Skip to main content

High Order Transparent Boundary Conditions for the Helmholtz Equation

  • Chapter
  • First Online:
Modern Solvers for Helmholtz Problems

Part of the book series: Geosystems Mathematics ((GSMA))

  • 1152 Accesses

Abstract

We consider finite element simulations of the Helmholtz equation in unbounded domains. For computational purposes, these domains are truncated to bounded domains using transparent boundary conditions at the artificial boundaries. We present here two numerical realizations of transparent boundary conditions: the complex scaling or perfectly matched layer method and the Hardy space infinite element method. Both methods are Galerkin methods, but their variational framework differs. Proofs of convergence of the methods are given in detail for one dimensional problems. In higher dimensions radial as well as Cartesian constructions are introduced with references to the known theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    H loc r(Ω) denotes the space of functions, which belong to \(H^{r}(\hat{\varOmega })\) for each compact \(\hat{\varOmega }\subset \varOmega\).

  2. 2.

    \(\mathbb{N}\) denotes the set of all positive natural numbers and \(\mathbb{N}_{0}:=\{ 0\} \cup \mathbb{N}\).

  3. 3.

    H +(S 1) ⊂ L 2(S 1) consists of functions of the form j = 0 α j z j, z ∈ S 1, with a square summable series (α j ). These functions are boundary values of some functions, which are holomorphic in the complex unit disk. Equipped with the L 2(S 1) scalar product, H +(S 1) is a Hilbert space. For more details to Hardy spaces we refer to [14].

References

  1. É. Bécache, A.-S. Bonnet-BenDhia, and G. Legendre, Perfectly matched layers for the convected Helmholtz equation, SIAM Journal on Numerical Analysis, 42 (2004), pp. 409–433.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), pp. 185–200.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodríguez, An exact bounded perfectly matched layer for time-harmonic scattering problems, SIAM J. Sci. Comput., 30 (2007/08), pp. 312–338.

    Google Scholar 

  4. J. H. Bramble and J. E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems, Math. Comp., 76 (2007), pp. 597–614 (electronic).

    Google Scholar 

  5. J. H. Bramble and J. E. Pasciak,, Analysis of a Cartesian PML approximation to acoustic scattering problems in \(\mathbb{R}^{2}\) and \(\mathbb{R}^{3}\), J. Comput. Appl. Math., 247 (2013), pp. 209–230.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, vol. 15 of Texts in Applied Mathematics, Springer, New York, third ed., 2008.

    Google Scholar 

  7. Z. Chen, C. Liang, and X. Xiang, An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number, Inverse Problems and Imaging, 7 (2013), pp. 663–678.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. C. Chew and W. H. Weedon, A 3d perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Microwave Optical Tech. Letters, 7 (1994), pp. 590–604.

    Article  Google Scholar 

  9. P. G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4.

    Google Scholar 

  10. F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), pp. 2061–2090 (electronic).

    Google Scholar 

  11. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, vol. 93 of Applied Mathematical Sciences, Springer-Verlag, Berlin, second ed., 1998.

    Google Scholar 

  12. L. Demkowicz and K. Gerdes, Convergence of the infinite element methods for the Helmholtz equation in separable domains, Numer. Math., 79 (1998), pp. 11–42.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Demkowicz and F. Ihlenburg, Analysis of a coupled finite-infinite element method for exterior Helmholtz problems, Numer. Math., 88 (2001), pp. 43–73.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. L. Duren, Theory of H p spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York, 1970.

    Google Scholar 

  15. D. Givoli, High-order local non-reflecting boundary conditions: a review, Wave Motion, 39 (2004), pp. 319–326.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Halla, Convergence of Hardy space infinite elements for Helmholtz scattering and resonance problems, Preprint 10/2015, Institute for Analysis and Scientific Computing; TU Wien, 2013, ISBN: 978-3-902627-05-6, 2015.

    Google Scholar 

  17. M. Halla, T. Hohage, L. Nannen, and J. Schöberl, Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs, Numerische Mathematik, (2015), pp. 1–37.

    Google Scholar 

  18. M. Halla and L. Nannen, Hardy space infinite elements for time-harmonic two-dimensional elastic waveguide problems, Wave Motion, 59 (2015), pp. 94 – 110.

    Article  MathSciNet  Google Scholar 

  19. P. D. Hislop and I. M. Sigal, Introduction to spectral theory, vol. 113 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996. With applications to Schrödinger operators.

    Google Scholar 

  20. T. Hohage and L. Nannen, Hardy space infinite elements for scattering and resonance problems, SIAM J. Numer. Anal., 47 (2009), pp. 972–996.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. D. Hislop and I. M. Sigal,, Convergence of infinite element methods for scalar waveguide problems, BIT Numerical Mathematics, 55 (2014), pp. 215–254.

    MathSciNet  Google Scholar 

  22. T. Hohage, F. Schmidt, and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. I. Theory, SIAM J. Math. Anal., 35 (2003), pp. 183–210.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. D. Hislop and I. M. Sigal,,, Solving time-harmonic scattering problems based on the pole condition. II. Convergence of the PML method, SIAM J. Math. Anal., 35 (2003), pp. 547–560.

    Article  MathSciNet  Google Scholar 

  24. F. Ihlenburg, Finite element analysis of acoustic scattering, vol. 132 of Applied Mathematical Sciences, Springer-Verlag, New York, 1998.

    Google Scholar 

  25. S. Kim and J. E. Pasciak, The computation of resonances in open systems using a perfectly matched layer, Math. Comp., 78 (2009), pp. 1375–1398.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. D. Hislop and I. M. Sigal,,,, Analysis of a Cartesian PML approximation to acoustic scattering problems in \(\mathbb{R}^{2}\), J. Math. Anal. Appl., 370 (2010), pp. 168–186.

    Article  MathSciNet  Google Scholar 

  27. R. Kress, Linear integral equations, vol. 82 of Applied Mathematical Sciences, Springer-Verlag, New York, second ed., 1999.

    Google Scholar 

  28. R. Kress, Chapter 1.2.1 - specific theoretical tools, in Scattering, R. P. Sabatier, ed., Academic Press, London, 2002, pp. 37 – 51.

    Chapter  Google Scholar 

  29. M. Lassas and E. Somersalo, On the existence and the convergence of the solution of the PML equations, Computing, 60 (1998), pp. 229–241.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geometry, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), pp. 1183–1207.

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Moiseyev, Quantum theory of resonances: Calculating energies, width and cross-sections by complex scaling, Physics reports, 302 (1998), pp. 211–293.

    Article  Google Scholar 

  32. L. Nannen, T. Hohage, A. Schädle, and J. Schöberl, Exact Sequences of High Order Hardy Space Infinite Elements for Exterior Maxwell Problems, SIAM J. Sci. Comput., 35 (2013), pp. A1024–A1048.

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Nannen and A. Schädle, Hardy space infinite elements for Helmholtz-type problems with unbounded inhomogeneities, Wave Motion, 48 (2010), pp. 116–129.

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Schmidt and P. Deuflhard, Discrete transparent boundary conditions for the numerical solution of Fresnel’s equation, Computers Math. Appl., 29 (1995), pp. 53–76.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. E. Taylor, Partial differential equations. II, vol. 116 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996. Qualitative studies of linear equations.

    Google Scholar 

Download references

Acknowledgements

Support from the Austrian Science Fund (FWF) through grant P26252 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Nannen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nannen, L. (2017). High Order Transparent Boundary Conditions for the Helmholtz Equation. In: Lahaye, D., Tang, J., Vuik, K. (eds) Modern Solvers for Helmholtz Problems. Geosystems Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-28832-1_2

Download citation

Publish with us

Policies and ethics