Skip to main content

The Solving by Building Approach Based on Thermoplastic Adhesives

  • 3866 Accesses

Part of the Springer Tracts in Advanced Robotics book series (STAR,volume 114)

Abstract

While, in nature, changes of morphology such as body shape, size, and strength play essential roles in animals’ adaptability in a variety of environment, our robotic systems today still severely suffer from the lack of flexibility in morphology which is one of the most significant bottlenecks for their autonomy and adaptability. With the ability to autonomously modify own body shapes or mechanical structures in surroundings, robotic systems could achieve a variety of tasks in flexible and simple manners. For this reason, we have been investigating technological solutions based on a class of unconventional material, the so-called Thermoplastic Adhesives (TPAs), with which the robots are able to construct their own body parts as well as connecting and disconnecting various mechanical structures. Based on our technological exploration so far, in this paper, we introduce the concept of “solving-by-building” approach, in which we consider how autonomous construction of mechanical parts can help robots to improve performances or to “solve” problems in given tasks. Unlike the conventional adaptive systems that can only learn motor control policies, the ability to change mechanical structures can potentially deal with a significantly more variety of problems. By introducing some of the recent case studies in our laboratory, we discuss the challenges and perspectives of the solving-by-building approach based on TPAs.

Keywords

  • Polylactic Acid
  • Robotic System
  • Autonomous System
  • Robot Manipulator
  • Acrylonitrile Butadiene Styrene

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-28872-7_13
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-28872-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adamatzky, A., Komosinski, M.: Artificial Life Models in Hardware. Springer, Berlin (2009)

    Google Scholar 

  2. Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. PNAS 108(4), 1234–1239 (2011)

    CrossRef  Google Scholar 

  3. Brodbeck, L., Iida, F.: Robotic body extension for flexible and scalable reaching, under review

    Google Scholar 

  4. Brodbeck, L., Wang, L., Iida, F.: Robotic body extension based on hot melt adhesives. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA 2012), pp. 4322–4327. St Paul, USA, 14–18 May 2012

    Google Scholar 

  5. Christensen, A.L., O’Grady, R., Dorigo, M.: Morphology control in a multirobot system. IEEE Robot. Automat. Mag. 14(4), 18–25 (2007)

    CrossRef  Google Scholar 

  6. Diller, E., Pawashe, C., Floyd, S., Sitti, M.: Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. Int. J. Robot. Res. 30, 1667–1680 (2011)

    CrossRef  Google Scholar 

  7. Hara, F., Pfefer, R.: Morpho-functional Machines. Springer, Berlin (2002)

    Google Scholar 

  8. Iida, F., Laschi, C.: Soft robotics: challenges and perspectives. Procedia Comput. Sci. 7, 99–102 (2011)

    CrossRef  Google Scholar 

  9. Johnston, T.D., Edwards, L.: Genes, interactions, and the development of behavior. Psychol. Rev. 109(1), 26–34 (2002)

    CrossRef  Google Scholar 

  10. Jones, R., Haufe, P., Sells, E., et al.: RepRap: the replicating rapid prototyper. Robotica 29, 177–191 (2011)

    CrossRef  Google Scholar 

  11. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotech. 31, 287–294 (2013)

    CrossRef  Google Scholar 

  12. Klavins, E., Ghrist, R., Lipsky, D.: A grammatical approach to self-organizing robotic systems. IEEE Trans. Autom. Control 51(6), 949–962 (2006)

    MathSciNet  CrossRef  Google Scholar 

  13. Kurokawa, H., Tomita, K., Kamimura, A., et al.: Distributed self-reconfiguration of M-TRAN III modular. Int. J. Robot. Res. 27(3–4), 373–386 (2008)

    CrossRef  Google Scholar 

  14. Langton, C.G.: Artificial Life: An Overview. MIT Press, Cambridge (1995)

    Google Scholar 

  15. Leach, D., Wang, L., Reusser, D., Iida, F.: In situ thermoplastic thread formation for robot built structures, in preparation (2013)

    Google Scholar 

  16. Li, W., Bouzidi, L., Narine, S.S.: Current research and development status and prospect of Hot-Melt-Adhesives: a review. Ind. Eng. Chem. Res. 47, 7524–7532 (2008)

    CrossRef  Google Scholar 

  17. Lipson, H., Pollack, J.: Automatic design and manufacture of robotic lifeforms. Nature 406, 974–978 (2000)

    CrossRef  Google Scholar 

  18. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  19. Nurzaman, S.G., Culha, U., Brodbeck, L., Wang, L., Iida, F.: Active sensing system with in situ adjustable sensor morphology, under revision (2013)

    Google Scholar 

  20. Osswald, M., Iida, F.: Design and control of a climbing robot based on hot melt adhesion. Robot. Auton. Syst. 61(6), 616–625 (2013)

    CrossRef  Google Scholar 

  21. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007)

    CrossRef  Google Scholar 

  22. Revzen S, Bhoite M, Macasieb A et al.: Structure synthesis on-the-fly in a modular robot. In: Amato, N. (ed.) Proceedings of the 2011 IEEE/RSJ IROS, pp. 4797–4802 (2011)

    Google Scholar 

  23. Sims, K.: Evolving 3d morphology and behavior by competition. In: Brooks, R., Maes, P. (eds.) Proceedings of the Artificial Life IV, 28–39. MIT Press, Cambridge (1994)

    Google Scholar 

  24. Steinberg, M.S.: Reconstruction of tissues by dissociated cells. Science 141(3579), 401–408 (1963)

    CrossRef  Google Scholar 

  25. Stoy, K., Brandt, D., Christensen, D.J.: Self-reconfigurable Robots: An Introduction. MIT Press, Cambridge (2010)

    Google Scholar 

  26. Wang, L., Brodbeck, L., Iida, F.: A parameterized-synthesis approach to the reconfiguration problem and its evaluation in pick-and-place, under review

    Google Scholar 

  27. Wang, L., Culha, U., and Iida, F.: Free-space locomotion with thread formation. In: The 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), 3–7 November 2013, Tokyo Big Sight, Japan, accepted (2013)

    Google Scholar 

  28. Wang, L., Graber, L., Iida, F.: Large-payload climbing in complex vertical environments using thermoplastic adhesive bonds. IEEE Trans. Robot. in press (2013)

    Google Scholar 

  29. Wang, L., Iida, F.: Physical connection and disconnection control based on hot melt adhesives. IEEE-ASME Trans Mechatron (2012). doi:10.1109/TMECH.2012.2202558

    Google Scholar 

  30. White, P.J., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: Proceedings of IEEE International Conference on Robotics and Automation, 2888–2893 (2004)

    Google Scholar 

  31. Yim, M., Shen, W.M., Salemi, B., et al.: Modular self-reconfigurable robot systems: Challenges and opportunities for the future. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

    CrossRef  Google Scholar 

  32. Yun, S., Rus, D.: Optimal self-assembly of modular manipulators with active and passive modules. Auton. Robot. 31(2–3), 183–207 (2011)

    CrossRef  Google Scholar 

Download references

Acknowledgments

This research was supported by the Swiss National Science Foundation Professorship Grant No. PP00P2123387/1, the Swiss National Science Foundation through the National Centre of Competence in Research Robotics, and the ETH Zurich Research Grant ETH-23-10-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiya Iida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iida, F., Wang, L., Brodbeck, L., Leach, D., Nurzaman, S., Culha, U. (2016). The Solving by Building Approach Based on Thermoplastic Adhesives. In: Inaba, M., Corke, P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28872-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28870-3

  • Online ISBN: 978-3-319-28872-7

  • eBook Packages: EngineeringEngineering (R0)