Immunosuppressive Agents

  • Karen L. Hardinger
  • Irfan A. Agha
  • Daniel C. Brennan


Immunosuppression is delivered in three phases: induction, maintenance, and rescue therapy. Induction agents, or intense immunosuppression given at the time of transplant to prevent acute rejection, include polyclonal antibodies (e.g., antithymocyte globulins) or monoclonal antibodies (e.g., basiliximab and alemtuzumab). Maintenance regimens include calcineurin inhibitors (e.g., cyclosporine and tacrolimus), mammalian target of rapamycin inhibitors (e.g., sirolimus and everolimus), antiproliferative agents (e.g., azathioprine and mycophenolic acid), co-stimulatory blockers (e.g., belatacept), and corticosteroids. Rescue agents, or medications used to treat rejection, include corticosteroids, antithymocyte globulins, and alemtuzumab. When selecting immunosuppressive regimens, several factors are considered including immunological risk of rejection, potential for excessive immunosuppression (e.g., infection and cancer), medication side effects, adherence, and cost of medications. In the current era of transplantation, immunosuppression is individualized based on patient characteristics and presence of comorbid disease states. This chapter will describe current approaches to immunosuppression in solid organ transplantation.


Tacrolimus Cyclosporine Calcineurin inhibitor Antimetabolites Co-stimulators Corticosteroids 


  1. 1.
    Scientific Registry of Transplant Recipients (SRTR) and Organ Procurement and Transplantation Network (OPTN). SRTR/OPTN 2010 annual data report. Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation. Am J Transplant. 2012;12 Suppl 1.Google Scholar
  2. 2.
    Sansone F, Rinaldi M. Cyclosporine monotherapy in cardiac transplantation: review of the literature. Transplant Rev (Orlando). 2011;25(4):131–5.CrossRefGoogle Scholar
  3. 3.
    Kamphues C, Bova R, Rocken C, Neuhaus R, Pratschke J, Neuhaus P, et al. Safety of mycophenolate mofetil monotherapy in patients after liver transplantation. Ann Transplant. 2009;14(4):40–6.PubMedGoogle Scholar
  4. 4.
    Nashan B, Moore R, Amlot P, Schmidt AG, Abeywickrama K, Soulillou JP. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet. 1997;350(9086):1193–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Kahan BD, Rajagopalan PR, Hall M. Reduction of the occurrence of acute cellular rejection among renal allograft recipients treated with basiliximab, a chimeric anti-interleukin-2-receptor monoclonal antibody. United States Simulect Renal Study Group. Transplantation. 1999;67(2):276–84.PubMedCrossRefGoogle Scholar
  6. 6.
    Ponticelli C, Yussim A, Cambi V, Legendre C, Rizzo G, Salvadori M, et al. A randomized, double-blind trial of basiliximab immunoprophylaxis plus triple therapy in kidney transplant recipients. Transplantation. 2001;72(7):1261–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Lawen JG, Davies EA, Mourad G, Oppenheimer F, Molina MG, Rostaing L, et al. Randomized double-blind study of immunoprophylaxis with basiliximab, a chimeric anti-interleukin-2 receptor monoclonal antibody, in combination with mycophenolate mofetil-containing triple therapy in renal transplantation. Transplantation. 2003;75(1):37–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Agha IA, Rueda J, Alvarez A, Singer GG, Miller BW, Flavin K, et al. Short course induction immunosuppression with thymoglobulin for renal transplant recipients. Transplantation. 2002;73(3):473–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Peddi VR, Bryant M, Roy-Chaudhury P, Woodle ES, First MR. Safety, efficacy, and cost analysis of thymoglobulin induction therapy with intermittent dosing based on CD3+ lymphocyte counts in kidney and kidney-pancreas transplant recipients. Transplantation. 2002;73(9):1514–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Starzl TE, Murase N, Abu-Elmagd K, Gray EA, Shapiro R, Eghtesad B, et al. Tolerogenic immunosuppression for organ transplantation. Lancet. 2003;361(9368):1502–10.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Stratta RJ, Sundberg AK, Farney AC, Rohr MS, Hartmann EL, Adams PL. Experience with alternate-day thymoglobulin induction in pancreas transplantation with portal-enteric drainage. Transplant Proc. 2005;37(8):3546–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Wong W, Agrawal N, Pascual M, Anderson DC, Hirsch HH, Fujimoto K, et al. Comparison of two dosages of thymoglobulin used as a short-course for induction in kidney transplantation. Transpl Int. 2006;19(8):629–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Gurk-Turner C, Airee R, Philosophe B, Kukuruga D, Drachenberg C, Haririan A. Thymoglobulin dose optimization for induction therapy in high risk kidney transplant recipients. Transplantation. 2008;85(10):1425–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Stevens RB, Mercer DF, Grant WJ, Freifeld AG, Lane JT, Groggel GC, et al. Randomized trial of single-dose versus divided-dose rabbit anti-thymocyte globulin induction in renal transplantation: an interim report. Transplantation. 2008;85(10):1391–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Goggins WC, Pascual MA, Powelson JA, Magee C, Tolkoff-Rubin N, Farrell ML, et al. A prospective, randomized, clinical trial of intraoperative versus postoperative thymoglobulin in adult cadaveric renal transplant recipients. Transplantation. 2003;76(5):798–802.PubMedCrossRefGoogle Scholar
  16. 16.
    Hardinger KL. Rabbit antithymocyte globulin induction therapy in adult renal transplantation. Pharmacotherapy. 2006;26(12):1771–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Kho MML, Bouvey AP, Cadogen M, Kraaijeveld R, Baan CC, Weimar W. The effect of low and ultralow dosages of thymoglobulin on peripheral T, B and NK cells in Kidney transplant recipients. Transpl Immunol. 2012;26(4):186–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Préville X, Flacher M, LeMauff B, Beauchard S, Davelu P, Tiollier J, Revillard JP. Mechanisms involved in antithymocyte globulin immunosuppressive activity in a nonhuman primate model. Transplantation. 2001;71(3):460–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Kaden J, Völp A, Wesslau C. High graft protection and low incidences of infections, malignancies and other adverse effects with intra-operative high dose ATG-induction: a single centre cohort study of 760 cases. Ann Transplant. 2013;18:9–22.PubMedCrossRefGoogle Scholar
  20. 20.
    Starzl TE, Murase N, Abu-Elmagd K, Gray EA, Shapiro R, et al. Tolerogenic immunosuppression for organ transplantation. Lancet. 2013;18:9–22.Google Scholar
  21. 21.
    Friend PJ, Rebello P, Oliveira D, Manna V, Cobbold SP, Hale G, et al. Successful treatment of renal allograft rejection with a humanized antilymphocyte monoclonal antibody. Transplant Proc. 1995;27(1):869–70.PubMedGoogle Scholar
  22. 22.
    Kirk AD, Hale DA, Mannon RB, Kleiner DE, Hoffmann SC, Kampen RL, et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation. 2003;76(1):120–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Pearl JP, Parris J, Hale DA, Hoffmann SC, Bernstein WB, McCoy KL, et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant. 2005;5(3):465–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Lebranchu Y, Bridoux F, Buchler M, Le Meur Y, Etienne I, Toupance O, et al. Immunoprophylaxis with basiliximab compared with antithymocyte globulin in renal transplant patients receiving MMF-containing triple therapy. Am J Transplant. 2002;2(1):48–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Brennan DC, Daller JA, Lake KD, Cibrik D, Del Castillo D, Thymoglobulin Induction Study Group. Rabbit antithymocyte globulin versus basiliximab in renal transplantation. N Engl J Med. 2006;355(19):1967–77.PubMedCrossRefGoogle Scholar
  26. 26.
    Brennan DC, Schnitzler MA. Long-term results of rabbit antithymocyte globulin and basiliximab induction. N Engl J Med. 2008;359(16):1736–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Hanaway MJ, Woodle ES, Mulgaonkar S, Peddi VR, Kaufman DB, First MR, Croy R, INTAC Study Group, et al. Alemtuzumab induction in renal transplantation. N Engl J Med. 2011;364(20):1909–19.PubMedCrossRefGoogle Scholar
  28. 28.
    Haynes R, Harden P, Judge P, Blackwell L, Emberson J, Landray MJ, 3C Study Collaborative Group, et al. Alemtuzumab-based induction treatment versus basiliximab-based induction treatment in kidney transplantation (the 3C Study): a randomised trial. Lancet. 2014;384(9955):1684–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Morgan RD, O’Callaghan JM, Knight SR, Morris PJ. Alemtuzumab induction therapy in kidney transplantation: a systematic review and meta-analysis. Transplantation. 2012;93(12):1179–88.PubMedCrossRefGoogle Scholar
  30. 30.
    KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9 Suppl 3:S1–155.Google Scholar
  31. 31.
    Johnson C, Ahsan N, Gonwa T, Halloran P, Stegall M, Hardy M, et al. Randomized trial of tacrolimus (Prograf) in combination with azathioprine or mycophenolate mofetil versus cyclosporine (Neoral) with mycophenolate mofetil after cadaveric kidney transplantation. Transplantation. 2000;69(5):834–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Margreiter R. Efficacy and safety of tacrolimus compared with ciclosporin microemulsion in renal transplantation: a randomised multicentre study. Lancet. 2002;359(9308):741–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Gonwa T, Johnson C, Ahsan N, Alfrey EJ, Halloran P, Stegall M, et al. Randomized trial of tacrolimus + mycophenolate mofetil or azathioprine versus cyclosporine + mycophenolate mofetil after cadaveric kidney transplantation: results at three years. Transplantation. 2003;75(12):2048–53.PubMedCrossRefGoogle Scholar
  34. 34.
    Webster AC, Woodroffe RC, Taylor RS, Chapman JR, Craig JC. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. BMJ. 2005;331(7520):810.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ekberg H, Tedesco-Silva H, Demirbas A, Vitko S, Nashan B, Gurkan A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007;357(25):2562–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Silva HT, Yang HC, Aboulijoud M, et al. for the Tacrolimus Extended-Release De Novo Kidney Study Group. One-year results with extended-release tacrolimus/MMF, tacrolimus/MMF and cyclosporine/MMF in de novo kidney transplant recipients. Am J Transplant. 2007;7:595–608.Google Scholar
  37. 37.
    Krämer BK, Charpentier B, Bäckman L, Silva Jr HT, Mondragon-Ramirez G, Cassuto-Viguier E, Tacrolimus Prolonged Release Renal Study Group, et al. Tacrolimus once daily (ADVAGRAF) versus twice daily (PROGRAF) in de novo renal transplantation: a randomized phase III study. Am J Transplant. 2010;10(12):2632–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Jelassi ML, Lefeuvre S, Karras A, Moulonguet L, Billaud EM. Therapeutic drug monitoring in de novo kidney transplant receiving the modified-release once-daily tacrolimus. Transplant Proc. 2011;43(2):491–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Hougardy JM, Broeders N, Kianda M, Massart A, Madhoun P, Le Moine A, et al. Conversion from prograf to advagraf among kidney transplant recipients results in sustained decrease in tacrolimus exposure. Transplantation. 2011;91(5):566–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Stahn C, Löwenberg M, Hommes DW, Buttgereit F, et al. Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol Cell Endocrinol. 2007;275(1–2):71–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Song IH, Buttgereit F. Non-genomic glucocorticoid effects to provide the basis for new drug developments. Mol Cell Endocrinol. 2006;246(1–2):142–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Woodle ES, First MR, Pirsch J, Shihab F, Gaber AO, Van Veldhuisen P. A prospective, randomized, double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. Ann Surg. 2008;248(4):564–77.PubMedGoogle Scholar
  43. 43.
    Knight SR, Morris PJ. Steroid avoidance or withdrawal after renal transplantation increases the risk of acute rejection but decreases cardiovascular risk. A meta-analysis. Transplantation. 2010;89(1):1–14.PubMedCrossRefGoogle Scholar
  44. 44.
    Knight RJ, Kerman RH, McKissick E, Lawless A, Podder H, Katz S, et al. Selective corticosteroid and calcineurin-inhibitor withdrawal after pancreas-kidney transplantation utilizing thymoglobulin induction and sirolimus maintenance therapy. Clin Transplant. 2008;22(5):645–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Knight RJ, Podder H, Kerman RH, Lawless A, Katz SM, Van Buren CT, et al. Comparing an early corticosteroid/late calcineurin-free immunosuppression protocol to a sirolimus-, cyclosporine A-, and prednisone-based regimen for pancreas-kidney transplantation. Transplantation. 2010;89(6):727–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Schold JD, Santos A, Rehman S, Magliocca J, Meier-Kriesche HU. The success of continued steroid avoidance after kidney transplantation in the US. Am J Transplant. 2009;9(12):2768–76.PubMedCrossRefGoogle Scholar
  47. 47.
    Boardman RE, Alloway RR, Alexander JW, Buell JF, Cardi M, First MR, et al. African-American renal transplant recipients benefit from early corticosteroid withdrawal under modern immunosuppression. Am J Transplant. 2005;5(2):356–65.PubMedCrossRefGoogle Scholar
  48. 48.
    Hricik DE, Augustine JJ, Knauss TC, Bodziak KA, Aeder M, Siegel C, et al. Long-term graft outcomes after steroid withdrawal in African American kidney transplant recipients receiving sirolimus and tacrolimus. Transplantation. 2007;83(3):277–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Halloran P, Mathew T, Tomlanovich S, Groth C, Hooftman L, Barker C. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection. The International Mycophenolate Mofetil Renal Transplant Study Groups. Transplantation. 1997;63(1):39–47.PubMedCrossRefGoogle Scholar
  50. 50.
    Mathew TH. A blinded, long-term, randomized multicenter study of mycophenolate mofetil in cadaveric renal transplantation: results at three years. Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Transplantation. 1998;65(11):1450–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Miller J, Mendez R, Pirsch JD, Jensik SC. Safety and efficacy of tacrolimus in combination with mycophenolate mofetil (MMF) in cadaveric renal transplant recipients. FK506/MMF Dose-Ranging Kidney Transplant Study Group. Transplantation. 2000;69(5):875–80.PubMedCrossRefGoogle Scholar
  52. 52.
    Remuzzi G, Lesti M, Gotti E, Ganeva M, Dimitrov BD, Ene-Iordache B, et al. Mycophenolate mofetil versus azathioprine for prevention of acute rejection in renal transplantation (MYSS): a randomised trial. Lancet. 2004;364(9433):503–12.PubMedCrossRefGoogle Scholar
  53. 53.
    Remuzzi G, Cravedi P, Costantini M, Lesti M, Ganeva M, Gherardi G, et al. Mycophenolate mofetil versus azathioprine for prevention of chronic allograft dysfunction in renal transplantation: the MYSS follow-up randomized, controlled clinical trial. J Am Soc Nephrol. 2007;18(6):1973–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Bjarnason I. Enteric coating of mycophenolate sodium: a rational approach to limit topical gastrointestinal lesions and extend the therapeutic index of mycophenolate. Transplant Proc. 2001;33(7–8):3238–40.PubMedCrossRefGoogle Scholar
  55. 55.
    Budde K, Curtis J, Knoll G, Chan L, Neumayer HH, Seifu Y, et al. Enteric-coated mycophenolate sodium can be safely administered in maintenance renal transplant patients: results of a 1-year study. Am J Transplant. 2004;4(2):237–43.PubMedCrossRefGoogle Scholar
  56. 56.
    Salvadori M, Holzer H, de Mattos A, Sollinger H, Arns W, Oppenheimer F, et al. Enteric-coated mycophenolate sodium is therapeutically equivalent to mycophenolate mofetil in de novo renal transplant patients. Am J Transplant. 2004;4(2):231–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Chan L, Mulgaonkar S, Walker R, Arns W, Ambuhl P, Schiavelli R. Patient-reported gastrointestinal symptom burden and health-related quality of life following conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium. Transplantation. 2006;81(9):1290–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Darji P, Vijayaraghavan R, Thiagarajan CM, Sharma RK, Subbarao B, Pishardy R, et al. Conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in renal transplant recipients with gastrointestinal tract disorders. Transplant Proc. 2008;40(7):2262–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Bolin P, Tanriover B, Zibari GB, Lynn ML, Pirsch JD, Chan L, et al. Improvement in 3-month patient-reported gastrointestinal symptoms after conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in renal transplant patients. Transplantation. 2007;84(11):1443–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Pelletier RP, Soule J, Henry ML, Rajab A, Ferguson RM. Clinical outcomes of renal transplant recipients treated with enteric-coated mycophenolic acid vs. mycophenolate mofetil as a switch agent using a primary steroid-free rapamune and microemulsion cyclosporine protocol. Clin Transplant. 2007;21(4):532–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Hardinger KL, Hebbar S, Bloomer T, Murillo D. Adverse drug reaction driven immunosuppressive drug manipulations: a single-center comparison of enteric-coated mycophenolate sodium vs. mycophenolate mofetil. Clin Transplant. 2008;22(5):555–61.PubMedCrossRefGoogle Scholar
  62. 62.
    Gozdowska J, Urbanowicz A, Baczkowska T, Pazik J, Matlosz B, Cieciura T, et al. Safety and tolerance of sodium mycophenolate in patients after renal transplantation—an observational study. Transplant Proc. 2009;41(8):3016–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Kobashigawa JA, Renlund DG, Gerosa G, Almenar L, Eisen HJ, Keogh AM, et al. Similar efficacy and safety of enteric-coated mycophenolate sodium (EC-MPS, myfortic) compared with mycophenolate mofetil (MMF) in de novo heart transplant recipients: results of a 12-month, single-blind, randomized, parallel-group, multicenter study. J Heart Lung Transplant. 2006;25(8):935–41.PubMedCrossRefGoogle Scholar
  64. 64.
    Burg M, Saemann MD, Wieser C, Kramer S, Fischer W, Lhotta K. Enteric-coated mycophenolate sodium reduces gastrointestinal symptoms in renal transplant patients. Transplant Proc. 2009;41(10):4159–64.PubMedCrossRefGoogle Scholar
  65. 65.
    Sollinger HW, Sundberg AK, Leverson G, Voss BJ, Pirsch JD. Mycophenolate mofetil versus enteric-coated mycophenolate sodium: a large, single-center comparison of dose adjustments and outcomes in kidney transplant recipients. Transplantation. 2010;89(4):446–51.PubMedCrossRefGoogle Scholar
  66. 66.
    Kamar N, Oufroukhi L, Faure P, Ribes D, Cointault O, Lavayssiere L, et al. Questionnaire-based evaluation of gastrointestinal disorders in de novo renal-transplant patients receiving either mycophenolate mofetil or enteric-coated mycophenolate sodium. Nephrol Dial Transplant. 2005;20(10):2231–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Minz M, Sharma A, Heer M. Comparison of enteric-coated mycophenolate sodium with mycophenolate mofetil in living renal allograft transplantation. Transplant Proc. 2006;38(7):2041–3.PubMedCrossRefGoogle Scholar
  68. 68.
    Chang HR, Lin CC, Lian JD. Early experience with enteric-coated mycophenolate sodium in de novo kidney transplant recipients. Transplant Proc. 2005;37(5):2066–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Langone AJ, Chan L, Bolin P, Cooper M. Enteric-coated mycophenolate sodium versus mycophenolate mofetil in renal transplant recipients experiencing gastrointestinal intolerance: a multicenter, double-blind, randomized study. Transplantation. 2011;91(4):470–8.PubMedGoogle Scholar
  70. 70.
    Sabbatini M, Sansone G, Uccello F, De Nicola L, Nappi F, Andreucci VE. Acute effects of rapamycin on glomerular dynamics: a micropuncture study in the rat. Transplantation. 2000;69(9):1946–90.PubMedCrossRefGoogle Scholar
  71. 71.
    Burdese M, Rossetti M, Guarena C, Consiglio V, Mezza E, Soragna G, et al. Sirolimus and ACE-inhibitors: a note of caution. Transplantation. 2005;79(2):251–2.PubMedCrossRefGoogle Scholar
  72. 72.
    Groetzner J, Kur F, Spelsberg F, Behr J, Frey L, Bittmann I, et al. Airway anastomosis complications in de novo lung transplantation with sirolimus-based immunosuppression. J Heart Lung Transplant. 2004;23(5):632–8.PubMedCrossRefGoogle Scholar
  73. 73.
    King-Biggs MB, Dunitz JM, Park SJ, Kay Savik S, Hertz MI. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation. 2003;75(9):1437–43.PubMedCrossRefGoogle Scholar
  74. 74.
    Massoud O, Wiesner RH. The use of sirolimus should be restricted in liver transplantation. J Hepatol. 2012;56(1):288–90.PubMedCrossRefGoogle Scholar
  75. 75.
    MacDonald AS. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation. 2001;71(2):271–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet. 2000;356(9225):194–202.PubMedCrossRefGoogle Scholar
  77. 77.
    Weir MR, Mulgaonkar S, Chan L, Shidban H, Waid TH, Preston D, et al. Mycophenolate mofetil-based immunosuppression with sirolimus in renal transplantation: a randomized, controlled Spare-the-Nephron trial. Kidney Int. 2011;79(8):897–907.PubMedCrossRefGoogle Scholar
  78. 78.
    Flechner SM, Glyda M, Cockfield S, Grinyo J, Legendre C, Russ G, et al. The ORION study: comparison of two sirolimus-based regimens versus tacrolimus and mycophenolate mofetil in renal allograft recipients. Am J Transplant. 2011;11(8):1633–44.PubMedCrossRefGoogle Scholar
  79. 79.
    Vitko S, Tedesco H, Eris J, Pascual J, Whelchel J, Magee JC, et al. Everolimus with optimized cyclosporine dosing in renal transplant recipients: 6-month safety and efficacy results of two randomized studies. Am J Transplant. 2004;4(4):626–35.PubMedCrossRefGoogle Scholar
  80. 80.
    Lorber MI, Mulgaonkar S, Butt KM, Elkhammas E, Mendez R, Rajagopalan PR, et al. Everolimus versus mycophenolate mofetil in the prevention of rejection in de novo renal transplant recipients: a 3-year randomized, multicenter, phase III study. Transplantation. 2005;80(2):244–52.PubMedCrossRefGoogle Scholar
  81. 81.
    Schena FP, Pascoe MD, Alberu J, del Carmen Rial M, Oberbauer R, Brennan DC, et al. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation. 2009;87(2):233–42.PubMedCrossRefGoogle Scholar
  82. 82.
    Vincenti F, Charpentier B, Vanrenterghem Y, Rostaing L, Bresnahan B, Darji P, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010;10(3):535–46.PubMedCrossRefGoogle Scholar
  83. 83.
    Vincenti F, Blancho G, Durrbach A, Friend P, Grinyo J, Halloran PF, et al. Five-year safety and efficacy of belatacept in renal transplantation. J Am Soc Nephrol. 2010;21(9):1587–96.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Larsen CP, Grinyo J, Medina-Pestana J, Vanrenterghem Y, Vincenti F, Breshahan B, et al. Belatacept-based regimens versus a cyclosporine A-based regimen in kidney transplant recipients: 2-year results from the BENEFIT and BENEFIT-EXT studies. Transplantation. 2010;90(12):1528–35.PubMedCrossRefGoogle Scholar
  85. 85.
    Durrbach A, Pestana JM, Pearson T, Vincenti F, Garcia VD, Campistol J, et al. A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am J Transplant. 2010;10(3):547–57.PubMedCrossRefGoogle Scholar
  86. 86.
    Pestana JO, Grinyo JM, Vanrenterghem Y, Becker T, Campistol JM, Florman S, et al. Three-year outcomes from BENEFIT-EXT: a phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am J Transplant. 2012;12(3):630–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Ferguson R, Grinyo J, Vincenti F, Kaufman DB, Woodle ES, Marder BA, et al. Immunosuppression with belatacept-based, corticosteroid-avoiding regimens in de novo kidney transplant recipients. Am J Transplant. 2011;11(1):66–76.PubMedCrossRefGoogle Scholar
  88. 88.
    Rostaing L, Massari P, Garcia VD, Mancilla-Urrea E, Nainan G, del Carmen RM, et al. Switching from calcineurin inhibitor-based regimens to a belatacept-based regimen in renal transplant recipients: a randomized phase II study. Clin J Am Soc Nephrol. 2011;6(2):430–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Gray D, Shepherd H, Daar A, Oliver DO, Morris PJ. Oral versus intravenous high-dose steroid treatment of renal allograft rejection. The big shot or not? Lancet. 1978;1(8056):117–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Vineyard GC, Fadem SZ, Dmochowski J, Carpenter CB, Wilson RE. Evaluation of corticosteroid therapy for acute renal allograft rejection. Surg Gynecol Obstet. 1974;138(2):225–9.PubMedGoogle Scholar
  91. 91.
    Gaber AO, First MR, Tesi RJ, Gaston RS, Mendez R, Mulloy LL, et al. Results of the double-blind, randomized, multicenter, phase III clinical trial of Thymoglobulin versus Atgam in the treatment of acute graft rejection episodes after renal transplantation. Transplantation. 1998;66(1):29–37.PubMedCrossRefGoogle Scholar
  92. 92.
    Briggs D, Dudley C, Pattison J, Pfeffer P, Salmela K, Rowe P, et al. Effects of immediate switch from cyclosporine microemulsion to tacrolimus at first acute rejection in renal allograft recipients. Transplantation. 2003;75(12):2058–63.PubMedCrossRefGoogle Scholar
  93. 93.
    Jordan SC, Vo AA, Tyan D, Nast CC, Toyoda M. Current approaches to treatment of antibody-mediated rejection. Pediatr Transplant. 2005;9(3):408–15.PubMedCrossRefGoogle Scholar
  94. 94.
    Rocha PN, Butterly DW, Greenberg A, Reddan DN, Tuttle-Newhall J, Collins BH, et al. Beneficial effect of plasmapheresis and intravenous immunoglobulin on renal allograft survival of patients with acute humoral rejection. Transplantation. 2003;75(9):1490–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Becker YT, Becker BN, Pirsch JD, Sollinger HW. Rituximab as treatment for refractory kidney transplant rejection. Am J Transplant. 2004;4(6):996–1001.PubMedCrossRefGoogle Scholar
  96. 96.
    Montgomery R, Simpkins C, Zachary A. Anti-CD20 rescue therapy for kidneys undergoing antibody-mediated rejection (abstract). Am J Transplant. 2004;4:258.CrossRefGoogle Scholar
  97. 97.
    Locke JE, Zachary AA, Haas M, Melancon JK, Warren DS, Simpkins CE, et al. The utility of splenectomy as rescue treatment for severe acute antibody mediated rejection. Am J Transplant. 2007;7:842–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Faguer S, Kamar N, Guilbeaud-Frugier C, et al. Rituximab therapy for acute humoral rejection after kidney transplantation. Transplantation. 2007;7(4):842–6.Google Scholar
  99. 99.
    Lefaucheur JC, Nochy D, Andrade J, Verine J, Gautreau C, Charron D, et al. Comparison of combination plasmapheresis/IVIg/anti-CD20 versus high-dose IVIg in the treatment of antibody-mediated rejection. Am J Transplant. 2009;9(5):1099–107.PubMedCrossRefGoogle Scholar
  100. 100.
    Saudek F, Malaise J, Boucek P, Adamec M. Efficacy and safety of tacrolimus compared with cyclosporin microemulsion in primary SPK transplantation: 3-year results of the Euro-SPK 001 trial. Nephrol Dial Transplant. 2005;20 Suppl 2:ii3–10, ii62.Google Scholar
  101. 101.
    Bechstein WO, Malaise J, Saudek F, Land W, Fernandez-Cruz L, Margreiter R, et al. Efficacy and safety of tacrolimus compared with cyclosporine microemulsion in primary simultaneous pancreas-kidney transplantation: 1-year results of a large multicenter trial. Transplantation. 2004;77(8):1221–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Merion RM, Henry ML, Melzer JS, Sollinger HW, Sutherland DE, Taylor RJ. Randomized, prospective trial of mycophenolate mofetil versus azathioprine for prevention of acute renal allograft rejection after simultaneous kidney-pancreas transplantation. Transplantation. 2000;70(1):105–11.PubMedGoogle Scholar
  103. 103.
    Thai NL, Khan A, Tom K, Blisard D, Basu A, Tan HP, et al. Alemtuzumab induction and tacrolimus monotherapy in pancreas transplantation: one- and two-year outcomes. Transplantation. 2006;82(12):1621–4.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kaufman DB, Leventhal JR, Koffron AJ, Gallon LG, Parker MA, Fryer JP, et al. A prospective study of rapid corticosteroid elimination in simultaneous pancreas-kidney transplantation: comparison of two maintenance immunosuppression protocols: tacrolimus/mycophenolate mofetil versus tacrolimus/sirolimus. Transplantation. 2002;73(2):169–77.PubMedCrossRefGoogle Scholar
  105. 105.
    Muthusamy AS, Vaidya AC, Sinha S, Roy D, Elker DE, Friend PJ. Alemtuzumab induction and steroid-free maintenance immunosuppression in pancreas transplantation. Am J Transplant. 2008;8(10):2126–31.PubMedCrossRefGoogle Scholar
  106. 106.
    Axelrod D, Leventhal JR, Gallon LG, Parker MA, Kaufman DB. Reduction of CMV disease with steroid-free immunosuppression in simultaneous pancreas-kidney transplant recipients. Am J Transplant. 2005;5(6):1423–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Gruessner RW, Sutherland DE, Parr E, Humar A, Gruessner AC. A prospective, randomized, open-label study of steroid withdrawal in pancreas transplantation-a preliminary report with 6-month follow-up. Transplant Proc. 2001;33(1–2):1663–4.PubMedCrossRefGoogle Scholar
  108. 108.
    Tanchanco R, Krishnamurthi V, Winans C, Wee A, Duclos A, Nurko S, et al. Beneficial outcomes of a steroid-free regimen with thymoglobulin induction in pancreas-kidney transplantation. Transplant Proc. 2008;40(5):1551–4.PubMedCrossRefGoogle Scholar
  109. 109.
    Kaufman DB, Leventhal JR, Gallon LG, Parker MA. Alemtuzumab induction and prednisone-free maintenance immunotherapy in simultaneous pancreas-kidney transplantation comparison with rabbit antithymocyte globulin induction—long-term results. Am J Transplant. 2006;6(2):331–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Aoun M, Eschewege P, Hamoudi Y, Beaudreuil S, Duranteau J, Cheisson G, et al. Very early steroid withdrawal in simultaneous pancreas-kidney transplants. Nephrol Dial Transplant. 2007;22(3):899–905.PubMedCrossRefGoogle Scholar
  111. 111.
    Malheiro J, Martins L, Fonseca I, Gomes AM, Santos J, Dias L, et al. Steroid withdrawal in simultaneous pancreas-kidney transplantation: a 7-year report. Transplant Proc. 2009;41(3):909–12.PubMedCrossRefGoogle Scholar
  112. 112.
    Cantarovich D, Karam G, Hourmant M, Dantal J, Blancho G, Giral M, et al. Steroid avoidance versus steroid withdrawal after simultaneous pancreas-kidney transplantation. Am J Transplant. 2005;5(6):1332–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Gruessner RW, Kandaswamy R, Humar A, Gruessner AC, Sutherland DE. Calcineurin inhibitor- and steroid-free immunosuppression in pancreas-kidney and solitary pancreas transplantation. Transplantation. 2005;79(9):1184–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Gallon LG, Winoto J, Chhabra D, Parker MA, Leventhal JR, Kaufman DB. Long-term renal transplant function in recipient of simultaneous kidney and pancreas transplant maintained with two prednisone-free maintenance immunosuppressive combinations: tacrolimus/mycophenolate mofetil versus tacrolimus/sirolimus. Transplantation. 2007;83(10):1324–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Knight RJ, Kerman RH, Zela S, Podbielski J, Podder H, Van Buren CT, et al. Pancreas transplantation utilizing thymoglobulin, sirolimus, and cyclosporine. Transplantation. 2006;81(8):1101–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Girman P, Lipar K, Koznarova R, Boucek P, Kriz J, Kocik M, et al. Similar early complication rate in simultaneous pancreas and kidney recipients on tacrolimus/mycophenolate mofetil versus tacrolimus/sirolimus immunosuppressive regimens. Transplant Proc. 2010;42(6):1999–2002.PubMedCrossRefGoogle Scholar
  117. 117.
    Laham G, Sleiman S, Soler Pujol G, Diaz C, Davalos M, Vilches A. Conversion to sirolimus allows preservation of renal function in kidney and kidney-pancreas allograft recipients. Transplant Proc. 2010;42(1):309–13.PubMedCrossRefGoogle Scholar
  118. 118.
    Matias P, Araujo MR, Romao Jr JE, Abensur H, Noronha IL. Conversion to sirolimus in kidney-pancreas and pancreas transplantation. Transplant Proc. 2008;40(10):3601–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Treede H, Klepetko W, Reichenspurner H, Zuckermann A, Meiser B, Birsan T, et al. Tacrolimus versus cyclosporine after lung transplantation: a prospective, open, randomized two-center trial comparing two different immunosuppressive protocols. J Heart Lung Transplant. 2001;20(5):511–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Griffith BP, Bando K, Hardesty RL, Armitage JM, Keenan RJ, Pham SM, et al. A prospective randomized trial of FK506 versus cyclosporine after human pulmonary transplantation. Transplantation. 1994;57(6):848–51.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Keenan RJ, Konishi H, Kawai A, Paradis IL, Nunley DR, Iacono AT, et al. Clinical trial of tacrolimus versus cyclosporine in lung transplantation. Ann Thorac Surg. 1995;60(3):580–4; discussion 4–5.PubMedCrossRefGoogle Scholar
  122. 122.
    Hachem RR, Yusen RD, Chakinala MM, Meyers BF, Lynch JP, Aloush AA, et al. A randomized controlled trial of tacrolimus versus cyclosporine after lung transplantation. J Heart Lung Transplant. 2007;26(10):1012–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Zuckermann A, Reichenspurner H, Birsan T, Treede H, Deviatko E, Reichart B, et al. Cyclosporine A versus tacrolimus in combination with mycophenolate mofetil and steroids as primary immunosuppression after lung transplantation: one-year results of a 2-center prospective randomized trial. J Thorac Cardiovasc Surg. 2003;125(4):891–900.PubMedCrossRefGoogle Scholar
  124. 124.
    Ross DJ, Waters PF, Levine M, Kramer M, Ruzevich S, Kass RM. Mycophenolate mofetil versus azathioprine immunosuppressive regimens after lung transplantation: preliminary experience. J Heart Lung Transplant. 1998;17(8):768–74.PubMedGoogle Scholar
  125. 125.
    Palmer SM, Baz MA, Sanders L, Miralles AP, Lawrence CM, Rea JB, et al. Results of a randomized, prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection. Transplantation. 2001;71(12):1772–6.PubMedCrossRefGoogle Scholar
  126. 126.
    McNeil K, Glanville AR, Wahlers T, Knoop C, Speich R, Mamelok RD, et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation. 2006;81(7):998–1003.PubMedCrossRefGoogle Scholar
  127. 127.
    Zuckermann A, Klepetko W, Birsan T, Taghavi S, Artemiou O, Wisser W, et al. Comparison between mycophenolate mofetil- and azathioprine-based immunosuppressions in clinical lung transplantation. J Heart Lung Transplant. 1999;18(5):432–40.PubMedCrossRefGoogle Scholar
  128. 128.
    Snell GI, Valentine VG, Vitulo P, Glanville AR, McGiffin DC, Loyd JE, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant. 2006;6(1):169–77.PubMedCrossRefGoogle Scholar
  129. 129.
    Gullestad L, Mortensen SA, Eiskjaer H, Riise GC, Mared L, Bjortuft O, et al. Two-year outcomes in thoracic transplant recipients after conversion to everolimus with reduced calcineurin inhibitor within a multicenter, open-label, randomized trial. Transplantation. 2010;90(12):1581–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Collins RH. Tacrolimus (FK506) versus cyclosporin in prevention of liver allograft rejection. Lancet. 1994;344(8927):949.PubMedGoogle Scholar
  131. 131.
    O’Grady JG, Burroughs A, Hardy P, Elbourne D, Truesdale A. Tacrolimus versus microemulsified ciclosporin in liver transplantation: the TMC randomised controlled trial. Lancet. 2002;360(9340):1119–25.PubMedCrossRefGoogle Scholar
  132. 132.
    O’Grady JG, Hardy P, Burroughs AK, Elbourne D. Randomized controlled trial of tacrolimus versus microemulsified cyclosporin (TMC) in liver transplantation: poststudy surveillance to 3 years. Am J Transplant. 2007;7(1):137–41.PubMedCrossRefGoogle Scholar
  133. 133.
    McAlister VC, Haddad E, Renouf E, Malthaner RA, Kjaer MS, Gluud LL. Cyclosporin versus tacrolimus as primary immunosuppressant after liver transplantation: a meta-analysis. Am J Transplant. 2006;6(7):1578–85.PubMedCrossRefGoogle Scholar
  134. 134.
    Wiesner RH. A long-term comparison of tacrolimus (FK506) versus cyclosporine in liver transplantation: a report of the United States FK506 Study Group. Transplantation. 1998;66(4):493–9.PubMedCrossRefGoogle Scholar
  135. 135.
    Wiesner R, Rabkin J, Klintmalm G, McDiarmid S, Langnas A, Punch J, et al. A randomized double-blind comparative study of mycophenolate mofetil and azathioprine in combination with cyclosporine and corticosteroids in primary liver transplant recipients. Liver Transpl. 2001;7(5):442–50.PubMedCrossRefGoogle Scholar
  136. 136.
    Tisone G, Angelico M, Palmieri G, Pisani F, Anselmo A, Baiocchi L, et al. A pilot study on the safety and effectiveness of immunosuppression without prednisone after liver transplantation. Transplantation. 1999;67(10):1308–13.PubMedCrossRefGoogle Scholar
  137. 137.
    Washburn K, Speeg KV, Esterl R, Cigarroa F, Pollack M, Tourtellot C, et al. Steroid elimination 24 hours after liver transplantation using daclizumab, tacrolimus, and mycophenolate mofetil. Transplantation. 2001;72(10):1675–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Segev DL, Sozio SM, Shin EJ, Nazarian SM, Nathan H, Thuluvath PJ, et al. Steroid avoidance in liver transplantation: meta-analysis and meta-regression of randomized trials. Liver Transpl. 2008;14(4):512–25.PubMedCrossRefGoogle Scholar
  139. 139.
    Sgourakis G, Radtke A, Fouzas I, Mylona S, Goumas K, Gockel I, et al. Corticosteroid-free immunosuppression in liver transplantation: a meta-analysis and meta-regression of outcomes. Transpl Int. 2009;22(9):892–905.PubMedCrossRefGoogle Scholar
  140. 140.
    Asrani SK, Leise MD, West CP, Murad MH, Pedersen RA, Erwin PJ, et al. Use of sirolimus in liver transplant recipients with renal insufficiency: a systematic review and meta-analysis. Hepatology. 2010;52(4):1360–70.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Saliba F, Dharancy S, Lorho R, Conti F, Radenne S, Neau-Cransac M, et al. Conversion to everolimus in maintenance liver transplant patients: a multicenter, retrospective analysis. Liver Transpl. 2011;17(8):905–13.PubMedCrossRefGoogle Scholar
  142. 142.
    Grimm M, Rinaldi M, Yonan NA, Arpesella G, Arizon Del Prado JM, Pulpon LA, et al. Superior prevention of acute rejection by tacrolimus vs. cyclosporine in heart transplant recipients—a large European trial. Am J Transplant. 2006;6(6):1387–97.PubMedCrossRefGoogle Scholar
  143. 143.
    Kobashigawa JA, Miller LW, Russell SD, Ewald GA, Zucker MJ, Goldberg LR, et al. Tacrolimus with mycophenolate mofetil (MMF) or sirolimus vs. cyclosporine with MMF in cardiac transplant patients: 1-year report. Am J Transplant. 2006;6(6):1377–86.PubMedCrossRefGoogle Scholar
  144. 144.
    Kobashigawa J, Miller L, Renlund D, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate mofetil investigators. Transplantation. 1998;66(4):507–15.PubMedCrossRefGoogle Scholar
  145. 145.
    Lehmkuhl H, Hummel M, Kobashigawa J, Ladenburger S, Rothenburger M, Sack F, et al. Enteric-coated mycophenolate-sodium in heart transplantation: efficacy, safety, and pharmacokinetic compared with mycophenolate mofetil. Transplant Proc. 2008;40(4):953–5.PubMedCrossRefGoogle Scholar
  146. 146.
    Topilsky Y, Hasin T, Raichlin E, Boilson BA, Schirger JA, Pereira NL, et al. Sirolimus as primary immunosuppression attenuates allograft vasculopathy with improved late survival and decreased cardiac events after cardiac transplantation. Circulation. 2012;125(5):708–20.PubMedCrossRefGoogle Scholar
  147. 147.
    Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-von Kaeppler HA, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med. 2003;349(9):847–58.PubMedCrossRefGoogle Scholar
  148. 148.
    Vigano M, Tuzcu M, Benza R, Boissonnat P, Haverich A, Hill J, et al. Prevention of acute rejection and allograft vasculopathy by everolimus in cardiac transplants recipients: a 24-month analysis. J Heart Lung Transplant. 2007;26(6):584–92.PubMedCrossRefGoogle Scholar
  149. 149.
    Arora S, Ueland T, Wennerblom B, Sigurdadottir V, Eiskjaer H, Botker HE, et al. Effect of everolimus introduction on cardiac allograft vasculopathy—results of a randomized, multicenter trial. Transplantation. 2011;92(2):235–43.PubMedCrossRefGoogle Scholar
  150. 150.
    Miller LW, Wolford T, McBride LR, Peigh P, Pennington DG. Successful withdrawal of corticosteroids in heart transplantation. J Heart Lung Transplant. 1992;11(2 Pt 2):431–4.PubMedGoogle Scholar
  151. 151.
    Teuteberg JJ, Shullo M, Zomak R, McNamara D, McCurry K, Kormos RL. Aggressive steroid weaning after cardiac transplantation is possible without the additional risk of significant rejection. Clin Transplant. 2008;22(6):730–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Taylor DO, Bristow MR, O’Connell JB, Price GD, Hammond EH, Doty DB, et al. Improved long-term survival after heart transplantation predicted by successful early withdrawal from maintenance corticosteroid therapy. J Heart Lung Transplant. 1996;15(10):1039–46.PubMedGoogle Scholar
  153. 153.
    Renlund DG, O’Connell JB, Gilbert EM, Watson FS, Bristow MR. Feasibility of discontinuation of corticosteroid maintenance therapy in heart transplantation. J Heart Transplant. 1987;6(2):71–8.PubMedGoogle Scholar
  154. 154.
    Keogh A, Macdonald P, Mundy J, Chang V, Harvison A, Spratt P. Five-year follow-up of a randomized double-drug versus triple-drug therapy immunosuppressive trial after heart transplantation. J Heart Lung Transplant. 1992;11(3 Pt 1):550–5; discussion 6.PubMedGoogle Scholar
  155. 155.
    Pirenne J, Kawai M. Intestinal transplantation: evolution in immunosuppression protocols. Curr Opin Organ Transplant. 2009;14(3):250–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Karen L. Hardinger
    • 1
  • Irfan A. Agha
    • 2
  • Daniel C. Brennan
    • 3
  1. 1.School of PharmacyUniversity of Missouri–Kansas CityKansas CityUSA
  2. 2.Transplant Center Dallas Renal GroupMethodist Dallas Medical CenterDallasUSA
  3. 3.Renal DivisionWashington University School of Medicine in St. LouisSt. LouisUSA

Personalised recommendations