Diamond Nanostructures and Nanoparticles: Electrochemical Properties and Applications

  • Nianjun YangEmail author
  • Xin JiangEmail author
Part of the Carbon Nanostructures book series (CARBON)


Macro-sized diamond films have been widely applied as the electrode for electrochemical and electroanalytical applications. Due to the non-uniform doping in diamond, boundary effects, and the varied ratios of graphite to diamond, only averaged electrochemical signals are detected over the full electrode. The studies of diamond electrochemistry at the nanoscale are thus highly required. In this chapter we overview recent progress and achievements about electrochemical properties and applications of diamond nanostructures and nanoparticles. After a brief introduction of the formation of these nanostructures and nanoparticles, electrochemical behavior of diamond nanostructures (e.g., diamond nanotexures, nanowires, networks, etc.) and nanoparticles (undoped, doped nanoparticles) in the presence/absence of redox probes is summarized. Their electroanalytical (e.g., electrochemical, biochemical sensing, etc.) and electrochemical (e.g., energy storage using capacitors and batteries, electrocatalysis, etc.) applications are shown. Diamond nanoelectrode array is introduced and highlighted as a promising tool to investigate diamond electrochemistry at the nanoscale as well.


Electrochemistry Electroanalysis Diamond Nanowires Nanoparticles Nanoelectrodes and arrays 



The authors thank the financial support from German Research Foundation (DFG) under the project (YA344/1-1).


  1. 1.
    M. Iwaki, S. Sato, K. Takahashi, H. Sakairi, Electrical conductivity of nitrogen and argon implanted diamond. Nucl. Instrum. Methods Phys. Res. 209–210, 1129 (1983). doi: 10.1016/0167-5087(83)90930-4 CrossRefGoogle Scholar
  2. 2.
    Y.V. Pleskov, A.Y. Sakharova, M.D. Krotova, L.L. Bouilov, B.V. Spitsyn, Photoelectrochemical properties of semiconductor diamond. J. Electroanal. Chem. 228, 19 (1987). doi: 10.1016/0022-0728(87)80093-1 CrossRefGoogle Scholar
  3. 3.
    A. Fujishima, Y. Einaga, T.N. Rao, D.A. Tryk (eds.), Diamond Electrochemistry (Elsevier, Tokyo, 2005)Google Scholar
  4. 4.
    R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108, 2646–2687 (2008). doi: 10.1021/cr068076m CrossRefGoogle Scholar
  5. 5.
    E. Brillas, C.A. Martinez-Huitle (eds.), Synthetic Diamond Films: Preparation, Electrochemistry, Characterization, and Applications (Wiley, 2011)Google Scholar
  6. 6.
    N. Yang (ed.), Novel Aspects of Diamond (Springer, 2014)Google Scholar
  7. 7.
    N. Yang, W. Smirnov, C.E. Nebel, Diamond nanotextures: technologies, properties, and electrochemical applications, M. Chehimi, J. Pinson (eds.), Applied Surface Chemistry of Nanomaterials (NOVA Publisher, 2013), pp 33–54Google Scholar
  8. 8.
    Y. Yu, L. Wu, J. Zhi, Diamond nanowires: fabrication, structure, properties, and applications. Angew. Chem. Int. Ed. 53(2014), 14326–14351 (2013). doi: 10.1002/anie.10803 Google Scholar
  9. 9.
    S. Szunerits, Y. Coffinier, R. Boukherroub, Diamond nanowires: a novel platform for electrochemistry and matrix-free mass spectrometry. Sensors 15, 12573–12593 (2015). doi: 10.3390/s150612573 Google Scholar
  10. 10.
    R.W. Murray, Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 108, 2688–2720 (2008). doi: 10.1021/cr068077e CrossRefGoogle Scholar
  11. 11.
    J.D. Wadhawan, R.G. Compton (eds.), Electrochemistry, vol. 11, (RSC Publisher, 2012)Google Scholar
  12. 12.
    M.V. Mirkin, S. Amemiya (eds.), Nanoelectrochemistry, (CRC Press, 2015)Google Scholar
  13. 13.
    N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned nanowires from boron-doped diamond. Nano Lett. 8, 3572–3576 (2008). doi: 10.1021/nl801136h CrossRefGoogle Scholar
  14. 14.
    W. Smirnov, A. Kriele, N. Yang, C.E. Nebel, Aligned diamond nano-wires: fabrication and characterisation for advanced applications in bio and electrochemistry. Diam. Relat. Mater. 18, 186–189 (2009). doi: 10.1016/j.diamond.2009.09.001 CrossRefGoogle Scholar
  15. 15.
    Y.S. Zou, Y. Yang, Y.L. Zhou, Z.X. Li, H. Yang, B. He, I. Bello, W.J. Zhang, Surface nanostructuring of boron-doped diamond films and their electrochemical performance. J. Nanosci. Nanotech. 11, 7914–7919 (2011). doi: 10.1016/j.diamond.2003.10.066 CrossRefGoogle Scholar
  16. 16.
    M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.-Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. 3624–3626 (2009). doi: 10.1039/B903284C
  17. 17.
    J. Shalini, K.J. Sankaran, C.L. Dong, C.Y. Lee, N.H. Tai, I.N. Lin, In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode. Nanoscale 5, 1159–1167 (2013). doi: 10.1039/C2NR32939E CrossRefGoogle Scholar
  18. 18.
    D. Luo, L. Wu, J. Zhi, Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose sensing. ACS Nano 3, 2121–2128 (2009). doi: 10.1021/nn9003154 CrossRefGoogle Scholar
  19. 19.
    Q. Wang, P. Subramanian, M. Li, W.S. Yeap, K. Haenen, Y. Coffinier, R. Boukherroub, S. Szunerits, Non-enzymatic glucose sensing on long and short diamond nanowires electrodes. Electrochem. Commun. 34, 286–290 (2013). doi: 10.1016/j.elecom.2013.07.014 CrossRefGoogle Scholar
  20. 20.
    N. Yang, W. Smirnov, C.E. Nebel, Three-dimensional electrochemical reactions on tip-coated diamond nanowires with nickel nanoparticles. Electrochem. Commun. 27, 89–91 (2013). doi: 10.1016/j.elecom.2012.10.044 CrossRefGoogle Scholar
  21. 21.
    S. Szunerits, Y. Coffinier, E. Galopin, J. Brenner, R. Boukherroub, Preparation of boron-doped diamond nanowires and their application for sensitive electrochemical detection of tryptophan. Electrochem. Commun. 12, 438–441 (2010). doi: 10.1016/j.elecom.2010.01.014 CrossRefGoogle Scholar
  22. 22.
    Q. Wang, A. Vasilescu, P. Subramanian, A. Vezeanu, V. Andrei, Y. Coffinier, M. Li, R. Boukherroub, S. Szunerits, Simultaneous electrochemical detection of tryptophan and tyrosine using boron-doped diamond and diamond nanowires electrodes. Electrochem. Commun. 35, 84–87 (2013). doi: 10.1016/j.elecom.2013.08.010 CrossRefGoogle Scholar
  23. 23.
    M. Lv, M. Wei, F. Rong, C. Terashima, A. Fujishima, Z.-Z. Gu, Electrochemical detection of catechol based on as-grown and nanograss array boron-doped diamond electrodes. Electroanalysis 22, 199–203 (2010). doi: 10.1002/elan.200900296 CrossRefGoogle Scholar
  24. 24.
    N. Yang, R. Hoffmann, W. Smirnov, A. Kriele, C.E. Nebel, Interface properties of cytochrome c on nano-textured diamond surface. Diam. Relat. Mater. 20, 269–273 (2011). doi: 10.1016/j.diamond.2010.12.012 CrossRefGoogle Scholar
  25. 25.
    N. Yang, W. Smirnov, A. Kriele, R. Hoffmann, C.E. Nebel, Nano-textured surface for enhanced protein redox activity. Phys. Status Solidi A 207, 2069–2072 (2010). doi: 10.1002/pssa.201000085 CrossRefGoogle Scholar
  26. 26.
    N. Yang, R. Hoffmann, W. Smirnov, A. Kriele, C.E. Nebel, Direct electrochemistry of cytochrome c on nano-textured diamond surface. Electrochem. Commun. 12, 1218–1221 (2010). doi: 10.1016/j.elecom.2010.06.023 CrossRefGoogle Scholar
  27. 27.
    W. Wu, L. Bai, X. Lin, Z. Tang, Z.-Z. Gu, Nanograss array boron-doped diamond electrode for enhanced electron transfer from Shewanella loihica PV-4. Electrochem. Commun. 13, 872–874 (2011). doi: 10.1016/j.elecom.2011.05.025 CrossRefGoogle Scholar
  28. 28.
    W. Wu, Z.-Z. Gu, X. Liu, L. Bai, Z. Tang, Nanograss array boron-doped diamond electrode for toxicity sensor with Shewanella loihica PV-4 in bioelectrochemical systems. Sens. Lett. 12, 191–196 (2014). doi: 10.1166/sl.2014.3272 CrossRefGoogle Scholar
  29. 29.
    R. Hoffmann, A. Kriele, S. Kopta, W. Smirnov, N. Yang, C.E. Nebel, Intentional adsorption of cytochrome c to diamond. Phys. Status Solidi A 207, 2073–2077 (2010). doi: 10.1002/pssa.201000043 CrossRefGoogle Scholar
  30. 30.
    R. Hoffmann, A. Kriele, H. Obloh, N. Tokuda, W. Smirnov, N. Yang, C.E. Nebel, The creation of a biomimetic interface between boron-doped diamond and immobilized proteins. Biomaterials 30, 7325–7332 (2011). doi: 10.1016/j.biomaterials.2011.06.052 CrossRefGoogle Scholar
  31. 31.
    R. Hoffmann, H. Obloh, N. Tokuda, N. Yang, C.E. Nebel, Fractional surface termination of diamond by electrochemical oxidation. Langmuir 28, 47–50 (2012). doi: 10.1021/la2039366 CrossRefGoogle Scholar
  32. 32.
    P. Subramanian, J. Foord, D. Steinmueller, Y. Coffinier, R. Boukherroub, S. Szunerits, Diamond nanowires decorated with metallic nanoparticles: a novel electrical interface for the immobilization of histidinylated biomolecules. Electrochim. Acta 110, 4–8 (2013). doi: 10.1016/j.electacta.2012.11.010 CrossRefGoogle Scholar
  33. 33.
    P. Subramanian, A. Motorina, W.S. Yeap, K. Haenen, Y. Coffinier, V. Zaitsev, J. Niedziolka-Jonsson, R. Boukherroub, S. Szunerits, Impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles. Analyst 139, 1726–1731 (2014). doi: 10.1039/C3AN02045B CrossRefGoogle Scholar
  34. 34.
    I. Shpilevaya, W. Smirnov, S. Hirsz, N. Yang, C.E. Nebel, J.S. Foord, Nanostructured diamond decorated with Pt particles: preparation and electrochemistry. RSC Adv. 4, 531–537 (2014). doi: 10.1039/C3RA43763A CrossRefGoogle Scholar
  35. 35.
    N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned diamond nanowires for DNA sensing. Angew. Chem. Int. Ed. 47, 5183–5185 (2008). doi: 10.1002/anie.200801706 Google Scholar
  36. 36.
    N. Yang, H. Uetsuka, C.E. Nebel, Biofunctionalization of vertically aligned diamond nanowires. Adv. Funct. Mater. 19, 887–893 (2009). doi: 10.1002/adfm.200990018 CrossRefGoogle Scholar
  37. 37.
    N. Yang, H. Uetsuka, O.A. Williams, E. Osawa, N. Tokuda, C.E. Nebel, Vertically aligned diamond nanowires: Fabrication, characterization, and application for DNA sensing. Phys. Stat. Sol. A 206, 2048–2056 (2009). doi: 10.1002/pssa.200982222 CrossRefGoogle Scholar
  38. 38.
    P. Subramanian, I. Mazurenko, Y. Coffinier, Y. Zaitsev, R. Boukherroub, S. Szunerits, Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides. Analyst 139, 4343–4349 (2014). doi: 10.1039/C4AN00146J CrossRefGoogle Scholar
  39. 39.
    C.E. Nebel, N. Yang, H. Uetsuka, E. Osawa, N. Tokuda, O. Williams, Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diam. Relat. Mater. 18, 910–917 (2009). doi: 10.1016/j.diamond.2008.11.024 CrossRefGoogle Scholar
  40. 40.
    Y. Yang, J.-W. Oh, Y.-R. Kim, C. Terashima, A. Fujishima, J.S. Kim, H. Kim, Enhanced electrogenerated chemiluminescence of a ruthenium tris(2,2)bipyridyl/tripropylamine system on a boron-doped diamond nanograss array. Chem. Commun. 46, 5793–5795 (2010). doi: 10.1039/C0CC00773K CrossRefGoogle Scholar
  41. 41.
    N. Yang, W. Smirnov, C.E. Nebel, Fabrication, properties and electrochemical applications of diamond nanostructures. MRS Proceedings 1511, mrsf12-1511-ee07-01. doi: 10.1557/opl.2012.1661
  42. 42.
    V.D. van Wyk, P.G.L. Baker, T. Waryo, E.I. Iwuoha, C. O’Sullivan, Electrochemical evaluation of a novel boron doped diamond (BDD) material for application as potential electrochemical capacitor. Anal. Lett. 44, 2005–2018 (2011). doi: 10.1080/00032719.2010.539735 CrossRefGoogle Scholar
  43. 43.
    S. Yu, N. Yang, H. Zhuang, J. Meyer, S. Mandal, O.A. Williams, I. Lilge, H. Schönherr, X. Jiang, Electrochemical supercapacitors from diamond. J. Phys. Chem. C 33, 18918–18926 (2015). doi: 10.1021/acs.jpcc.5b04719 CrossRefGoogle Scholar
  44. 44.
    K. Honda, T.N. Rao, D.A. Tryk, A. Fujishima, M. Watanabe, K. Yasui, H. Masuda, Electrochemical characterization of the nanoporous honeycomb diamond electrode as an electrical double-layer capacitor. J. Electrochem. Soc. 147, 659–664 (2000). doi: 10.1149/1.1393249 CrossRefGoogle Scholar
  45. 45.
    K. Honda, T.N. Rao, D.A. Tryk, A. Fujishima, M. Watanabe, K. Yasui, H. Masuda, Impedance characteristics of the nanoporous honeycomb diamond electrodes for electrical double-layer capacitor applications. J. Electrochem. Soc. 148, A668–A679 (2001). doi: 10.1149/1.1373450 CrossRefGoogle Scholar
  46. 46.
    M. Yoshimura, K. Honda, R. Uchikado, T. Kondo, T.N. Rao, D.A. Tryk, A. Fujishima, Y. Sakamoto, K. Yasui, H. Masuda, Electrochemical characterization of nanoporous honeycomb diamond electrodes in non-aqueous electrolytes. Diam. Relat. Mater. 10, 620–626 (2001). doi: 10.1016/S0925-9635(00)00381-2 CrossRefGoogle Scholar
  47. 47.
    F. Gao, M. Wolfer, C.E. Nebel, Highly porous diamond foam as a thin-film micro-supercapacitor material. Carbon 80, 833–840 (2014). doi: 10.1016/j.carbon.2014.09.007 CrossRefGoogle Scholar
  48. 48.
    H. Zhuang, N. Yang, H. Fu, L. Zhang, C. Wang, N. Huang, X. Jiang, Diamond network: template-free fabrication and properties. ACS Appl. Mater. Interfaces 7, 5384–5390 (2015). doi: 10.1021/am508851r CrossRefGoogle Scholar
  49. 49.
    F. Gao, G. Lewes-Malandrakis, M. Wolfer, W. Müller-Sebert, P. Gentile, D. Aradilla, T. Schubert, C.E. Nebel, Diamond-coated silicon wires for supercapacitor applications in ionic liquids. Diam. Relat. Mater. 51, 1–6 (2015). doi: 10.1016/j.diamond.2014.10.009 CrossRefGoogle Scholar
  50. 50.
    K. Siuzdak, R. Bogdanowicz, M. Sawczak M. Sobaszek, Enhanced capacitance of composite TiO2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy. Nanoscale 7, 551–558 (2015). doi: 10.1039/C4NR04417G Google Scholar
  51. 51.
    H. Zanin, P.W. May, D.J. Fermin, D. Plana, S.M.C. Vieira, W.I. Milne, E.J. Corat, Porous boron-doped diamond/carbon nanotube electrodes. ACS Appl. Mater. Interfaces 6, 990–995 (2014). doi: 10.1021/am4044344 CrossRefGoogle Scholar
  52. 52.
    T. Kondo, Y. Kodama, S. Ikezoe, K. Yajima, T. Aikawa, M. Yuasa, Porous boron-doped diamond electrodes fabricated via two-step thermal treatment. Carbon 77, 783–789 (2014). doi: 10.1016/j.carbon.2014.05.082 CrossRefGoogle Scholar
  53. 53.
    C. Hebert, E. Scorsone, M. Mermoux, P. Bergonzo, Porous diamond with high electrochemical performance. Carbon 90, 102–109 (2015). doi: 10.1016/j.carbon.2015.04.016 CrossRefGoogle Scholar
  54. 54.
    H. Kato, J. Hees, R. Hoffmann, M. Wolfer, N. Yang, S. Yamasaki, C.E. Nebel, Diamond foam electrodes for electrochemical applications. Electrochem. Commun. 33, 88–91 (2013). doi: 10.1016/j.elecom.2013.04.028 CrossRefGoogle Scholar
  55. 55.
    F. Gao, C. Giese, G. Lewes-Malandrakis, C.E. Nebel, Porous diamond membrane fabricated by templated growth for electrochemical separation processes, 2015 ECS Meeting Abstract, 213-A Google Scholar
  56. 56.
    S. Ruffinatto, H.A. Girard, F. Becher, J.C. Arnault, D. Tromson, P. Bergonzo, Diamond porous membranes: A material toward analytical chemistry. Diam. Relat. Mater. 55, 123–130 (2015). doi: 10.1016/j.diamond.2015.03.008 CrossRefGoogle Scholar
  57. 57.
    O.A. Williams (ed.), Nanodiamond (RSC Publisher, 2014)Google Scholar
  58. 58.
    I.A. Novoselova, E.N. Fedoryshena, E.V. Panov, A.A. Bochechka, L.A. Romanko, Electrochemical properties of compacts of nano-and microdisperse diamond powders in aqueous electrolytes. Phys. Solid State 46, 748–750 (2004). doi: 10.1134/1.1711465 CrossRefGoogle Scholar
  59. 59.
    J.B. Zang, Y.H. Wang, S.Z. Zhoa, L.Y. Bian, J. Lu, Electrochemical properties of nanodiamond powder electrodes. Diam. Relat. Mater. 16, 16–20 (2007). doi: 10.1016/j.diamond.2006.03.010 CrossRefGoogle Scholar
  60. 60.
    K.B. holt, Undoped diamond nanoparticles: origins of surface redox chemistry. Phys. Chem. Chem. Phys. 12, 2048–2058 (2010). doi: 10.1039/B920075D Google Scholar
  61. 61.
    J. Scholz, A.J. McQuillan, K.B. Holt, Redox transformations at nanodiamond surfaces revealed by in situ infrared spectroscopy. Chem. Commu. 47, 12140–12142 (2011). doi: 10.1039/C1CC14961J CrossRefGoogle Scholar
  62. 62.
    K.B. Holt, C. Ziegler, J. Zang, J. Hu, J.S. Foord, Scanning electrochemical microscopy studies of redox processes at undoped nanodiamond surfaces. J. Phys. Chem. C 113, 2761–2770 (2009). doi: 10.1021/jp8038384 CrossRefGoogle Scholar
  63. 63.
    K.B. Holt, D.J. Caruana, E.J. Millan-Barrios, Electrochemistry of undoped diamond nanoparticles: accessing surface redox states. J. Am. Chem. Soc. 131, 11272–11273 (2009). doi: 10.1021/ja902216n CrossRefGoogle Scholar
  64. 64.
    K.B. Holt, C. Ziegler, D.J. Caruana, J. Zang, E.J. Millan-Barrios, J. Hu, J.S. Foord, Redox properties of undoped 5 nm diamond nanoparticles. Phys. Chem. Chem. Phys. 10, 303–310 (2008). doi: 10.1039/B711049 CrossRefGoogle Scholar
  65. 65.
    A.T.S. Varley, M. Hirani, G. Harrison, K.B. Holt, Nanodiamond surface redox chemistry: influence of physicochemical properties on catalytic processes. Faraday Discuss. 172, 349–364 (2014). doi: 10.1039/C4FD00041B CrossRefGoogle Scholar
  66. 66.
    W. hongthani, D.J. Fermin, Layer-by-layer assembly and redox properties of undoped HPHT diamond particles. Diam. Relat. Mater. 19, 680–684 (2010). doi: 10.1016/j.diamond.2010.01.039 Google Scholar
  67. 67.
    D. Plana, J.J.L. Humphrey, K.A. Bradley, V. Celorrio, D.J. Fermin, Charge transport across high surface area metal/diamond nanostructured composites. ACS Appl. Mater. Interfaces 5, 2985–2990 (2013). doi: 10.1021/am302397p CrossRefGoogle Scholar
  68. 68.
    J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, S. Ren, X. Qu, Surface modification and electrochemical behaviour of undoped nanodiamonds. Electrochim. Acta 72, 68–73 (2012). doi: 10.1016/j.electacta.2012.03.169 CrossRefGoogle Scholar
  69. 69.
    Y. Wang, H. Huang, J. Zang, F. Meng, L. Dong, J. Su, Electrochemical behavior of fluorinated and aminated nanodiamond. Int. J. Electrochem. Sci. 7, 6807–6815 (2012)Google Scholar
  70. 70.
    W. Hongthani, N.A. Fox, D.J. Fermin, Electrochemical properties of two dimensional assemblies of insulating diamond particles. Langmuir 27, 5112–5118 (2011). doi: 10.1021/la1045833 CrossRefGoogle Scholar
  71. 71.
    D. Plana, J.J.L. Humphrey, K.A. Bradley, V. Celorrio, D.J. Fermin, Charge transport across high surface area metal/diamond nanostructured composites. ACS Appl. Mater. Interfaces 5, 2985–2990 (2013). doi: 10.1021/am302397p CrossRefGoogle Scholar
  72. 72.
    S. Shahrokhian, M. Ghalkhani, Glassy carbon electrodes modified with a film of nanodiamond–graphite/chitosan: application to the highly sensitive electrochemical determination of azathioprine. Electrochim. Acta 55, 3621–3627 (2010). doi: 10.1016/j.electacta.2010.01.099 CrossRefGoogle Scholar
  73. 73.
    S. Shahrokhian, M. Khafaji, Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid. Electrochim. Acta 55, 9090–9096 (2010). doi: 10.1016/j.electacta.2010.08.043 CrossRefGoogle Scholar
  74. 74.
    L.H. Chen, J.B. Zang, Y.H. Wang, L.Y. Bian, Electrochemical oxidation of nitrite on nanodiamond powder electrode. Electrochim. Acta 53, 3442–3445 (2008). doi: 10.1016/j.electacta.2007.12.023 CrossRefGoogle Scholar
  75. 75.
    S. Shahrokhian, M. Bayat, Pyrolytic graphite electrode modified with a thin film of a graphite/diamond nano-mixture for highly sensitive voltammetric determination of tryptophan and 5-hydroxytryptophan. Microchim. Acta 174, 361–366 (2011). doi: 10.1007/s00604-011-0631-2 CrossRefGoogle Scholar
  76. 76.
    S. Shahrokhian, N.H. Nassab, Nanodiamond decorated with silver nanoparticles as a sensitive film modifier in a jeweled electrochemical sensor: application to voltammetric determination of thioridazine. Electroanalysis 25, 417–425 (2013). doi: 10.1002/elan.201200339 CrossRefGoogle Scholar
  77. 77.
    B. Habibi, M. Jahanbakhshi, Sensitive determination of hydrogen peroxide based on a novel nonenzymatic electrochemical sensor: silver nanoparticles decorated on nanodiamonds. J. Iran. Chem. Soc. 12, 1431–1438 (2015). doi: 10.1007/s13738-015-0611-2 CrossRefGoogle Scholar
  78. 78.
    L.Y. Bian, Y.H. Wang, J. Lu, J.B. Zang, Synthesis and electrochemical properties of TiO2/nanodiamond nanocomposite. Diam. Relat. Mater. 19, 1178–1182 (2010). doi: 10.1016/j.diamond.2010.05.007 CrossRefGoogle Scholar
  79. 79.
    W. Zhao, J.J. Xu, Q.Q. Qiu, H.Y. Chen, Nanocrystalline diamond modified gold electrode for glucose biosensing. Biosens. Bioelectron. 22, 649–655 (2006). doi: 10.1016/j.bios.2006.01.026 CrossRefGoogle Scholar
  80. 80.
    M. Briones, E. Casero, M.D. Petit-Dominguez, M.A. Ruiz, A.M. Parra-Alfambra, F. Pariente, E. Lorenzo, L. Vazquez, Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosens. Bioelectron. 68, 521–528 (2015). doi: 10.1016/j.bios.2015.01.044 CrossRefGoogle Scholar
  81. 81.
    A.I. Gopalan, K.-P. Lee, S. Komathi, Bioelectrocatalytic determination of nitrite ions based on polyaniline grafted nanodiamond. Biosens. Bioelectron. 26, 1638–1643 (2010). doi: 10.1016/j.bios.2010.08.042 CrossRefGoogle Scholar
  82. 82.
    J.-T. Zhu, C.-G. Shi, J.-J. Xu, H.-Y. Chen, Direct electrochemistry and electrocatalysis of hemoglobin on undoped nanocrystalline diamond modified glassy carbon electrode. Bioelectrochemistry 71, 243–248 (2007). doi: 10.1016/j.bioelechem.2007.07.002 CrossRefGoogle Scholar
  83. 83.
    A.I. Gopalan, S. Komathi, G.S. Anand, K.P. Lee, Nanodiamond based sponges with entrapped enzyme: a novel electrochemical probe for hydrogen peroxide. Biosens. Bioelectron. 46, 136–141 (2013). doi: 10.1016/j.bios.2013.02.036 CrossRefGoogle Scholar
  84. 84.
    E. Nicolau, J. Mendez, J.J. Fonseca, K. Griebenow, C.R. Cabrera, Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanoparticles. Bioelectrochemistry 85, 1–6 (2012). doi: 10.1016/j.bioelechem.2011.11.002 CrossRefGoogle Scholar
  85. 85.
    M. Briones, E. Casero, M.D. Petit-Dominguez, M.A. Ruiz, A.M. Parra-Alfambra, F. Pariente, E. Lorenzo, L. Vazquez, Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosens. Bioelectron. 68, 521–528 (2015). doi: 10.1016/j.bios.2015.01.044 CrossRefGoogle Scholar
  86. 86.
    W.L. Zhang, K. Patel, A. Schexnider, S. Banu, A.D. Radadia, Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization. ACS Nano 8, 1419–1428 (2014). doi: 10.1021/nn405240g CrossRefGoogle Scholar
  87. 87.
    L.Y. Bian, Y.H. Wang, J.B. Zang, F.W. Meng, Y.L. Zhao, Detonation-synthesized nanodiamond as a stable support of Pt electrocatalyst for methanol electrooxidation. Int. J. Electrochem. Sci. 7, 7295–7303 (2012)Google Scholar
  88. 88.
    L. Bian, Y. Wang, J. Zang, J. Yu, H. Huang, Electrodeposition of Pt nanoparticles on undoped nanodiamond powder for methanol oxidation electrocatalysts. J. Electroanal. Chem. 644, 85–88 (2010). doi: 10.1016/j.jelechem.2010.04.001 CrossRefGoogle Scholar
  89. 89.
    V. Celorrio, D. Plana, J. Florez-Montano, M.G. Montes de Oca, A. Moore, M.J. Lazaro, E. Pastor, D.J. Fermin, Methanol oxidation at diamond-supported Pt nanoparticles: effect of the diamond surface termination. J. Phys. Chem. C 117, 21735–21742 (2013). doi: 10.1021/jp4039804 CrossRefGoogle Scholar
  90. 90.
    J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, R. Lu, X. Qu, S. Ren, Graphene growth on nanodiamond as a support for a Pt electrocatalyst in methanol electro-oxidation. Carbon 50, 3032–3038 (2012). doi: 10.1016/j.carbon.2012.02.089 CrossRefGoogle Scholar
  91. 91.
    J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, X. Qu, S. Ren, Bucky diamond produced by annealing nanodiamond as a support of Pt electrocatalyst for methanol electrooxidation. Int. J. Hydrogen Energy 37, 6349–6355 (2012). doi: 10.1016/j.ijhydene.2012.01.034 CrossRefGoogle Scholar
  92. 92.
    J. Hu, X. Lu, J.S. Foord, Nanodiamond pretreatment for the modification of diamond electrodes by platinum nanoparticles. Electrochem. Comm. 12, 676–679 (2010). doi: 10.1016/j.elecom.2010.03.004 CrossRefGoogle Scholar
  93. 93.
    L. La-Torre-Riveros, R. Guzman-Blas, A.E. Mendez-Torres, M. Prelas, D.A. Tryk, C.R. Cabrera, Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells. ACS Appl. Mater. Interface 4, 1134–1147 (2012). doi: 10.1021/am2018628 CrossRefGoogle Scholar
  94. 94.
    E.A. Levashov, P.V. Vakaev, E.I. Zamulaeva, A.E. Kudryashov, V.V. Kurbatkina, D.V. Shtansky, A.A. Voevodin, A. Sanz, Disperse-strengthening by nanoparticles advanced tribological coatings and electrode materials for their deposition. Surf. Coat. Technol. 201, 6176–6181 (2007). doi: 10.1016/j.surfcoat.2006.08.134 Google Scholar
  95. 95.
    L.-N. Tsai, G.-R. Shen, Y.-T. Cheng, W. Hsu, Performance improvement of an electrothermal microactuator fabricated using Ni-diamond nanocomposite. J. Microelectromech. Syst. 15, 149–158(2006). doi: 10.1109/JMEMS.2005.863737 Google Scholar
  96. 96.
    Y. Wang, Y. Zhao, R. Lu, L. Dong, J. Zang, J. Lu, X. Xu, Nano titania modified nanodiamonds as stable electrocatalyst supports for direct methanol fuel cells. J. Electrochem. Soc. 162, F211–F215 (2015). doi: 10.1149/2.0051503jes CrossRefGoogle Scholar
  97. 97.
    A. Moore, V. Celorrio, M.M. de Oca, D. Plana, W. Hongthani, M.J. Lazaro, D.J. Fermin, Insulating diamond particles as substrate for Pd electrocatalysts. Chem. Commun. 47, 7656–7658 (2011). doi: 10.1039/c1cc12387d CrossRefGoogle Scholar
  98. 98.
    Y. Wang, J. Zang, L. Dong, H. Pan, Y. Yuan, Y. Wang, Graphitized nanodiamond supporting PtNi alloy as stable anodic and cathodic electrocatalysts for direct methanol fuel cell. Electrochim. Acta 113, 583–590 (2013). doi: 10.1016/j.electacta.2013.09.091 CrossRefGoogle Scholar
  99. 99.
    X. Lu, J.-P. Hu, J.S. Foord, Q. Wang, Electrochemical deposition of Pt-Ru on diamond electrodes for the electrooxidation of methanol. J. Electroanal. Chem. 654, 38–43 (2011). doi: 10.1016/j.jelechem.2011.01.034 CrossRefGoogle Scholar
  100. 100.
    L. La-Torre-Riveros, R. Guzman-Blas, A.E. Mendez-Torres, M. Prelas, D.A. Tryk, C.R. Cabrera, Diamond nanoparticles as a support for Pt and Pt-Ru catalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces 4, 1134–1147 (2012). doi: 10.1021/am2018628 CrossRefGoogle Scholar
  101. 101.
    L. La-Torre-Riveros, E. Abel-Tatis, A.E. Mendez-Torres, D.A. Tryk, M. Prelas, C.R. Cabrera, Synthesis of platinum and platinum-ruthenium-modified diamond nanoparticles. J. Nanopart. Res. 13, 2997–3009 (2011). doi: 10.1007/s11051-010-0196-8 CrossRefGoogle Scholar
  102. 102.
    R. Lu, J. Zang, Y. Wang, Y. Zhao, Microwave synthesis and properties of nanodiamond supported PtRu electrocatalyst for methanol oxidation. Electrochim. Acta 60, 329–333 (2012). doi: 10.1016/j.electacta.2011.11.068 CrossRefGoogle Scholar
  103. 103.
    T. Fujimura, V.Y. Dolmatov, G.K. Burkat, E.A. Orlova, M.V. Veretennikova, Electrochemical codeposition of Sn–Pb–metal alloy along with detonation synthesis nanodiamonds. Diam. Relat. Mater. 13, 2226–2229 (2004). doi: 10.1016/j.diamond.2004.06.009 CrossRefGoogle Scholar
  104. 104.
    G.R. Salazar-Banda, K.I.B. Eguiluz, L.A. Avaca, Boron-doped diamond powder as catalyst support for fuel cell applications. Electrochem. Commun. 9, 59–64 (2006). doi: 10.1016/j.elecom.2006.08.038 CrossRefGoogle Scholar
  105. 105.
    L.Y. Bian, Y.H. Wang, J. Lu, J.B. Zang, Synthesis and electrochemical properties of TiO2/nanodiamond nanocomposite. Diam. Relat. Mater. 19, 1178–1182 (2010). doi: 10.1016/j.diamond.2010.05.007 CrossRefGoogle Scholar
  106. 106.
    Y. Zhao, Y. Wang, L. Dong, J. Huang, J. Zang, J. Lu, X. Xu, Core-shell structural nanodiamond@TiN supported Pt nanoparticles as a highly efficient and stable electrocatalyst for direct methanol fuel cells. Electrochim. Acta 148, 8–14 (2014). doi: 10.1016/j.electacta.2014.10.024 CrossRefGoogle Scholar
  107. 107.
    L.Y. Bian, Y.H. Wang, J.B. Zang, F.W. Meng, Y.L. Zhao, Microwave synthesis and characterization of Pt nanoparticles supported on undoped nanodiamond for methanol electrooxidation. Int. J. Hydrogen Energy 37, 1220–1225 (2012). doi: 10.1016/j.ijhydene.2011.09.118 CrossRefGoogle Scholar
  108. 108.
    C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007). doi: 10.1016/j.carbon.2007.08.024 CrossRefGoogle Scholar
  109. 109.
    C. Portet, J. Chmiola, Y. Gogotsi, S. Park, K. Lian, Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochim. Acta 53, 7675–7680 (2008). doi: 10.1016/j.electacta.2008.05.019 CrossRefGoogle Scholar
  110. 110.
    Y.Q. Sun, Q. Wu, Y.X. Xu, H. Bai, C. Li, G.G. Shi, Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond. J. Mater. Chem. 21, 7154–7160 (2011). doi: 10.1039/C0JM04434B CrossRefGoogle Scholar
  111. 111.
    S. Park, K. Lian, Y. Gogotsi, Pseudocapacitive behavior of carbon nanoparticles modified by phosphomolybdic acid. J. Electrochem. Soc. 156, A921–A926 (2009). doi: 10.1149/1.3223964 CrossRefGoogle Scholar
  112. 112.
    J. Zang, Y. Wang, X. Zhao, G. Xin, S. Sun, X. Qu, S. Ren, Electrochemical synthesis of polyaniline on nanodiamond powder. Int. J. Electrochem. Sci. 7, 1677–1687 (2012)Google Scholar
  113. 113.
    I. Kovalenko, D.G. Bucknall, G. Yushin, Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors. Adv. Func. Mater. 20, 3979–3986 (2010). doi: 10.1002/adfm.201000906 CrossRefGoogle Scholar
  114. 114.
    A. Kausar, R. Ashraf, M. Siddiq, Polymer/nanodiamond composites in Li-ion batteries: a review. Polymer-Plast Technol. 53, 550–563 (2014). doi: 10.1080/03602559.2013.854386 CrossRefGoogle Scholar
  115. 115.
    W. Gu, N. Peters, G. Yushin, Functionalized carbon onions, detonation nanodiamond and mesoporous carbon as cathodes in li-ion electrochemical energy storage devices. Carbon 53, 292–301 (2013). doi: 10.1016/j.carbon.2012.10.061 CrossRefGoogle Scholar
  116. 116.
    E. Tamburri, S. Orlanducci, V. Guglielmotti, G. Reina, M. Rossi, M.L. Terranova, Engineering detonation nanodiamond–polyaniline composites by electrochemical routes: structural features and functional characterizations. Polymer 52, 5001–5008 (2011). doi: 10.1016/j.polymer.2011.09.003 CrossRefGoogle Scholar
  117. 117.
    H. Gomez, M.K. Ram, F. Alvi, E. Stefanakos, A. Kumar, Novel synthesis, characterization, and corrosion inhibition properties of nanodiamond-polyaniline films. J. Phys. Chem. C 114, 18797–18804 (2010). doi: 10.1021/jp106379e CrossRefGoogle Scholar
  118. 118.
    Z. Zhao, Y. Dai, Nanodiamond/carbon nitride hybrid nanoarchitecture as an efficient metal-free catalyst for oxidant- and steam-free dehydrogenation. J. Mater. Chem. A 2, 13442–13451 (2014). doi: 10.1039/C4TA02282C CrossRefGoogle Scholar
  119. 119.
    A.E. Fischer, G.M. Swain, Preparation and characterization of boron-doped diamond powder: a possible dimensionally stable electrocatalyst support material. J. Electrochem. Soc. 152, B369–B375 (2005). doi: 10.1149/1.1984367 CrossRefGoogle Scholar
  120. 120.
    A. Ay, V.M. Swope, G.M. Swain, The physicochemical and electrochemical properties of 100 and 500 nm diameter diamond powders coated with boron-doped nanocrystalline diamond. J. Electrochem. Soc. 155, B1013–B1022 (2005). doi: 10.1149/1.2958308 CrossRefGoogle Scholar
  121. 121.
    J. Zang, Y. Wang, H. Huang, W. Tang, Electrochemical behavior of high-pressure synthetic boron doped diamond powder electrodes. Electrochim. Acta 52, 4398–4402 (2007). doi: 10.1016/j.electacta.2006.12.028 CrossRefGoogle Scholar
  122. 122.
    L. Cunci, C.R. Cabrera, Preparation and electrochemistry of boron-doped diamond nanoparticles on glassy carbon electrodes. Electrochem. Solid-State Lett. 14, K17–K19 (2011). doi: 10.1149/1.3532943 CrossRefGoogle Scholar
  123. 123.
    S. Heyer, W. Janssen, S. Turner, Y.-G. Lu, W.S. Yeap, J. Verbeeck, K. Haenen, A. Krueger, Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles. ACS Nano 8, 5757–5764 (2014). doi: 10.1021/nn500573x CrossRefGoogle Scholar
  124. 124.
    A.A.V.M. Swope, G.M. Swain, The Physicochemical and electrochemical properties of 100 and 500 nm diameter diamond powders coated with boron-doped nanocrystalline diamond. J. Electrochem. Soc. 155, B1013–B1022 (2005). doi: 10.1149/1.2958308 Google Scholar
  125. 125.
    G.R. Salazar-Banda, K.I.B. Eguiluz, L.A. Avaca, Boron-doped diamond powder as catalyst support for fuel cell applications. Electrochem. Comm. 9, 59–64 (2007). doi: 10.1016/j.elecom.2006.08.038 CrossRefGoogle Scholar
  126. 126.
    C.Y. Ko, J.H. Huang, S. Raina, W.P. Kang, A high performance non-enzymatic glucose sensor based on nickel hydroxide modified nitrogen-incorporated nanodiamonds. Analyst 138, 3201–3208 (2013). doi: 10.1039/C3AN36679K CrossRefGoogle Scholar
  127. 127.
    N. Spătaru, X. Zhang, T. Spătaru, D.A. Tryk, A. Fujishima, Anodic Deposition of RuO x∙nH2O at conductive diamond films and conductive diamond powder for electrochemical capacitors. J. Electrochem. Soc. 155, D73–D77 (2008). doi: 10.1149/1.2804379 CrossRefGoogle Scholar
  128. 128.
    S.K. Lee, M.J. Song, J.H. Kim, T.S. Kan, Y.K. Lim, J.P. Ahn, D.S. Lim, 3D-networked carbon nanotube/diamond core-shell nanowires for enhanced electrochemical performance. NPG Asia Mater. 6, e115 (2014). doi: 10.1038/am.2014.50 CrossRefGoogle Scholar
  129. 129.
    C. Dincer, E. Laubender, J. Hees, C.E. Nebel, G. Urban, J. Heinze, SECM detection of single boron doped diamond nanodes and nanoelectrode arrays using phase-operated shear force technique. Electrochem. Commun. 24, 123–127 (2012). doi: 10.1016/j.elecom.2012.08.005 Google Scholar
  130. 130.
    C. Dincer, R. Ktaich, E. Lauberder, J.J. Hees, J. Kieninger, C.E. Nebel, J. Heinze, G.A. Urabn, Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection. Electrochim. Acta. 185, 101–106 (2015). doi: 10.1016/j.electacta.2015.10.113 Google Scholar
  131. 131.
    J. Hees, R. Hoffmann, A. Kriele, W. Smirnov, H. Obloh, K. Glorer, B. Raynor, R. Driad, N. Yang, O.A. Williams, C.E. Nebel, Nanocrystalline diamond nanoelectrode arrays and ensembles. ACS Nano 5, 339–3346 (2011). doi: 10.1021/nn2005409 CrossRefGoogle Scholar
  132. 132.
    J. Hees, R. Hoffmann, N. Yang, C.E. Nebel, Diamond nanoelectrode arrays for the detection of surface sensitive adsorption. Chem. Euro. J. 19, 11287–11292 (2013). doi: 10.1002/chem.201301763 CrossRefGoogle Scholar
  133. 133.
    F. Gao, C.E. Nebel, Diamond nanowire forest decorated with nickel hydroxide as a pseudocapacitive material for fast charging-discharging. Phys. Status. Solidi. A. 212, 2533–2538 (2015). doi: 10.1002/pssa.201532131 Google Scholar
  134. 134.
    F. Gao, C.E. Nebel, Diamond-based supercapacitors: realization and properties. ACS Appl. Mater. Interfaces (2016). doi: 10.1021/acsami.5b07027 Google Scholar
  135. 135.
    F. Gao, R. Thomann, C.E. Nebel, Aligned Pt-diamond core-shell nanowires for electrochemical catalysis. Electrochem. Commun. 50, 32–35 (2015). doi: 10.1016/j.elecom.2014.11.006 Google Scholar
  136. 136.
    Q. Wang, N. Plylahan, M.V. Shelke, R.R. Devarapalli, M. Li, P. Subramanian, T. Djenizian, R. Boukherroub, S. Szunerits, Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes. Carbon 68, 175–184 (2014). doi: 10.1016/j.carbon.2013.10.077 Google Scholar
  137. 137.
    N. Yang, J.S. Foord, X. Jiang, Diamond electrochemistry at the nanoscale: A review. Carbon 99, 90–110 (2016). doi: 10.1016/j.carbon.2015.11.061 Google Scholar
  138. 138.
    Y. Liu, S. Chen, X. Quan, H. Yu, Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137, 11631–11636 (2015). doi: 10.1021/jacs.5b02975 Google Scholar
  139. 139.
    D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Muller-Sebert, D. Gaboriau, P. Gentile, B. Iliev, T. Schubert, S. Sadki, G. Bidan, C.E. Nebel. A step forward into hierarchically nanostructured materials for high performance micro-supercapacitors: Diamond-coated SiNW electrodes in protic ionic liquid electrolyte. Electrochem. Commun. 63, 34–38 (2016). doi: 10.1016/j.elecom.2015.12.008 Google Scholar
  140. 140.
    T.T. Thanh, H. Ba, L. Truong-Phuoc, J.-M. Nhut, O. Ersen, D. Begin, I. Janowska, D.L. Nguyen, P. Granger, C. Pham-Huu, A few-layer graphene–graphene oxide composite containing nanodiamonds as metal-free catalysts. J. Mater. Chem. A. 2, 11349–11357 (2014). doi: 10.1039/C4TA01307G Google Scholar
  141. 141.
    H. Krysova, L. Kavan, Z.V. Zivcova, W.S. Yeap, P. Verstappen, W. Maes, K. Haenen, F. Gao, C.E. Nebel, Dye-sensitization of boron-doped diamond foam: champion photoelectrochemical performance of diamond electrodes under solar light illumination. RSC Adv. 5, 81069–81077 (2015). doi: 10.1039/C5RA12413A Google Scholar
  142. 142.
    D.W.M. Arrigan, Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129, 1157–1165 (2004). doi: 10.1039/B415395M Google Scholar
  143. 143.
    R.G. Compton, G.G. Wildgoose, N.V. Rees, I. Streeter, R. Baron, Design, fabrication, characterisation and application of nanoelectrode arrays. Chem. Phys. Lett. 459, 1–17 (2008). doi: 10.1016/j.cplett.2008.03.095 Google Scholar
  144. 144.
    J. Guo, E. Lindner, Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: guidelines for design and experiment. Anal. Chem. 81, 130–138 (2009). doi: 10.1021/ac801592j CrossRefGoogle Scholar
  145. 145.
    M. Fleischmann, S. Pons, J. Daschbach, The ac impedance of spherical, cylindrical, disk, and ring microelectrodes. J. Electroanal. Chem. 317, 1–26 (1991). doi: 10.1016/0022-0728(91)85001-6 CrossRefGoogle Scholar
  146. 146.
    M. Fleischmann, S. Pons, The behavior of microdisk and microring electrodes. Mass transport to the disk in the unsteady state: the ac response. J. Electroanal. Chem. 250, 277–283 (1988). doi: 10.1016/0022-0728(88)85169-6 CrossRefGoogle Scholar
  147. 147.
    N. Yang, S.R. Waldvogel, X. Jiang, Electrochemistry of carbon dioxide on carbon electrodes. ACS Appl. Mater. Interfaces (2016). doi: 10.1021/acsami.5b09825 Google Scholar
  148. 148.
    N. Yang, G.M. Swain, X. Jiang, Nanocarbon electrochemistry and electroanalysis: current status and future perspectives. Electroanalysis 28, 27–34 (2016). doi: 10.1002/elan.201500577 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Materials EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations