)

    Article  MATH  Google Scholar 

  12. Jeroslow, R.G.: Representability in mixed integer programming, I: Characterization results. Disc. Appl. Math. 17, 223–243 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karaman, S., Frazzoli, E.: Linear temporal logic vehicle routing with applications to multi-UAV mission planning. Int. J. Robust Nonlinear Control 21, 1372–1395 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning with deterministic \(\mu \)-calculus specifications. In: Proceedings of the American Control Conference (2012)

    Google Scholar 

  15. Karaman, S., Sanfelice, R.G., Frazzoli, E.: Optimal control of mixed logical dynamical systems with linear temporal logic specifications. In: Proceedings of the IEEE Conference on Decision and Control, pp. 2117–2122 (2008)

    Google Scholar 

  16. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from temporal logic specifications. IEEE Trans. Autom. Control 53(1), 287–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  18. Löfberg, J.: YALMIP : A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference. Taipei, Taiwan (2004). Software available at http://control.ee.ethz.ch/~joloef/yalmip.php

  19. Mellinger, D., Kushleyev, A., Kumar, V.: Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams. In: Proceedings of the International Conference on Robotics and Automation (2012)

    Google Scholar 

  20. Richards, A., How, J.P.: Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: American Control Conference (2002)

    Google Scholar 

  21. Smith, S.L., Tumova, J., Belta, C., Rus, D.: Optimal path planning for surveillance with temporal-logic constraints. Int. J. Robot. Res. 30, 1695–1708 (2011)

    Article  Google Scholar 

  22. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Philadelphia, PA: SIAM (2001)

    Google Scholar 

  23. User’s Manual for CPLEX V12.2. IBM (2010)

    Google Scholar 

  24. Vitus, M.P., Pradeep, V., Hoffmann, J., Waslander, S.L., Tomlin, C.J.: Tunnel-MILP: path planning with sequential convex polytopes. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference (2008)

    Google Scholar 

  25. Webb, D.J., van den Berg, J.: Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics. In: Proceedings of the IEEE International Conference on Robotics and Automation (2013)

    Google Scholar 

  26. Wolff, E.M., Murray, R.M.: Optimal control of mixed logical dynamical systems with long-term temporal logic specifications. Technical report, California Institute of Technology (2013). http://resolver.caltech.edu/CaltechCDSTR:2013.001

  27. Wolff, E.M., Topcu, U., Murray, R.M.: Optimal control with weighted average costs and temporal logic specifications. In: Proceedings of the Robotics: Science and Systems (2012)

    Google Scholar 

  28. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: TuLiP: A software toolbox for receding horizon temporal logic planning. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control (2011). http://tulip-control.sf.net

  29. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic planning. IEEE Trans. Autom. Control (2012)

    Google Scholar 

Download references

Acknowledgments

The authors thank Matanya Horowitz, Scott Livingston, and Ufuk Topcu for helpful feedback. This work was supported by a NDSEG Fellowship and the Boeing Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Wolff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wolff, E.M., Murray, R.M. (2016). Optimal Control of Nonlinear Systems with Temporal Logic Specifications. In: Inaba, M., Corke, P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28872-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28870-3

  • Online ISBN: 978-3-319-28872-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics