Skip to main content

Exploitation of Environmental Constraints in Human and Robotic Grasping

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 114))

Abstract

We investigate the premise that robust grasping performance is enabled by exploiting constraints present in the environment. These constraints, leveraged through motion in contact, counteract uncertainty in state variables relevant to grasp success. Given this premise, grasping becomes a process of successive exploitation of environmental constraints, until a successful grasp has been established. We present support for this view by analyzing human grasp behavior and by showing robust robotic grasping based on constraint-exploiting grasp strategies. Furthermore, we show that it is possible to design robotic hands with inherent capabilities for the exploitation of environmental constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amend, J., Brown, E., Rodenberg, N., Jaeger, H., Lipson, H.: A positive pressure universal gripper based on the jamming of granular material. IEEE Trans. Robot. 28(2), 341–350 (2012)

    Article  Google Scholar 

  2. Chang, L., Zeglin, G., Pollard, N.: Preparatory object rotation as a human-inspired grasping strategy. In: IEEE-RAS International Conference on Humanoids, pp. 527–534 (2008)

    Google Scholar 

  3. Christopoulos, V.N., Schrater, P.R.: Grasping objects with environmentally induced position uncertainty. PLoS Comput Biol 5(10) (2009)

    Google Scholar 

  4. Ciocarlie, M., Mier Hicks, F., Stanford, S.: Kinetic and dimensional optimization for a tendon-driven gripper. In: IEEE International Conference on Robotics and Automation, pp. 217–224 (2013)

    Google Scholar 

  5. Cutkosky, M.R.: On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 5(3), 269–279 (1989)

    Article  MathSciNet  Google Scholar 

  6. Deimel, R., Brock, O.: A compliant hand based on a novel pneumatic actuator. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 472–480. Karlsruhe, Germany (2013)

    Google Scholar 

  7. Dogar, M., Srinivasa, S.: Push-grasping with dexterous hands: Mechanics and a method. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2123–2130 (2010)

    Google Scholar 

  8. Dollar, A.M., Howe, R.D.: The highly adaptive SDM hand: design and performance evaluation. Int. J. Robot. Res. 29(5), 585–597 (2010)

    Article  Google Scholar 

  9. Eppner, C., Brock, O.: Grasping unknown objects by exploiting shape adaptability and environmental constraints. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  10. Ernst, M.O., Banks, M.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429–433 (2002)

    Article  Google Scholar 

  11. Feix, T., Pawlik, R., Schmiedmayer, H., Romero, J., Kragic, D.: A comprehensive grasp taxonomy. In: Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation (2009)

    Google Scholar 

  12. Grebenstein, M., Chalon, M., Friedl, W., Haddadin, S., Wimböck, T., Hirzinger, G., Siegwart, R.: The hand of the DLR hand arm system: designed for interaction. Int. J. Robot. Res. 31(13), 1531–1555 (2012)

    Article  Google Scholar 

  13. Grioli, G., Catalano, M., Silvestro, E., Tono, S., Bicchi, A.: Adaptive synergies: an approach to the design of under-actuated robotic hands. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 356–364 (2012)

    Google Scholar 

  14. Hirose, S., Umetani, Y.: The development of soft gripper for the versatile robot hand. Mech. Mach.Theory 13(3), 351–359 (1978)

    Article  Google Scholar 

  15. Kaneko, M., Shirai, T., Tsuji, T.: Scale-dependent grasp. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 30(6), 806–816 (2000)

    Article  Google Scholar 

  16. Kappler, D., Chang, L.Y., Pollard, N.S., Asfour, T., Dillmann, R.: Templates for pre-grasp sliding interactions. Robot. Auton. Syst. 60(3), 411–423 (2012)

    Article  Google Scholar 

  17. Kazemi, M., Valois, J.S., Bagnell, J.A.D., Pollard, N.: Robust object grasping using force compliant motion primitives. Technical Report CMU-RI-TR-12-04, Carnegie Mellon University, Robotics Institute (2012)

    Google Scholar 

  18. Lozano-Pérez, T., Mason, M.T., Taylor, R.H.: Automatic synthesis of fine-motion strategies for robots. Int. J. Robot. Res. 3(1), 3–24 (1984)

    Article  Google Scholar 

  19. Mason, M.T.: The mechanics of manipulation. In: IEEE International Conference on Robotics and Automation, pp. 544–548 (1985)

    Google Scholar 

  20. Melmoth, D.R., Finlay, A.L., Morgan, M.J., Grant, S.: Grasping deficits and adaptations in adults with stereo vision losses. Investig. Ophthalmol. Vis. Sci. 50(8), 3711–3720 (2009)

    Article  Google Scholar 

  21. Miller, A., Allen, P.: Graspit! a versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11(4), 110–122 (2004)

    Article  Google Scholar 

  22. Odhner, L., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., Buehler, M., Kohout, R., Howe, R.D., Dollar, A.M.: A compliant, underactuated hand for robust manipulation. CoRR (2013) arXiv:1301.4394

  23. Rodriguez, A., Mason, M.T.: Grasp invariance. Int.J. Robot. Res. 31(2), 236–248 (2012)

    Article  MATH  Google Scholar 

  24. Santello, M., Flanders, M., Soechting, J.: Patterns of hand motion during grasping and the influence of sensory guidance. J. Neurosci. 22(4), 1426–1435 (2002)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the funding provided by the Alexander-von-Humboldt foundation, and the Federal Ministry of Education and Research (BMBF). We are equally grateful for funding provided by the First-MM project (European Commission, FP7-ICT-248258). We thank SimLab for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Deimel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deimel, R., Eppner, C., Álvarez-Ruiz, J., Maertens, M., Brock, O. (2016). Exploitation of Environmental Constraints in Human and Robotic Grasping. In: Inaba, M., Corke, P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28872-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28870-3

  • Online ISBN: 978-3-319-28872-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics