Skip to main content

Spectral Reflectance Images and Applications

  • Chapter
  • First Online:
Image Feature Detectors and Descriptors

Part of the book series: Studies in Computational Intelligence ((SCI,volume 630))

Abstract

Spectral imaging has received a great deal of attention recently. Spectral reflectance observed from object surfaces provides crucial information in computer vision and image analysis which include the essential problems of feature detection, image segmentation, and material classification. The estimation of spectral reflectance is affected by several illumination factors such as shading, gloss, and specular highlight. The spectral invariant representations for dielectric materials only, for these factors, are inadequate for other characteristic materials like metal. In this chapter, a spectral invariant representation is introduced for obtaining reliable spectral reflectance images. The invariant formulas for spectral images of natural objects preserve spectral information and are invariant to highlights, shading, surface geometry, and illumination intensity. As an application, a material classification method is presented based on the invariant representation, which results in reliable segmentations for natural scenes and raw circuit boards spectral images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berns, R.S.: Art Spectral Imaging. Research Program (2005). http://www.art-si.org/

  2. Bochko, V., Tsumura, N., Miyake, Y.: Spectral color imaging system for estimating spectral reflectance of paint. J. Imaging Sci. Technol. 51(1), 70–78 (2007)

    Article  Google Scholar 

  3. Parmar, M., Lansel, S., Wandell, B.A.: Spatio-spectral reconstruction of the multispectral datacube using sparse recovery. In: Proceedings of IEEE International Conference on Image Processing, pp. 473–476 (2008)

    Google Scholar 

  4. Hauta-Kasari, M., Miyazawa, K., Toyooka, S., Parkkinen, J.: Spectral vision system for measuring color images. J. Opt. Soc. Am. A 16(10), 2352–2362 (1999)

    Article  Google Scholar 

  5. Kawata, S., Sasaki, K., Minami, S.: Component analysis of spatial and spectral patterns in multispectral images. J. Opt. Soc. Am. A 4(11), 2101–2106 (1987)

    Article  Google Scholar 

  6. Tominaga, S.: Multi-channel vision system for estimating surface and illumination functions. J. Opt. Soc. Am. A 13(11), 2163–2173 (1996)

    Article  Google Scholar 

  7. Tominaga, S.: Spectral imaging by a multi-channel camera. J. Electr. imaging 8(4), 332–341 (1999)

    Article  Google Scholar 

  8. Manabe, Y., Kurosaka, S., Chihara, K.: Simultaneous measurement of spectral distribution and shape. In: Proceedings of IEEE International Conference on Pattern Recognition, vol. 3, pp. 803–806 (2000)

    Google Scholar 

  9. Haneishi, H., Miyahara, S., Yoshida, A.: Image acquisition technique for high dynamic range scenes using a multiband camera. Color Res. Appl. 31(4), 294–302 (2006)

    Article  Google Scholar 

  10. Antonioli, G., Fermi, F., Oleari, C., Reverberi, R.: Spectrophotometric scanner for imaging of paintings and other work of art. In: Proceedings of European Conference on Color in Graphics, Imaging and Vision, pp. 219–224 (2004)

    Google Scholar 

  11. Barni, M., Pelagotti, A., Piva, A.: Image processing for the analysis and conservation of paintings: opportunities and challenges. IEEE Signal Process. Mag. 22(5), 141–144 (2005)

    Article  Google Scholar 

  12. Baronti, S., Casini, A., Lotti, F., Parcinai, S.: Multispectral imaging system for the mapping of pigments in works of art by use of principal-component analysis. Appl. Optics 37(8), 1299–1309 (1998)

    Article  Google Scholar 

  13. Bonifazzi, C., Carcagní, P., Della Patria, A., Ferriani, S., Fontana, R., Greco, M., Mastroianni, M., Materazzi, M., Pampaloni, E., Romano, A.: A scanning device for multispectral imaging of paintings. In: Proceedings of SPIE, Spectral Imaging: Eighth International Symposium on Multispectral Color Science, vol. 6062, pp. 1–10 (2006)

    Google Scholar 

  14. Carcagní, P., Della Patria, A., Fontana, R., Greco, M., Mastroianni, M., Pampaloni, E., Pezzati, L.: Multispectral imaging of paintings by optical scanning. Optics Lasers Eng. 45(3), 360–367 (2007)

    Article  Google Scholar 

  15. Colantoni, P., Pillayn, R., Lahanier, C., Pitzalis, D.: Analysis of multispectral images of paintings. In: Proceedings of 14th European Signal Processing Conference, pp. 4–8 (2006)

    Google Scholar 

  16. Cornelis, B., Dooms, A., Leen, F., Munteanu, A., Schelkens, P.: Multispectral imaging for digital painting analysis: a Gauguin case study. In: Proceedings of SPIE, Applications of Digital Image Processing XXXIII, vol. 7798, pp. 77980I–77980I-13 (2010)

    Google Scholar 

  17. Haneishi, H., Hasegawa, T., Tsumura, N., Miyake, Y.: Design of color filters for recording artworks. In: Proceedings of the IS&T’s 50th Annual Conference, pp. 369–372 (1997)

    Google Scholar 

  18. Liang, H., Saunders, D., Cupitt, J.: A new multispectral imaging system for examining paintings. J. Imaging Sci. Technol. 49(6), 551–562 (2005)

    Google Scholar 

  19. Martinez, K., Cupitt, J., Saunders, D., Pillay, R.: Ten years of art imaging research. Proc. IEEE 90(1), 28–41 (2002)

    Article  Google Scholar 

  20. Novati, G., Pellegri, P., Schettini, R.: An affordable multispectral imaging system for the digital museum. Int. J. Digital Libr. 5(3), 167–178 (2005)

    Article  Google Scholar 

  21. Ribés, A., Schmitt, F., Pillay, R., Lahanier, C.: Calibration and spectral reconstruction for CRISATEL: an art painting multispectral acquisition system. J. Imaging Sci. Technol. 49(6), 563–573 (2005)

    Google Scholar 

  22. Pelagotti, A., Mastio, A.D., Rosa, A.D., Piva, A.: Multispectral imaging of paintings. IEEE Signal Process. Mag. 25(4), 27–36 (2008)

    Article  Google Scholar 

  23. Ibrahim, A., Tominaga, S., Horiuchi, T.: Material classification for printed circuit boards by spectral imaging system. In: Proceedings of IAPR Computational Color Imaging Workshop, vol. 5646, pp. 216–225 (2009)

    Google Scholar 

  24. Ibrahim, A., Tominaga, S., Horiuchi, T.: Unsupervised material classification of printed circuit boards using dimension-reduced spectral information. In: Proceedings of IAPR Conference on Machine Vision Applications, pp. 435–438 (2009)

    Google Scholar 

  25. Ibrahim, A., Tominaga, S., Horiuchi, T.: Invariant representation for spectral reflectance images and its application. EURASIP J. Image Video Process. 2011, 2 (2011)

    Article  Google Scholar 

  26. Ibrahim, A., Tominaga, S., Horiuchi, T.: A spectral invariant representation of spectral reflectance. Opt. Rev. 18 (2011)

    Google Scholar 

  27. Manfron, G., Alessandro, P., Mirco, B., Mail, B., Nutini, F., Nelson, A.: Comparative analysis of normalised difference spectral indices derived from modis for detecting surface water in flooded rice cropping systems. PLOS One 9(2), e88741 (2014)

    Google Scholar 

  28. Morimoto, T., Ikeuchi, K.: Multispectral image segmentation using normalized cut. In: Proceedings of IEICE Meeting on Image Recognition and Understanding, pp. 760–766 (2008)

    Google Scholar 

  29. Morimoto, T., Ikeuchi, K.: Multispectral imaging for material analysis in an outdoor environment using normalized cuts. In: Proceedings of IEEE Color and Reflectance in Imaging and Computer Vision Workshop, in conjunction with ICCV’09, pp. 1909–1916 (2009)

    Google Scholar 

  30. Du, H., Tong, X., Cao, X., Lin, S.: A prism-based system for multispectral video acquisition. In: Proceedings of IEEE International Conference on Computer Vision, pp. 175–182 (2009)

    Google Scholar 

  31. Trëmeau, A., Tominaga, S., Plataniotis, K.N.: Color in image and video processing: most recent trends and future research directions. EURASIP J. Image Video Process. 2008, 26 (2008)

    Google Scholar 

  32. Ibrahim, A., Tominaga, S., Horiuchi, T.: Illumination-invariant spectral representation for image segmentation. In: Proceedings of IEICE Meeting on Image Recognition and Understanding, pp. 1784–1791 (2010)

    Google Scholar 

  33. Ibrahim, A., Tominaga, S., Horiuchi, T.: Spectral invariant representation for spectral reflectance image. In: Proceedings of IEEE 20th International Conference on Pattern Recognition, pp. 2776–2779 (2010)

    Google Scholar 

  34. Montoliu, R., Pla, F., Klaren, A.K.: Multispectral invariants. In: Technical Report, DLSI, Universitat Jaume I, Castellon, Spain (2004)

    Google Scholar 

  35. Stokman, H.M.G., Gevers, T.: Detection and classification of hyper-spectral edge. In: Proceedings of 10th British Machine Vision Conference, pp. 643–651 (1999)

    Google Scholar 

  36. Finlayson, G.D.: Color in perspective. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 1034–1038 (1996)

    Google Scholar 

  37. Geusebroek, J.-M., Boomgard, R., Smeulders, A.W.M., Geerts, H.: Color invariance. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1338–1350 (2001)

    Google Scholar 

  38. Geusebroek, J.-M., Smeulders, A.W.M., van den Boomgaard, R.: Measurement of color invariants. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 50–57 (2000)

    Google Scholar 

  39. Gevers, T., Smeulders, A.W.M.: Color based object recognition. Pattern Recogn. 32(3), 453–464 (1999)

    Article  Google Scholar 

  40. Gevers, T., Smeulders, A.W.M.: PicToSeek: combining color and shape invariant features for image retrieval. IEEE Trans. Image Process. 9(1), 102–119 (2000)

    Article  Google Scholar 

  41. Gevers, T., Stokman, H.M.G.: Classification of color edges in video into shadow, geometry, highlight, or material transitions. IEEE Trans. Multimed. 5(2), 237–243 (2003)

    Article  Google Scholar 

  42. Mallick, S.P., Zickler, T.E., Kriegman, D.J., Belhumeur, P.N.: Beyond Lambert: reconstructing specular surfaces using color. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 619–626 (2005)

    Google Scholar 

  43. Marchant, J.A., Onyango, C.M.: Shadow-invariant classification for scenes illuminated by daylight. J. Opt. Soc. Am. A 17(11), 1952–1961 (2000)

    Article  Google Scholar 

  44. Narasimhan, S.G., Ramesh, V., Nayar, S.K.: A class of photometric invariants: separating material from shape and illumination. In: Proceedings of IEEE International Conference of Computer Vision, vol. 2, pp. 1387–1394 (2003)

    Google Scholar 

  45. Park, J.B.: Efficient color representation for image segmentation under nonwhite illumination. In: Proceedings of SPIE, Intelligent Robots and Computer Vision XXI: Algorithms, Techniques, and Active Vision, vol. 5267, pp. 163–174 (2003)

    Google Scholar 

  46. Slater, D., Healey, G.: The illumination-invariant recognition of 3D objects using local color invariants. IEEE Trans. Pattern Anal. Mach. Intell. 18(2), 206–210 (1996)

    Google Scholar 

  47. Smeulders, A.W.M., Geusebroek, J.-M., Gevers, T.: Invariant representation in image processing. In: Proceedings of IEEE International Conference on Image Processing, vol. 3, pp. 18–21 (2001)

    Google Scholar 

  48. Tan, R.T., Ikeuchi, K.: Separating reflection components of textured surface using a single image. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 178–193 (2005)

    Google Scholar 

  49. van de Weijer, J., Gevers, T., Geusebroek, J.-M.: Edge and corner detection by photometric quasi-invariants. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 625–630 (2005)

    Google Scholar 

  50. van de Weijer, J., Gevers, T., Smeulders, A.W.M.: Robust photometric invariant features from the color tensor. IEEE Trans. Image Process. 15(1), 118–127 (2006)

    Article  Google Scholar 

  51. Gevers, T.: Adaptive image segmentation by combining photometric invariant region and edge information. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 848–852 (2002)

    Google Scholar 

  52. Wesolkowski, S., Tominaga, S., Dony, R.D.: Shading- and highlight-invariant color image segmentation using the MPC algorithm. In: Proceedings of SPIE, Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts, vol. 4300, pp. 229–240 (2000)

    Google Scholar 

  53. Gevers, T., Stokman, H.M.G.: Classifying color transitions into shadow-geometry, illumination highlight or material edges. In: Proceedings of IEEE International Conference on Image Processing, vol. 1, pp. 521–525 (2000)

    Google Scholar 

  54. Gevers, T., Voortman, S., Aldershoff, F.: Color feature detection and classification by learning. In: Proceedings of IEEE International Conference on Image Processing, vol. 2, pp. 714–717 (2005)

    Google Scholar 

  55. Koschan, A., Abidi, M.: Detection and classification of edges in color images. IEEE Signal Process. Mag. 22(1), 64–73 (2005)

    Article  Google Scholar 

  56. Stokman, H.M.G., Gevers, T.: Selection and fusion of color models for image feature detection. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 371–381 (2007)

    Google Scholar 

  57. van de Weijer, J., Schmid, C.: Coloring local feature extraction. In: Proceedings of the European Conference on Computer Vision, vol. 3952, pp. 334–348 (2006)

    Google Scholar 

  58. Gevers, T., Stokman, H.M.G.: Robust histogram construction from color invariants for object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 113–118 (2004)

    Google Scholar 

  59. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010)

    Google Scholar 

  60. van Gemert, J.C., Burghouts, G.J., Seinstra, F.J., Geusebroek, J.-M.: Color invariant object recognition using entropic graphs. Int. J. Imaging Syst. Technol. 16(5), 146–153 (2006)

    Article  Google Scholar 

  61. Jin, C.: A statistical image retrieval method using color invariant. In: Proceedings of Sixth International Conference on Computer Graphics, Imaging and Visualization, pp. 355–360 (2009)

    Google Scholar 

  62. Vacha. P., Haindl, M.: Demonstration of image retrieval based on illumination invariant textural MRF features. In: Proceedings of the 6th ACM international conference on Image and video retrieval, pp. 135–137 (2007)

    Google Scholar 

  63. Vacha. P., Haindl, M.: Image retrieval measures based on illumination invariant textural MRF features. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 448–454 (2007)

    Google Scholar 

  64. Salvador, E., Cavallaro, A., Ebrahimi, T.: Shadow identification and classification using invariant color models. In: Proceedings of IEEE International Conference on the Acoustics, Speech, and Signal Processing, vol. 3, pp. 1545–1548 (2001)

    Google Scholar 

  65. Salvador, E., Cavallaro, A., Ebrahimi, T.: Cast shadow segmentation using invariant color features. Comput. Vis. Image Understand. 95(2), 238–259 (2004)

    Article  Google Scholar 

  66. van de Weijer, J., Gevers, T.: Robust optical flow from photometric invariants. In: Proceedings of IEEE International Conference on Image Processing, vol. 3, pp. 1835–1838 (2004)

    Google Scholar 

  67. Zickler, T., Mallick, S.P., Kriegman, D.J., Belhumeur, P.N.: Color subspaces as photometric invariants. Int. J. Comput. Vis. 79(1), 13–30 (2008)

    Article  Google Scholar 

  68. Maier, W., Bao, F., Mair, E., Steinbach, E., Burschka, D.: Illumination-invariant image-based novelty detection in a cognitive mobile robot’s environment. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 5029–5034 (2010)

    Google Scholar 

  69. Maier, W., Bao, F., Steinbach, E., Mair, E., Burschka, D.: Illumination-invariant image-based environment representations for cognitive mobile robots using intrinsic images. In: Proceedings of Vision, Modeling, and Visualization Workshop, pp. 379–380 (2009)

    Google Scholar 

  70. Shafer, S.A.: Using color to separate reflection components. Color Res. Appl. 10(4), 210–218 (1985)

    Article  Google Scholar 

  71. Lee, H.C., Breneman, E.J., Schulte, C.: Modeling light reflection for computer color vision. IEEE Trans. Pattern Anal. Mach. Intell. 12(4), 402–409 (1990)

    Google Scholar 

  72. Tominaga, S.: Dichromatic reflection models for a variety of materials. Color Res. Appl. 19(4), 277–285 (1994)

    Article  MathSciNet  Google Scholar 

  73. Tominaga, S.: Dichromatic reflection models for rendering object surfaces. J. Imaging Sci. Technol. 40(6), 549–555 (1996)

    Google Scholar 

  74. Ibrahim, A., Tominaga, S., Horiuchi, T.: Spectral imaging method for material classification and inspection of printed circuit boards. Opt. Eng. 49(5), 057201-(10) (2010)

    Google Scholar 

  75. Li, H., Bochko, V., Jaaskelainen, T., Parkkinen, J., Shen, I.F.: Kernel-based spectral color image segmentation. J. Opt. Soc. Am. A 25(11), 2805–2816 (2008)

    Google Scholar 

  76. Martínez-Usó, A., Pla, F., García-Sevilla, P.: Multispectral image segmentation by energy minimization for fruit quality estimation. In: Proceedings of 2nd Iberian Conference on Pattern Recognition and Image Analysis, vol. 3523, pp. 689–696 (2005)

    Google Scholar 

  77. Mohammad-Djafari, A., Bali, N., Mohammadpour, A.: Hierarchical Markovian models for hyperspectral image segmentation. In: Proceedings of International Workshop on Intelligent Computing in Pattern Analysis/Systems, pp. 416–424 (2006)

    Google Scholar 

  78. Paclík, P., Duin, R.P.W., van Kempen, G.M.P., Kohlus, R.: Segmentation of multispectral images using the combined classifier approach. Image Vis. Comput. 21(6), 473–482 (2003)

    Article  Google Scholar 

  79. Chang, P.C., Chen, L.Y., Fan, C.Y.: A case-based evolutionary model for defect classification of printed circuit board images. J. Intell. Manuf. 19(2), 203–214 (2008)

    Article  Google Scholar 

  80. Chomsuwan, K., Yamada, S., Iwahara, M., Wakiwaka, H., Shoji, S.: Application of Eddy-current testing technique for high-density double-layer printed circuit board inspection. IEEE Trans. Magnetics 41(10), 3619–3621 (2005)

    Article  Google Scholar 

  81. de Almeida Barreto, C., Zuffo, J.A., Kofuji, S.T.: Automated optical inspection system for professional double face printed circuit boards. In: Proceedings of the IEEE International Symposium on Industrial Electronics, vol. 1, pp. 65–71 (1997)

    Google Scholar 

  82. Emary Eid, E., Taha, M., Moustafa, K.: Automatic optical inspection for pcb manufacturing: a survey. Int. J. Sci. Eng. Res. 5(7) (2014)

    Google Scholar 

  83. Huang, S.Y., Mao, C.W., Cheng, K.S.: Contour-based window extraction algorithm for bare printed circuit board inspection. IEICE Trans. Inf. Syst. E88-D(12), 2802–2810 (2005)

    Google Scholar 

  84. Ibrahim, Z., Al-Attas, S.A.R.: Wavelet-based printed circuit board inspection algorithm. Integr. Comput. Aided Eng. 12(2), 201–213 (2005)

    Google Scholar 

  85. Leta, F.R., Feliciano, F.F., Martins, F.P.R.: Computer vision system for printed circuit board inspection. In: ABCM Symposium Series in Mechatronics, vol. 1, pp. 623–632 (2008)

    Google Scholar 

  86. Leta, F.R., Feliciano, F.F.: Computational system to detect defects in mounted and bare PCB based on connectivity and image correlation. In: Proceedings of the IEEE 15th International Conference on Systems, Signals and Image Processing, pp. 331–334 (2008)

    Google Scholar 

  87. Lin, S.-C., Chou, C.-H., Su, C.-H.: A development of visual inspection system for surface mounted devices on printed circuit board. In: Proceedings of the IEEE 33rd Annual Conference on Industrial Electronics Society, pp. 2440–2445 (2007)

    Google Scholar 

  88. Lin. S.-C., Su, C.-H.: A visual inspection system for surface mounted devices on printed circuit board. In: Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, pp. 1–4 (2006)

    Google Scholar 

  89. Lin, S.-C., Su, C.-H., Chou, C.-H.. Chen, H.-C.: A development of inspection techniques for printed circuit board: from 2-D to 3-D. In: Proceedings of the IEEE SICE Annual Conference, pp. 1110–1115 (2008)

    Google Scholar 

  90. Liu, C., Gu, J.: Discriminative illumination: per-pixel classification of raw materials based on optimal projections of spectral brdf. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 86–98 (2014)

    Article  Google Scholar 

  91. Loh, H.-H., Lu, M.-S.: Printed circuit board inspection using image analysis. IEEE Trans. Ind. Appl. 35(2), 426–432 (1999)

    Article  Google Scholar 

  92. Malge, P.S., Nadaf, R.S.: A survey: automated visual pcb inspection algorithm. Int. J. Eng. Res. Technol. (IJERT) 3(1) (2014)

    Google Scholar 

  93. Mashohor, S., Evans, J.R., Arslan, T.: Elitist selection schemes for genetic algorithm based printed circuit board inspection system. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 974–978 (2005)

    Google Scholar 

  94. S. Mashohor, J. R. Evans, and A. T. Erdogan. Automatic hybrid genetic algorithm based printed circuit board inspection. In Proceedings of the IEEE First NASA/ESA Conference on Adaptive Hardware and Systems, pages 390–400, 2006

    Google Scholar 

  95. Putera, S.H.I., Ibrahim, Z.: Printed circuit board defect detection using mathematical morphology and MATLAB image processing tools. In: Proceedings of the IEEE 2nd International Conference on Education Technology and Computer, vol. 5, pp. 359–363 (2010)

    Google Scholar 

  96. Li, D., Wang, Q., Cao, D., Zhang, W., Chen, H.: Unsupervised defect detection of flexible printed circuit board gold surfaces based on wavelet packet frame. In: Proceedings of the IEEE 2nd International Conference on Industrial and Information Systems, vol. 2, pp. 324–327 (2010)

    Google Scholar 

  97. Slee, D., Stepan, J., Swart, J., Wei, W.: Introduction to printed circuit board failures. In: Proceedings of the IEEE Symposium on Product Compliance Engineering, pp. 1–8 (2009)

    Google Scholar 

  98. Iwahori, Y., Nakagawa, T., Bhuyan, M.K.: Reduction of defect misclassification of electronic board using multiple svm classifiers. Int. J. Softw. Innov. 2(1), 25–36 (2014)

    Article  Google Scholar 

  99. Tsai, D.M., Yang, R.H.: An eigenvalue-based similarity measure and its application in defect detection. Image Vis. Comput. 23(12), 1094–1101 (2005)

    Article  Google Scholar 

  100. Wada, H., Nakajima, A., Sawaragi, T., Horiguchi, Y.: A teaching system fostering expertise for the tuning of printed circuit board inspection systems. In: Proceedings of the IEEE 32nd Annual Conference on Industrial Electronics, pp. 3739–3744 (2006)

    Google Scholar 

  101. Wu, H., Li, H., Feng, G., Zeng, X.: Automated visual inspection of surface mounted chip components. In: Proceedings of the IEEE International Conference on Mechatronics and Automation, pp. 1789–1794 (2010)

    Google Scholar 

  102. Lee, W.Y., Park, T.-H.: Correction method for geometric image distortion with application to printed circuit board inspection systems. In: Proceedings of the IEEE ICROS-SICE International Joint Conference, pp. 4001–4006 (2009)

    Google Scholar 

  103. Shafer, S.A., Klinker, G.J., Kanade, T.: A physical approach to image understanding. Int. J. Comput. Vis. 4(1), 7–38 (1990)

    Google Scholar 

  104. Jepson, A.D., Gershon, R., Tsotsos, J.K.: Ambient illumination and the determination of material changes. J. Opt. Soc. Am. A 3(10), 1700–1707 (1986)

    Google Scholar 

  105. Healey, G.E.: Using color for geometry-insensitive segmentation. J. Opt. Soc. Am. A 6(6), 920–937 (1989)

    Google Scholar 

  106. Wandell, B.A.: Foundations of Vision. Sinauer Associates Inc., Sunderland (1995)

    Google Scholar 

  107. Haneishi, H., Ohtani, R., Kouno, H.: Multispectral image segmentation of paintings drawn with natural mineral pigments using the kernel based nonlinear subspace method. In: Proceedings of Fifteenth Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, pp. 95–99 (2007)

    Google Scholar 

  108. Xing, M., Li, H., Jia, J., Parkkinen, J.: Fast spectral color image segmentation based on filtering and clustering. In: Proceedings of SPIE Multispectral Image Processing, vol. 7494, pp. 74942Q–74942Q-8 (2009)

    Google Scholar 

  109. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Google Scholar 

  110. Fowlkes, C., Belongie, S., Chung, F.R.K., Malik, J.: Spectral grouping using the Nyström method. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214–225 (2004)

    Google Scholar 

  111. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Proceedings of Advances in Neural Information Processing Systems, MIT Press, Cambridge, vol. 14, pp. 849–856 (2002)

    Google Scholar 

  112. VariSpec liquid crystal tunable filters. http://www.spectralcameras.com/varispec. Accessed 04 June 2015

  113. Parkkinen, J.P.S., Hallikaine, J., Jaaskelainen, T.: Characteristic spectra of Munsell colors. J. Opt. Soc. Am. A 6(2), 318–322 (1989)

    Article  Google Scholar 

  114. Tominaga, S., Fukuda, T., Kimachi. A.: A high-resolution imaging system for omnidirectional illuminant estimation. J. Imaging Sci. Technol. 52(4), 040907-(1)-040907-(9) (2008)

    Google Scholar 

  115. Tominaga, S., Matsuura, A., Horiuchi, T.: Spectral analysis of omnidirectional illumination in a natural scene. J. Imaging Sci. Technol. 54(4), 040502-(9) (2010)

    Google Scholar 

  116. Tominaga, S.: Surface identification using the dichromatic reflection model. IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 658–670 (1991)

    Google Scholar 

  117. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  118. Horiuchi, T.: Similarity measure of labelled images. In: Proceedings of IEEE International Conference on Pattern Recognition, vol. 3, pp. 602–605 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhameed Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ibrahim, A., Horiuchi, T., Tominaga, S., Ella Hassanien, A. (2016). Spectral Reflectance Images and Applications. In: Awad, A., Hassaballah, M. (eds) Image Feature Detectors and Descriptors . Studies in Computational Intelligence, vol 630. Springer, Cham. https://doi.org/10.1007/978-3-319-28854-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28854-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28852-9

  • Online ISBN: 978-3-319-28854-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics