Advertisement

Concentric Tube Robots: The State of the Art and Future Directions

Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 114)

Abstract

Seven years ago, concentric tube robots were essentially unknown in robotics, yet today one would be hard pressed to find a major medical robotics forum that does not include several presentations on them. Indeed, we now stand at a noteworthy moment in the history of these robots. The recent maturation of foundational models has created new opportunities for research in control, sensing, planning, design, and applications, which are attracting an increasing number of robotics researchers with diverse interests. The purpose of this review is to facilitate the continued growth of the subfield by describing the state of the art in concentric tube robot research. We begin with current and proposed applications for these robots and then trace their origins (some aspects of which date back to 1985), before proceeding to describe the state of the art in terms of modeling, control, sensing, and design. The paper concludes with forward-looking perspectives, noting that concentric tube robots provide rich opportunities for further research, yet simultaneously appear poised to become viable commercial devices in the near future.

Keywords

Forward Kinematic Concentric Tube Actuation Unit Axial Rotation Motion Nitinol Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge support for this work from the National Science Foundation (IIS-1054331) and the National Institutes of Health (R01 EB017467 and R21 EB017952).

References

  1. 1.
    Abbott, J.J., Marayong, P., Okamura, A.M.: Haptic virtual fixtures for robot-assisted manipulation. Springer Tracts Adv. Robot. 28, 49–64 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Abolhassani, N., Patel, R., Moallem, M.: Needle insertion into soft tissue: a survey. Med. Eng. Phys. 29, 413–431 (2007)CrossRefGoogle Scholar
  3. 3.
    Alterovitz, R., Patil, S., Derbakova, A.: Rapidly-exploring roadmaps: weighing exploration versus refinement in optimal motion planning. In: IEEE International Conference on Robotics and Automation, pp. 3706–3712 (2011)Google Scholar
  4. 4.
    Anor, T., Madsen, J.R., Dupont, P.: Algorithms for design of continuum robots using the concentric tubes approach: a neurosurgical example. In: IEEE International Conference on Robotics and Automation, pp. 667–673 (2011)Google Scholar
  5. 5.
    Arabagi, V., Gosline, A., Wood, R.J., Dupont, P.E.: Simultaneous soft sensing of tissue contact angle and force for millimeter-scale medical robots. In: IEEE International Conference on Robotics and Automation, pp. 4381–4387 (2013)Google Scholar
  6. 6.
    Bedell, C., Lock, J., Gosline, A., Dupont, P.E.: Design optimization of concentric tube robots based on task and anatomical constraints. In: IEEE International Conference on Robotics and Automation, pp. 398–403 (2011)Google Scholar
  7. 7.
    Berns, M.S., Tsai, E.Y., Austin-Breneman, J., Schulmeister, J.C., Sung, E., Ozaki, C.K., Walsh, C.J.: Single entry tunneler [SET] for hemodialysis graft procedures. In: Design of Medical Devices Conference, pp. 1–8 (2011)Google Scholar
  8. 8.
    Burdette, E.C., Rucker, D.C., Prakash, P., Diederich, C.J., Croom, J.M., Clarke, C., Stolka, P., Juang, T., Boctor, E.M., Webster III, R.J.: The ACUSITT ultrasonic ablator: The first steerable needle with an integrated interventional tool. In: SPIE 7629 (2010)Google Scholar
  9. 9.
    Burgner, J., Herrell, S.D., Webster III, R.J.: Toward flouroscopic shape reconstruction for control of steerable medical devices. ASME Dyn. Sys. Cont. Conf. 2, 1–4 (2011)Google Scholar
  10. 10.
    Burgner, J., Swaney, P.J., Rucker, D.C., Gilbert, H.B., Nill, S.T., Russell, P.T., Weaver, K.D., Webster III, R.J.: A bimanual teleoperated system for endonasal skull base surgery. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2517–2523 (2011)Google Scholar
  11. 11.
    Burgner, J., Swaney, P.J., Bruns, T.L., Clark, M.S., Rucker, D.C., Webster III, R.J.: An autoclavable steerable cannula manual deployment device: Design and accuracy analysis. ASME J. Med. Dev. 6(4), 041,007-1–041,007-7 (2012)Google Scholar
  12. 12.
    Burgner, J., Gilbert, H.B., Webster III, R.J.: On the computational design of concentric tube robots: Incorporating volume-based objectives. In: IEEE International Conference on Robotics and Automation, pp. 1185–1190 (2013)Google Scholar
  13. 13.
    Burgner, J., Rucker, D.C., Gilbert, H.B., Member, S., Swaney, P.J., Russell, P.T., Weaver, K.D., Webster, R.J.: A telerobotic system for transnasal surgery. In: IEEE/ASME Transactions on Mechatronics, pp. 1–11 (2013) (in press)Google Scholar
  14. 14.
    Burgner, J., Swaney, P.J., Lathrop, R.A., Weaver, K.D., Webster III, R.J.: Debulking from within: a robotic steerable cannula for intracerebral hemorrhage evacuation. IEEE Trans. Biomed. Eng. 60(9), 2567–2575 (2013)CrossRefGoogle Scholar
  15. 15.
    Butler, E.J., Folk, C., Cohen, A., Vasilyev, N.V., Chen, R., del Nido, P.J., Dupont, P.E.: Metal MEMS tools for beating-heart tissue approximation. In: International Conference on Robotics and Automation, pp. 411–416 (2011)Google Scholar
  16. 16.
    Butler, E.J., Hammond-Oakley, R., Chawarski, S., Gosline, A.H., Codd, P., Anor, T., Madsen, J.R., Dupont, P.E., Lock, J.:Robotic neuro-endoscope with concentric tube augmentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2941–2946 (2012)Google Scholar
  17. 17.
    Comber, D.B., Cardona, D., Webster III, R.J., Barth, E.J.: Precision pneumatic robot for mri-guided neurosurgery. In: Design of Medical Devices Conference, vol. 35 (2012)Google Scholar
  18. 18.
    Comber, D.B., Barth, E.J., Webster III, R.J.: MR-compatible precision pneumatic active cannula robot. In: ASME J. Med. Dev. (2013) (in press)Google Scholar
  19. 19.
    Croom, J.M., Rucker, D.C., Romano, J.M., Webster III, R.J.: Visual sensing of continuum robot shape using self-organizing maps. In: IEEE International Conference on Robotics and Automation, pp. 4591–4596 (2010)Google Scholar
  20. 20.
    Cuschieri, A., Buess, G.: Future advances in endoscopic surgery. In: Cuschieri, A., Buess, G., Périssat, J. (eds.) Operative Manual of Endoscopic Surgery, pp. 339–347. Springer, Heidelberg (1992)Google Scholar
  21. 21.
    Daum, W.R.: Deflectable needle assembly. US Patent 6,572,593 (2003)Google Scholar
  22. 22.
    Dieci, L., Russell, R.D., Van Vleck, E.S.: Unitary integrators and applications to continuous orthonormalization techniques. SIAM J. Numer. Anal. 31, 261–281 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Duerig, T., Pelton, A.: Nitinol: The book. http://www.nitinol.com/nitinon-the-book/a-historical-perspective
  24. 24.
    Dupont, P.E., Lock, J., Butler, E.: Torsional kinematic model for concentric tube robots. IEEE Int. Conf. Robot. Autom. 2009, 2964–2971 (2009)Google Scholar
  25. 25.
    Dupont, P.E., Lock, J., Itkowitz, B., Butler, E.: Design and control of concentric-tube robots. IEEE Trans. Robot. 26(2), 209–225 (2010)CrossRefGoogle Scholar
  26. 26.
    Dupont, P.E., Gosline, A., Vasilyev, N., Lock, J., Butler, E., Folk, C., Cohen, A., Chen, R., Schmitz, G., Ren, H., del Nido, P.: Concentric tube robots for minimally invasive surgery. In: Hamlyn Symposium on Medical Robotics, pp. 3–5 (2012)Google Scholar
  27. 27.
    Furusho, J., Ono, T., Murai, R., Fujimoto, T., Chiba, Y., Horio, H.: Development of a curved multi-tube (CMT) catheter for percutaneous umbilical blood sampling and control methods of CMT catheters for solid organs. In: IEEE International Conference on Mechatronics and Automation, pp. 410–415 (2005)Google Scholar
  28. 28.
    Furusho, J., Katsuragi, T., Kikuchi, T., Suzuki, T., Tanaka, H., Chiba, Y., Horio, H.: Curved multi-tube systems for fetal blood sampling and treatments of organs like brain and breast. Int. J. Comput. Assist. Radiol. Surg. 1(S1), 223–226 (2006)Google Scholar
  29. 29.
    Gilbert, H., Webster III, R.J.: Can concentric tube robots follow the leader? In: IEEE International Conference on Robotics and Automation, pp. 4866–4872 (2013)Google Scholar
  30. 30.
    Gosline, A.H., Vasilyev, N.V., Butler, E.J., Folk, C., Cohen, A., Chen, R., Lang, N., Del Nido, P.J., Dupont, P.E.: Percutaneous intracardiac beating-heart surgery using metal MEMS tissue approximation tools. Int. J. Robot. Res. 31(9), 1081–1093 (2012)CrossRefGoogle Scholar
  31. 31.
    Gosline, A.H., Vasilyev, N.V., Veeramani, A., Wu, M., Schmitz, G., Chen, R., Arabagi, V., del Nido, P.J., Dupont, P.E.: Metal MEMS tools for beating-heart tissue removal. In: IEEE International Conference on Robotics and Automation, pp. 1921–1926 (2012)Google Scholar
  32. 32.
    Gosline, A.H., Arabagi, V., Kassam, A., Dupont, P.E.: Achieving biocompatibility in soft sensors for surgical robots. In: Hamlyn Symposium on Medical robotics, pp. 5–6 (2013)Google Scholar
  33. 33.
    Graves, C.M., Slocum, A., Gupta, R., Walsh, C.J.:Towards a compact robotically steerable thermal ablation probe. In: IEEE International Conference on Robotics and Automation, pp. 709–714 (2012)Google Scholar
  34. 34.
    Greenblatt, E., Trovato, K., Popovic, A., Stanton, D.: Interlocking nested cannula. US Patent Application: 20110201887 (2011)Google Scholar
  35. 35.
    Iordachita, I., Sun, Z., Balicki, M., Kang, J.U., Phee, S.J., Handa, J., Gehlbach, P., Tayler, R.: A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery. Int. J. Comput. Assist. Radiol. Surg. 4, 383–390 (2009)Google Scholar
  36. 36.
    Kesner, S.B., Howe, R.D.: Position control of motion compensation cardiac catheters. IEEE Trans. Robot. 27(6), 1045–1055 (2011)CrossRefGoogle Scholar
  37. 37.
    Kratchman, L.B., Rahman, M.M., Saunders, J.R., Swaney, P.J., Webster III, R.J.: Toward robotic needle steering in lung biopsy: a tendon-actuated approach. In: SPIE (2011)Google Scholar
  38. 38.
    Kutzer, M.D., Segreti, S.M., Brown, C.Y., Taylor, R.H., Mears, S.C., Armand, M.: Design of a new cable-driven manipulator with a large open lumen: Preliminary applications in the minimally-invasive removal of osteolysis. In: IEEE International Conference on Robotics and Automation, pp. 2913–2920 (2011)Google Scholar
  39. 39.
    Lathrop, R.A., Rucker, D.C., Webster III, R.J.: Guidance of a steerable cannula robot in soft tissue using preoperative imaging and conoscopic surface contour sensing. In: IEEE International Conference on Robotics and Automation, pp. 5601–5606 (2010)Google Scholar
  40. 40.
    Lobaton, E.J., Fu, J., Torres, L.G., Alterovitz, R.: Continuous shape estimation of continuum robots using X-ray images. In: IEEE International Conference on Robotics and Automation, pp. 717–724 (2013)Google Scholar
  41. 41.
    Lock, J., Dupont, P.E.: Friction modeling in concentric tube robots. In: IEEE International Conference on Robotics and Automation, pp. 1139–1146 (2011)Google Scholar
  42. 42.
    Lock, J., Laing, G., Mahvash, M., Dupont, P.E.: Quasistatic modeling of concentric tube robots with external loads. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2325–2332 (2010)Google Scholar
  43. 43.
    Loser, M.: A new robotic system for visually controlled percutaneous interventions under \({\rm {X}}\)-ray or \({\rm {CT}}\)-fluoroscopy. Master’s thesis, The Albert-Ludwig-University, Germany (2005)Google Scholar
  44. 44.
    Lyons, L.A., Webster III, R.J., Alterovitz, R.: Motion planning for active cannulas. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 801–806 (2009)Google Scholar
  45. 45.
    Lyons, L.A., Webster III, R.J., Alterovitz, R.: Planning active cannula configurations through tubular anatomy. IEEE Int. Conf. Robot. Autom. 1, 2082–2087 (2010)Google Scholar
  46. 46.
    Mahvash, M., Dupont, P.E.: Bilateral teleoperation of flexible surgical robots. In: Proceedings of the New Vistas and Challenges in Telerobotics Workshop on IEEE International Conference on Intelligent Robots and Systems, pp. 58–64 (2008)Google Scholar
  47. 47.
    Mahvash, M., Dupont, P.E.: Stiffness control of a continuum manipulator in contact with a soft environment. IEEE/RSJ Int. Conf. Intell. Robot. Sys. 2010, 863–870 (2010)Google Scholar
  48. 48.
    Mahvash, M., Dupont, P.E.: Stiffness control of surgical continuum manipulators. IEEE Trans. Robot. 27(2), 334–345 (2011)CrossRefGoogle Scholar
  49. 49.
    Melzer, A.: Instruments for endoscopic surgery. In: A. Cuschieri, G. Buess, J. Périssat (eds.) Operative Manual of Endoscopic Surgery, p. 35. Springer, Heidelberg (1992)Google Scholar
  50. 50.
    Melzer, A., Schurr, M.O., Lirici, M.M., Klemm, B., Stöckel, D., Buess, G.: Future trends in endoscopic suturing. Endosc. Surg. Allied Technol. 2, 78–82 (1994)Google Scholar
  51. 51.
    Melzer, A., Schmidt, A., Kipfmüller, K., Grönmeyer, D., Seibel, R.: Technology and principles of tomographic image-guided interventions and surgery. Surg. Endosc. 11, 946–956 (1997)CrossRefGoogle Scholar
  52. 52.
    Okazawa, S., Ebrahimi, R., Chuang, J., Salcudean, S.E., Rohling, R.: Hand-held steerable needle device. IEEE/ASME Trans. Mechatron. 10, 285–296 (2005)CrossRefGoogle Scholar
  53. 53.
    Park, Y., Elayaperumal, S., Daniel, B., Ryu, S.C., Shin, M., Savall, J., Black, R.J., Moslehi, B., Cutkosky, M.R.: Real-time estimation of 3-d needle shape and deflection for MRI-guided interventions. IEEE/ASME Trans. Mechatron. 15, 906–915 (2010)Google Scholar
  54. 54.
    Puangmali, P., Althoefer, K., Seneviratne, L.D., Murphy, D., Dasgupta, P.: State-of-the-art in force and tactile sensing for minimally invasive surgery. IEEE Sens. J. 8, 371–381 (2008)CrossRefGoogle Scholar
  55. 55.
    Reed, K.B., Majewicz, A., Kallem, V., Alterovitz, R., Goldberg, K., Cowan, N., Okamura, A.: Robot assisted needle steering. Robot. Autom. Mag. 18, 35–46 (2011)CrossRefGoogle Scholar
  56. 56.
    Ren, H., Dupont, P.E.: Tubular structure enhancement for surgical instrument detection in 3D ultrasound. Int. Conf. IEEE EMBS 2011, 7203–7206 (2011)Google Scholar
  57. 57.
    Ren, H., Dupont, P.E.: Tubular enhanced geodesic active contours for continuum robot detection using 3D ultrasound. In: IEEE International Conference on Robotics and Automation, pp. 2907–2912 (2012)Google Scholar
  58. 58.
    Robinson, G., Davies, J.: Continuum robots—a state of the art. In: IEEE International Conference on Robotics and Automation, pp. 2849–2854 (1999)Google Scholar
  59. 59.
    Roesthuis, R.J., Kemp, M., van den Dobbelsteen, J.J., Misra, S.: Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors. In: IEEE/ASME Transactions on Mechatronics (2013) (in press)Google Scholar
  60. 60.
    Rucker, D.C., Webster III, R.J.: Mechanics-based modeling of bending and torsion in active cannulas. In: IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechanics, pp. 704–709 (2008)Google Scholar
  61. 61.
    Rucker, D.C., Webster III, R.J.: Mechanics of bending, torsion, and variable precurvature in multi-tube active cannulas. In: IEEE International Conference on Robotics and Automation, pp. 2533–2537 (2009)Google Scholar
  62. 62.
    Rucker, D.C., Webster III, R.J.: Parsimonious evaluation of concentric-tube continuum robot equilibrium conformation. IEEE Trans. Biomed. Eng. 56(9), 2308–2311 (2009)CrossRefGoogle Scholar
  63. 63.
    Rucker, D.C., Jones, B.A., Webster, R.J.: A geometrically exact model for externally loaded concentric-tube continuum robots. IEEE Trans. Robot. 26(5), 769–780 (2010)CrossRefGoogle Scholar
  64. 64.
    Rucker, D.C., Webster III, R.J.: Computing Jacobians and compliance matrices for externally loaded continuum robots. IEEE Int. Conf. Robot. Autom. 3, 945–950 (2011)Google Scholar
  65. 65.
    Rucker, D.C., Jones, B.A., Webster III, R.J.: A model for concentric tube continuum robots under applied wrenches. In: IEEE International Conference on Robotics and Automation, pp. 1047–1052 (2010)Google Scholar
  66. 66.
    Rucker, D.C., Webster III, R.J., Chirikjian, G.S., Cowan, N.J.: Equilibrium conformations of concentric-tube continuum robots. Int. J. Robot. Res. 29(10), 1263–1280 (2010)CrossRefGoogle Scholar
  67. 67.
    Schwartz, M.: New Materials, Processes, and Methods Technology. CRC Press, Boca Raton (2005)CrossRefGoogle Scholar
  68. 68.
    Sears, P., Dupont, P.: A steerable needle technology using curved concentric tubes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2850–2856 (2006)Google Scholar
  69. 69.
    Stoeckel, D., Melzer, A.: New developments in superelastic instruments for minimally invasive surgery. In: Presentation for “Changing Surgical Markets—Increasing Efficiency and Reducing Cost Through New Technology and Procedure Innovation” (1993)Google Scholar
  70. 70.
    Su, H., Cardona, D.C., Shang, W., Camilo, A., Cole, G.A., Rucker, D.C., Webster III, R.J., Fischer, G.S.: A MRI-guided concentric tube continuum robot with piezoelectric actuation: a feasibility study. In: IEEE International Conference on Robotics and Automation, pp. 1939–1945 (2012)Google Scholar
  71. 71.
    Swaney, P.J., Croom, J.M., Burgner, J., Gilbert, H.B., Rucker, D.C., Weaver, K.D., Russell III, P.T., Webster, R.J.: Design of a quadramanual robot for single-nostril skull base surgery. In: ASME Dynamic Systems and Control Conference (2012)Google Scholar
  72. 72.
    Terayama, M., Furusho, J., Monden, M.: Curved multi-tube device for path-error correction in a needle-insertion system. Int. J. Med. Robot. Comp. Assist. Surg. 3(2), 125–134 (2007)Google Scholar
  73. 73.
    Torres, L.G., Alterovitz, R.: Motion planning for concentric tube robots using mechanics-based models. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5153–5159 (2011)Google Scholar
  74. 74.
    Torres, L.G., Webster III, R.J., Alterovitz, R.: Task-oriented design of concentric tube robots using mechanics-based models. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)Google Scholar
  75. 75.
    Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5, 99–117 (2008)CrossRefGoogle Scholar
  76. 76.
    Vasilyev, N.V., Dupont, P.E., del Nido, P.J.: Robotics and imaging in congenital heart surgery. Future Cardiol. 8(2), 285–296 (2012)CrossRefGoogle Scholar
  77. 77.
    Walsh, C.J., Franklin, J., Slocum, A.H., Gupta, R.: Design of a robotic tool for percutaneous instrument distal tip repositioning. In: IEEE Engineering in Medicine and Biology Society, pp. 2097–2100 (2011)Google Scholar
  78. 78.
    Webster III, R.J.: Design and Mechanics of Continuum Robots for Surgery. Ph.D. thesis, The Johns Hopkins University (2007)Google Scholar
  79. 79.
    Webster III, R.J., Jones, B.A.: Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 29(13), 1661–1683 (2010)CrossRefGoogle Scholar
  80. 80.
    Webster III, R.J., Kim, J.S., Cowan, N.J., Chirikjian, G.S., Okamura, A.M.: Nonholonomic modeling of needle steering. Int. J. Robot. Res. 25, 509–525 (2006)CrossRefGoogle Scholar
  81. 81.
    Webster III, R.J., Okamura, A., Cowan, N.J.: Toward active cannulas: miniature snake-like surgical robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2857–2863 (2006)Google Scholar
  82. 82.
    Webster III, R.J., Romano, J.M., Cowan, N.J.: Kinematics and calibration of active cannulas. In: IEEE International Conference on Robotics and Automation, pp. 3888–3895 (2008)Google Scholar
  83. 83.
    Webster III, R.J., Swensen, J.P., Romano, J.M., Cowan, N.J.: Closed-form differential kinematics for concentric-tube continuum robots with application to visual servoing. In: International Symposium on Experimental Robotics, pp. 485–494 (2008)Google Scholar
  84. 84.
    Webster III, R.J., Romano, J.M., Cowan, N.J.: Mechanics of precurved-tube continuum robots. IEEE Trans. Robot. 25(1), 67–78 (2009)CrossRefGoogle Scholar
  85. 85.
    Wei, W., Goldman, R.E., Fine, H.F., Chang, S., Simaan, N.: Performance evaluation for multi-arm manipulation of hollow suspended organs. IEEE Trans. Robot. 25, 147–157 (2009)CrossRefGoogle Scholar
  86. 86.
    Wei, W., Simaan, N.: Modeling, force sensing, and control of flexible cannulas for microstent delivery. ASME J. Dyn. Sys. Meas. Control 134(4), 1–12 (2012)Google Scholar
  87. 87.
    Xu, R., Patel, R.V.: A fast torsionally compliant kinematic model of concentric-tube robots. Int. Conf. IEEE EMBS 2012, 904–907 (2012)Google Scholar
  88. 88.
    Xu, R., Asadian, A., Naidu, A.S., Patel, R.V.: Position control of concentric-tube continuum robots using a modified jacobian-based approach. In: IEEE International Conference on Robotics and Automation, pp. 5793–5798 (2013)Google Scholar
  89. 89.
    Yu, H., Shen, J., Joos, K.M., Simaan, N.: Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery. In: IEEE International Conference on Robotics and Automation, pp. 225–231 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Vanderbilt UniversityNashvilleUSA
  2. 2.University of TennesseeKnoxvilleUSA

Personalised recommendations