Carbon Based Dots and Their Luminescent Properties and Analytical Applications

  • Yongqiang Dong
  • Jianhua Cai
  • Yuwu ChiEmail author
Part of the Carbon Nanostructures book series (CARBON)


Carbon based dots (CDs) composed of sp2 carbon structures and surface functional groups are a new kind of carbon nanomaterials, exhibiting unique luminescent properties due to the quantum confinement and edge effects. This chapter introduces CDs in detail from their synthetic strategies, morphological and structural characteristics, luminescent properties and mechanisms, and sensing applications. The synthesis methods are summarized as “top-down” and “bottom-up” approaches. Luminescent properties discussed include photoluminescence, upconversion luminescence, chemiluminescence, electrochemiluminescence. Sensing applications mainly refer to the chemical and biological sensors based on the luminescent properties of CDs. This chapter provides an overview of the research field and gives future perspectives for developing the exciting materials.


Carbon based dots Synthesis Morphology Luminescent property Mechanism Sensing 


  1. 1.
    S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49(38), 6726–6744 (2010). doi: 10.1002/anie.200906623 CrossRefGoogle Scholar
  2. 2.
    Y. Xu, J. Liu, C. Gao, E. Wang, Applications of carbon quantum dots in electrochemiluminescence: a mini review. Electrochem. Commun. 48, 151–154 (2014). doi: 10.1016/j.elecom.2014.08.032 CrossRefGoogle Scholar
  3. 3.
    X. Yan, B.S. Li, L.S. Li, Colloidal graphene quantum dots with well-defined structures. Acc. Chem. Res. 46(10), 2254–2262 (2013). doi: 10.1021/ar300137p Google Scholar
  4. 4.
    H.J. Sun, L. Wu, W.L. Wei, X.G. Qu, Recent advances in graphene quantum dots for sensing. Mater. Today 16(11), 433–442 (2013). doi: 10.1016/j.mattod.2013.10.020 CrossRefGoogle Scholar
  5. 5.
    M. Bacon, S.J. Bradley, T. Nann, Graphene quantum dots. Part. Part. Syst. Char. 31(4), 415–428 (2014). doi: 10.1002/ppsc.201300252 Google Scholar
  6. 6.
    L. Cao, M.J. Meziani, S. Sahu, Y.P. Sun, Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46(1), 171–180 (2012). doi: 10.1021/ar300128j CrossRefGoogle Scholar
  7. 7.
    H.T. Li, Z.H. Kang, Y. Liu, S.T. Lee, Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22(46), 24230–24253 (2012). doi: 10.1039/c2jm34690g CrossRefGoogle Scholar
  8. 8.
    X.Y. Xu, R. Ray, Y.L. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004). doi: 10.1021/ja040082h CrossRefGoogle Scholar
  9. 9.
    Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H.F. Wang, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128(24), 7756–7757 (2006). doi: 10.1021/ja062677d CrossRefGoogle Scholar
  10. 10.
    A.B. Bourlinos, R. Zbořil, J. Petr, A. Bakandritsos, M. Krysmann, E.P. Giannelis, Luminescent surface quaternized carbon dots. Chem. Mater. 24(1), 6–8 (2012). doi: 10.1021/cm2026637 CrossRefGoogle Scholar
  11. 11.
    F. Wang, S. Pang, L. Wang, Q. Li, M. Kreiter, C.Y. Liu, One-step synthesis of highly luminescent carbon dots innoncoordinating solvents. Chem. Mater. 22(16), 4528–4530 (2010). doi: 10.1021/cm101350u CrossRefGoogle Scholar
  12. 12.
    X. Chen, W. Zhang, Q. Wang, J. Fan, C8-structured carbon quantum dots: synthesis, blue and green double luminescence, and origins of surface defects. Carbon 79, 165–173 (2014). doi: 10.1016/j.carbon.2014.07.056 CrossRefGoogle Scholar
  13. 13.
    S. Chandra, S.H. Pathan, S. Mitra, B.H. Modha, A. Goswami, P. Pramanik, Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv. 2(9), 3602–3606 (2012). doi: 10.1039/c2ra00030j CrossRefGoogle Scholar
  14. 14.
    X.M. Wen, P. Yu, Y.R. Toh, X.Q. Ma, J. Tang, On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem. Commun. 50(36), 4703–4706 (2014). doi: 10.1039/c4cc01213e CrossRefGoogle Scholar
  15. 15.
    A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, V. Georgakilas, E.P. Giannelis, Photoluminescent carbogenic dots. Chem. Mater. 20(14), 4539–4541 (2008). doi: 10.1021/cm800506r CrossRefGoogle Scholar
  16. 16.
    A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, Surface functionalized carbogenic quantum dots. Small 4(4), 455–458 (2008). doi: 10.1002/smll.200700578 CrossRefGoogle Scholar
  17. 17.
    Y.F. Wang, A.G. Hu, Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2(34), 6921–6939 (2014). doi: 10.1039/c4tc00988f CrossRefGoogle Scholar
  18. 18.
    Y.B. Song, S.J. Zhu, B. Yang, Bioimaging based on fluorescent carbon dots. RSC Adv. 4(52), 27184–27200 (2014). doi: 10.1039/c3ra47994c CrossRefGoogle Scholar
  19. 19.
    K. Hola, Y. Zhang, Y. Wang, E.P. Giannelis, R. Zboril, A.L. Rogach, Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9(5), 590–603 (2014). doi: 10.1016/j.nantod.2014.09.004 CrossRefGoogle Scholar
  20. 20.
    J.C.G. Esteves da Silva, H.M.R. Gonçalves, Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal. Chem. 30(8), 1327–1336 (2011). doi: 10.1016/j.trac.2011.04.009 CrossRefGoogle Scholar
  21. 21.
    L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Chaotic dirac billiard in graphene quantum dots. Science 320(5874), 356–358 (2008). doi: 10.1126/science.1154663 CrossRefGoogle Scholar
  22. 22.
    D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22(6), 734–738 (2010). doi: 10.1002/adma.200902825 CrossRefGoogle Scholar
  23. 23.
    S. Zhu, S. Tang, J. Zhang, B. Yang, Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun. 48(38), 4527–4539 (2012). doi: 10.1039/c2cc31201h CrossRefGoogle Scholar
  24. 24.
    X. Zhou, S. Guo, J. Zhang, Solution-processable graphene quantum dots. ChemPhysChem 14(12), 2627–2640 (2013). doi: 10.1002/cphc.201300111 Google Scholar
  25. 25.
    Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energ. Environ. Sci. 5(10), 8869–8895 (2012). doi: 10.1039/c2ee22982j CrossRefGoogle Scholar
  26. 26.
    X. Wang, G. Sun, P. Routh, D.H. Kim, W. Huang, P. Chen, Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43(20), 7067–7098 (2014). doi: 10.1039/c4cs00141a CrossRefGoogle Scholar
  27. 27.
    J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48(31), 3686–3699 (2012). doi: 10.1039/c2cc00110a CrossRefGoogle Scholar
  28. 28.
    L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang, X. Chen, Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal. Chem. 54, 83–102 (2014). doi: 10.1016/j.trac.2013.11.001 CrossRefGoogle Scholar
  29. 29.
    L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.J. Zhu, Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5(10), 4015–4039 (2013). doi: 10.1039/c3nr33849e CrossRefGoogle Scholar
  30. 30.
    J.L. Li, B. Tang, B. Yuan, L. Sun, X.G. Wang, A review of optical imaging and therapy using nanosized graphene and graphene oxide. Biomaterials 34(37), 9519–9534 (2013). doi: 10.1016/j.biomaterials.2013.08.066 CrossRefGoogle Scholar
  31. 31.
    J. Guttinger, F. Molitor, C. Stampfer, S. Schnez, A. Jacobsen, S. Droscher, T. Ihn, K. Ensslin, Transport through graphene quantum dots. Rep. Prog. Phys. 75(12), 126502 (2012). doi: 10.1088/0034-4885/75/12/126502 CrossRefGoogle Scholar
  32. 32.
    S.L. Hu, K.Y. Niu, J. Sun, J. Yang, N.Q. Zhao, X.W. Du, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 19(4), 484–488 (2009). doi: 10.1039/b812943f CrossRefGoogle Scholar
  33. 33.
    X. Wang, L. Cao, F. Lu, M.J. Meziani, H. Li, G. Qi, B. Zhou, B.A. Harruff, F. Kermarrec, Y.P. Sun, Photoinduced electron transfers with carbon dots. Chem. Commun. 25, 3774–3776 (2009). doi: 10.1039/b906252a CrossRefGoogle Scholar
  34. 34.
    S.T. Yang, X. Wang, H.F. Wang, F.S. Lu, P.J.G. Luo, L. Cao, M.J. Meziani, J.H. Liu, Y.F. Liu, M. Chen, Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 113(42), 18110–18114 (2009). doi: 10.1021/jp9085969 CrossRefGoogle Scholar
  35. 35.
    S.T. Yang, L. Cao, P.G.J. Luo, F.S. Lu, X. Wang, H.F. Wang, M.J. Meziani, Y.F. Liu, G. Qi, Y.P. Sun, Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131(32), 11308–11309 (2009). doi: 10.1021/ja904843x CrossRefGoogle Scholar
  36. 36.
    Q. Li, T.Y. Qhulchanskyy, R.L. Liu, K. Koynov, D.Q. Wu, A. Best, R. Kumar, A. Bonoiu, P.N. Prasad, Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells. J. Phys. Chem. C 114(28), 12062–12068 (2010). doi: 10.1021/jp911539r CrossRefGoogle Scholar
  37. 37.
    L. Cao, X. Wang, M.J. Meziani, F.S. Lu, H.F. Wang, P.J.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, Carbon dots for nultiphoton bioimaging. J. Am. Chem. Soc. 129(37), 11318–11319 (2007). doi: 10.1021/ja073527l CrossRefGoogle Scholar
  38. 38.
    H. Liu, T. Ye, C. Mao, Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 46(34), 6473–6475 (2007). doi: 10.1002/anie.200701271 CrossRefGoogle Scholar
  39. 39.
    S.C. Ray, A. Saha, N.R. Jana, R. Sarkar, Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J. Phys. Chem. C 113(43), 18546–18551 (2009). doi: 10.1021/jp905912n CrossRefGoogle Scholar
  40. 40.
    X.H. Wang, K.G. Qu, B.L. Xu, J.S. Ren, X.G. Qu, Multicolor luminescent carbon nanoparticles: synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Res. 4(9), 908–920 (2011). doi: 10.1007/s12274-011-0147-4 CrossRefGoogle Scholar
  41. 41.
    M. Tan, L. Zhang, R. Tang, X. Song, Y. Li, H. Wu, Y. Wang, G. Lv, W. Liu, X. Ma, Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source. Talanta 115, 950–956 (2013). doi: 10.1016/j.talanta.2013.06.061 CrossRefGoogle Scholar
  42. 42.
    L. Tian, D. Ghosh, W. Chen, S. Pradhan, X.J. Chang, S.W. Chen, Nanosized carbon particles from natural gas soot. Chem. Mater. 21(13), 2803–2809 (2009). doi: 10.1021/cm900709w CrossRefGoogle Scholar
  43. 43.
    J.M. Berlin, T.T. Pham, D. Sano, K.A. Mohamedali, D.C. Marcano, J.N. Myers, J.M. Tour, Noncovalent functionalization of carbon nanovectors with an antibody enables targeted drug delivery. ACS Nano 5(8), 6643–6650 (2011). doi: 10.1021/nn2021293 CrossRefGoogle Scholar
  44. 44.
    Y. Dong, N. Zhou, X. Lin, J. Lin, Y. Chi, G. Chen, Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem. Mater. 22(21), 5895–5899 (2010). doi: 10.1021/cm1018844 CrossRefGoogle Scholar
  45. 45.
    Y. Dong, C. Chen, X. Zheng, L. Gao, Z. Cui, H. Yang, C. Guo, Y. Chi, C.M. Li, One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem C 22(18), 8764–8766 (2012). doi: 10.1039/c2jm30658a CrossRefGoogle Scholar
  46. 46.
    Y. Dong, J. Lin, Y. Chen, F. Fu, Y. Chi, G. Chen, Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale 6(13), 7410–7415 (2014). doi: 10.1039/c4nr01482k CrossRefGoogle Scholar
  47. 47.
    Z.A. Qiao, Y. Wang, Y. Gao, H. Li, T. Dai, Y. Liu, Q. Huo, Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun. 46(46), 8812–8814 (2010). doi: 10.1039/c0cc02724c CrossRefGoogle Scholar
  48. 48.
    Y. Dong, C.X. Guo, Y. Chi, C.M. Li, Reply to comment on “one-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black”. J. Mater. Chem. 22(40), 21777–21778 (2012). doi: 10.1039/c2jm34130a CrossRefGoogle Scholar
  49. 49.
    P. Teng, J. Xie, Y. Long, X. Huang, R. Zhu, X. Wang, L. Liang, Y. Huang, H. Zheng, Chemiluminescence behavior of the carbon dots and the reduced state carbon dots. J. Lumin. 146, 464–469 (2014). doi: 10.1016/j.jlumin.2013.09.036 CrossRefGoogle Scholar
  50. 50.
    R. Liu, D. Wu, X. Feng, K. Mullen, Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 133(39), 15221–15223 (2011). doi: 10.1021/ja204953k CrossRefGoogle Scholar
  51. 51.
    W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). doi: 10.1021/ja01539a017 CrossRefGoogle Scholar
  52. 52.
    J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, P.M. Ajayan, Graphene quantum dots derived from carbon fibers. Nano Lett. 12(2), 844–849 (2012). doi: 10.1021/nl2038979 CrossRefGoogle Scholar
  53. 53.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009). doi: 10.1038/nature07872 CrossRefGoogle Scholar
  54. 54.
    S.J. Zhuo, M.W. Shao, S.T. Lee, Upconversion and downconversion gluorescent graphene quantum dots. ACS Nano 6(2), 1059–1064 (2012). doi: 10.1021/nn2040395 CrossRefGoogle Scholar
  55. 55.
    D. Pan, L. Guo, J. Zhang, C. Xi, Q. Xue, H. Huang, J. Li, Z. Zhang, W. Yu, Z. Chen, Z. Li, M. Wu, Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 22(8), 3314–3318 (2012). doi: 10.1039/c2jm16005f CrossRefGoogle Scholar
  56. 56.
    S. Kim, S.W. Hwang, M.K. Kim, D.Y. Shin, D.H. Shin, C.O. Kim, S.B. Yang, J.H. Park, E. Hwang, S.H. Choi, Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano 6(9), 8203–8208 (2012). doi: 10.1021/nn302878r CrossRefGoogle Scholar
  57. 57.
    L.L. Li, J. Ji, R. Fei, C.Z. Wang, Q. Lu, J.R. Zhang, L.P. Jiang, J.J. Zhu, A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 22(14), 2971–2979 (2012). doi: 10.1002/adfm.201200166 CrossRefGoogle Scholar
  58. 58.
    M. Nurunnabi, Z. Khatun, K.M. Huh, S.Y. Park, D.Y. Lee, K.J. Cho, Y.K. Lee, In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7(8), 6858–6867 (2013). doi: 10.1021/nn402043c CrossRefGoogle Scholar
  59. 59.
    M. Nurunnabi, Z. Khatun, M. Nafiujjaman, D.G. Lee, Y.K. Lee, Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging. ACS Appl. Mater. Inter. 5(16), 8246–8253 (2013). doi: 10.1021/am4023863 CrossRefGoogle Scholar
  60. 60.
    Z.S. Qian, X.Y. Shan, L.J. Chai, J.J. Ma, J.R. Chen, H. Feng, A universal fluorescence sensing strategy based on biocompatible graphene quantum dots and graphene oxide for the detection of DNA. Nanoscale 6(11), 5671–5674 (2014). doi: 10.1039/c3nr06583a CrossRefGoogle Scholar
  61. 61.
    Y. Sun, S. Wang, C. Li, P. Luo, L. Tao, Y. Wei, G. Shi, Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys. Chem. Chem. Phys. 15(24), 9907–9913 (2013). doi: 10.1039/c3cp50691f CrossRefGoogle Scholar
  62. 62.
    R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N.P. Cook, E.L. Samuel, C.C. Hwang, G. Ruan, G. Ceriotti, A.R. Raji, A.A. Marti, J.M. Tour, Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2943 (2013). doi: 10.1038/ncomms3943 Google Scholar
  63. 63.
    M. Wu, Y. Wang, W. Wu, C. Hu, X. Wang, J. Zheng, Z. Li, B. Jiang, J. Qiu, Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 78, 480–489 (2014). doi: 10.1016/j.carbon.2014.07.029 CrossRefGoogle Scholar
  64. 64.
    X.J. Zhou, Y. Zhang, C. Wang, X.C. Wu, Y.Q. Yang, B. Zheng, H.X. Wu, S.W. Guo, J.Y. Zhang, Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 6(8), 6592–6599 (2012)CrossRefGoogle Scholar
  65. 65.
    K. Ikehata, M.G. EI-Din, Aqueous pesticide degradation by hydrogen peroxide ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. Environ. Eng. Sci. 5(2), 81–135 (2006). doi: 10.1139/S05-046 CrossRefGoogle Scholar
  66. 66.
    J.G. Zhou, C. Booker, R.Y. Li, X.T. Zhou, T.K. Sham, X.L. Sun, Z.F. Ding, An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129(4), 744–745 (2007). doi: 10.1021/ja0669070 CrossRefGoogle Scholar
  67. 67.
    Q.L. Zhao, Z.L. Zhang, B.H. Huang, J. Peng, M. Zhang, D.W. Pang, Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 41, 5116–5118 (2008). doi: 10.1039/b812420e CrossRefGoogle Scholar
  68. 68.
    L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc. 131(13), 4564–4565 (2009). doi: 10.1021/ja809073f CrossRefGoogle Scholar
  69. 69.
    H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H. Tsang, X. Yang, S.T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49(26), 4430–4434 (2010). doi: 10.1002/anie.200906154 CrossRefGoogle Scholar
  70. 70.
    J. Lu, J.X. Yang, J.Z. Wang, A.L. Lim, S. Wang, K.P. Loh, One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8), 2367–2375 (2009). doi: 10.1021/nn900546b CrossRefGoogle Scholar
  71. 71.
    Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23(6), 776–780 (2011). doi: 10.1002/adma.201003819 CrossRefGoogle Scholar
  72. 72.
    Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134(1), 15–18 (2012). doi: 10.1021/ja206030c CrossRefGoogle Scholar
  73. 73.
    L. Bao, Z.L. Zhang, Z.Q. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi, D.W. Pang, Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv. Mater. 23(48), 5801–5806 (2011). doi: 10.1002/adma.201102866 CrossRefGoogle Scholar
  74. 74.
    M. Zhang, L. Bai, W. Shang, W. Xie, H. Ma, Y. Fu, D. Fang, H. Sun, L. Fan, M. Han, C. Liu, S. Yang, Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Am. Chem. Soc. 22(15), 7461–7467 (2012). doi: 10.1039/c2jm16835a Google Scholar
  75. 75.
    D.B. Shinde, V.K. Pillai, Electrochemical resolution of multiple redox events for graphene quantum dots. Angew. Chem. Int. Ed. 52(9), 2482–2485 (2013). doi: 10.1002/anie.201208904 CrossRefGoogle Scholar
  76. 76.
    D.B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem. Eur. J. 18(39), 12522–12528 (2012). doi: 10.1002/chem.201201043 CrossRefGoogle Scholar
  77. 77.
    D.V. Kosynkin, A.L. Higginboham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009). doi: 10.1038/nature07872 CrossRefGoogle Scholar
  78. 78.
    Y. Dong, H. Pang, S. Ren, C. Chen, Y. Chi, T. Yu, Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots. Carbon 64, 245–251 (2013). doi: 10.1016/j.carbon.2013.07.059 CrossRefGoogle Scholar
  79. 79.
    F. Yang, M. Zhao, B. Zheng, D. Xiao, L. Wu, Y. Guo, Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. J. Mater. Chem. 22(48), 25471–25479 (2012). doi: 10.1039/c2jm35471c CrossRefGoogle Scholar
  80. 80.
    H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24(39), 5333–5338 (2012). doi: 10.1002/adma.201201930 CrossRefGoogle Scholar
  81. 81.
    S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 47(24), 6858–6860 (2011). doi: 10.1039/c1cc11122a CrossRefGoogle Scholar
  82. 82.
    L. Lin, S. Zhang, Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 48(82), 10177–10179 (2012). doi: 10.1039/c2cc35559k CrossRefGoogle Scholar
  83. 83.
    X. Zhu, H. Wang, Q. Jiao, X. Xiao, X. Zuo, Y. Liang, J. Nan, J. Wang, L. Wang, Preparation and characterization of the fluorescent carbon dots derived from the lithium-Intercalated graphite used for cell Imaging. Part. Part. Syst. Char. 31(7), 771–777 (2014). doi: 10.1002/ppsc.201300327 CrossRefGoogle Scholar
  84. 84.
    J. Lee, K. Kim, W.I. Park, B.H. Kim, J.H. Park, T.H. Kim, S. Bong, C.H. Kim, G. Chae, M. Jun, Y. Hwang, Y.S. Jung, S. Jeon, Uniform graphene quantum dots patterned from self-assembled silica nanodots. Nano Lett. 12(12), 6078–6083 (2012). doi: 10.1021/nl302520m CrossRefGoogle Scholar
  85. 85.
    H. Li, X. He, Y. Liu, H. Yu, Z. Kang, S.-T. Lee, Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Mater. Res. Bull. 46(1), 147–151 (2011). doi: 10.1016/j.materresbull.2010.10.013 CrossRefGoogle Scholar
  86. 86.
    F. Liu, M.H. Jang, H.D. Ha, J.H. Kim, Y.H. Cho, T.S. Seo, Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence. Adv. Mater. 25(27), 3657–3662 (2013). doi: 10.1002/adma.201300233doi:10.1002/adma.201300233 CrossRefGoogle Scholar
  87. 87.
    Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao, Y. Chi, C.M. Li, T. Yu, Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int. Ed. 52(30), 7800–7804 (2013). doi: 10.1002/anie.201301114 CrossRefGoogle Scholar
  88. 88.
    S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52(14), 3953–3957 (2013). doi: 10.1002/anie.201300519 CrossRefGoogle Scholar
  89. 89.
    M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134(2), 747–750 (2012). doi: 10.1021/ja204661r CrossRefGoogle Scholar
  90. 90.
    D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5(24), 12272–12277 (2013). doi: 10.1039/c3nr04402e CrossRefGoogle Scholar
  91. 91.
    H. Zhang, Y. Chen, M. Liang, L. Xu, S. Qi, H. Chen, X. Chen, Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal. Chem. 86(19), 9846–9852 (2014). doi: 10.1021/ac502446m CrossRefGoogle Scholar
  92. 92.
    M. Amjadi, J.L. Manzoori, T. Hallaj, M.H. Sorouraddin, Direct chemiluminescence of carbon dots induced by potassium ferricyanide and its analytical application. Spectrochimi. Acta A 122, 715–720 (2014). doi: 10.1016/j.saa.2013.11.097 CrossRefGoogle Scholar
  93. 93.
    Y. Guo, Z. Wang, H. Shao, X. Jiang, Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon 52, 583–589 (2013). doi: 10.1016/j.carbon.2012.10.028 CrossRefGoogle Scholar
  94. 94.
    K. Qu, J. Wang, J. Ren, X. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem. Eur. J. 19(22), 7243–7249 (2013). doi: 10.1002/chem.20130004295 CrossRefGoogle Scholar
  95. 95.
    P. Shen, Y. Xia, Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal. Chem. 86(11), 5323–5329 (2014). doi: 10.1021/ac5001338 CrossRefGoogle Scholar
  96. 96.
    J. Wei, X. Zhang, Y. Sheng, J. Shen, P. Huang, S. Guo, J. Pan, B. Feng, Dual functional carbon dots derived from cornflour via a simple one-pot hydrothermal route. Mater. Lett. 123, 107–111 (2014). doi: 10.1016/j.matlet.2014.02.090 CrossRefGoogle Scholar
  97. 97.
    Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao, J. Chen, Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem. Eur. J. 20(8), 2254–2263 (2014). doi: 10.1002/chem.201304374 CrossRefGoogle Scholar
  98. 98.
    R. Zhang, W. Chen, Nitrogen-doped carbon quantum dots: facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens. Bioelecton. 55, 83–90 (2014). doi: 10.1016/j.bios.2013.11.074 CrossRefGoogle Scholar
  99. 99.
    H. Dai, Y. Shi, Y. Wang, Y. Sun, J. Hu, P. Ni, Z. Li, A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sens. Actuat. B Chem. 202, 201–208 (2014). doi: 10.1016/j.snb.2014.05.058 CrossRefGoogle Scholar
  100. 100.
    A. Sachdev, I. Matai, P. Gopinath, Implications of surface passivation on physicochemical and bioimaging properties of carbon dots. RSC Adv. 4(40), 20915 (2014). doi: 10.1039/c4ra02017k CrossRefGoogle Scholar
  101. 101.
    R.-J. Fan, Q. Sun, L. Zhang, Y. Zhang, A.-H. Lu, Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. Carbon 71, 87–93 (2014). doi: 10.1016/j.carbon.2014.01.016 CrossRefGoogle Scholar
  102. 102.
    L. Wang, H.S. Zhou, Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal. Chem. 86(18), 8902–8905 (2014). doi: 10.1021/ac502646x CrossRefGoogle Scholar
  103. 103.
    Z. Qian, X. Shan, L. Chai, J. Ma, J. Chen, H. Feng, Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl. Mater. Inter. 6(9), 6797–6805 (2014). doi: 10.1021/am500403n CrossRefGoogle Scholar
  104. 104.
    Q. Wang, X. Huang, Y. Long, X. Wang, H. Zhang, R. Zhu, L. Liang, P. Teng, H. Zheng, Hollow luminescent carbon dots for drug delivery. Carbon 59, 192–199 (2013). doi: 10.1016/j.carbon.2013.03.009 CrossRefGoogle Scholar
  105. 105.
    L. Hu, Y. Sun, S. Li, X. Wang, K. Hu, L. Wang, WuY Liang X-j, Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon 67, 508–513 (2014). doi: 10.1016/j.carbon.2013.10.023 CrossRefGoogle Scholar
  106. 106.
    X. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng, Y. Dou, Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens. Bioelectron. 60, 292–298 (2014). doi: 10.1016/j.bios.2014.04.046 CrossRefGoogle Scholar
  107. 107.
    S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. 48(70), 8835–8837 (2012). doi: 10.1039/c2cc33796g CrossRefGoogle Scholar
  108. 108.
    W. Wang, Y.C. Lu, H. Huang, J.J. Feng, J.R. Chen, A.J. Wang, Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging. Analyst 139(7), 1692–1696 (2014). doi: 10.1039/c3an02098c CrossRefGoogle Scholar
  109. 109.
    Z.C. Yang, M. Wang, A.M. Yong, S.Y. Wong, X.H. Zhang, H. Tan, A.Y. Chang, X. Li, J. Wang, Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun. 47(42), 11615–11617 (2011). doi: 10.1039/c1cc14860e CrossRefGoogle Scholar
  110. 110.
    Z.C. Yang, X. Li, J. Wang, Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process. Carbon 49(15), 5207–5212 (2011). doi: 10.1016/j.carbon.2011.07.038 CrossRefGoogle Scholar
  111. 111.
    O. Kozák, K.K.R. Datta, M. Greplová, V. Ranc, J. Kašlík, R. Zbořil, Surfactant-derived amphiphilic carbon dots with tunable photoluminescence. J. Phys. Chem. C 117(47), 24991–24996 (2013). doi: 10.1021/jp4040166 CrossRefGoogle Scholar
  112. 112.
    Z.C. Liang, L. Zeng, X.D. Cao, Q. Wang, X.H. Wang, R.C. Sun, Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH4OH passivation. J. Mater. Chem. C 2, 9760–9766. (2014). doi: 10.1039/C4TC01714E Google Scholar
  113. 113.
    P.C. Hsu, H.T. Chang, Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem. Commun. 48(33), 3984–3986 (2012). doi: 10.1039/c2cc30188a CrossRefGoogle Scholar
  114. 114.
    X.M. Li, S.P. Lau, L.B. Tang, R.B. Ji, P.Z. Yang, Multicolour light emission from chlorine-doped graphene quantum dots. J. Mater. Chem. C 1, 7308–7313 (2014). doi: 10.1039/C3TC31473A CrossRefGoogle Scholar
  115. 115.
    Y. Xu, C.J. Tang, H. Huang, C.Q. Sun, Y.K. Zhang, Q.F. Ye, A.J. Wang, Green synthesis of fluorescent carbon quantum dots for detection of Hg2+. Chine. J. Anal. Chem. 42(9), 1252–1258 (2014). doi: 10.1016/s1872-2040(14)60765-9 CrossRefGoogle Scholar
  116. 116.
    Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50(12), 4738–4743 (2012). doi: 10.1016/j.carbon.2012.06.002 CrossRefGoogle Scholar
  117. 117.
    Y. Dong, R. Wang, H. Li, J. Shao, Y. Chi, X. Lin, G. Chen, Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50(8), 2810–2815 (2012). doi: 10.1016/j.carbon.2012.02.046 CrossRefGoogle Scholar
  118. 118.
    X. Teng, C. Ma, C. Ge, M. Yan, J. Yang, Y. Zhang, P.C. Morais, H. Bi, Green synthesis of nitrogen-doped carbon dots from konjac flour with “off–on” fluorescence by Fe3+ and l-lysine for bioimaging. J. Mater. Chem. B 2(29), 4631–4639 (2014). doi: 10.1039/c4tb00368c CrossRefGoogle Scholar
  119. 119.
    P.Y. Lin, C.W. Hsieh, M.L. Kung, L.Y. Chu, H.J. Huang, H.T. Chen, D.C. Wu, C.H. Kuo, S.L. Hsieh, S. Hsieh, Eco-friendly synthesis of shrimp egg-derived carbon dots for fluorescent bioimaging. J. Biotechnol. 189, 114–119 (2014). doi: 10.1016/j.jbiotec.2014.08.043 CrossRefGoogle Scholar
  120. 120.
    J. Niu, H. Gao, Synthesis and drug detection performance of nitrogen-doped carbon dots. J. Lumin. 149, 159–162 (2014). doi: 10.1016/j.jlumin.2014.01.026 CrossRefGoogle Scholar
  121. 121.
    Y. Xu, M. Wu, X.Z. Feng, X.B. Yin, X.W. He, Y.K. Zhang, Reduced carbon dots versus oxidized carbon dots: photo- and electrochemiluminescence investigations for selected applications. Chem. Eur. J. 19(20), 6282–6288 (2013). doi: 10.1002/chem.201204372 CrossRefGoogle Scholar
  122. 122.
    K. Hola, A.B. Bourlinos, O. Kozak, K. Berka, K.M. Siskova, M. Havrdova, J. Tucek, K. Safarova, M. Otyepka, E.P. Giannelis, R. Zboril, Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO induced red-shift emission. Carbon 70, 279–286 (2014). doi: 10.1016/j.carbon.2014.01.008 CrossRefGoogle Scholar
  123. 123.
    J. Niu, H. Gao, L. Wang, S. Xin, G. Zhang, Q. Wang, L. Guo, W. Liu, X. Gao, Y. Wang, Facile synthesis and optical properties of nitrogen-doped carbon dots. New J. Chem. 38(4), 1522–1527 (2014). doi: 10.1039/c3nj01068f CrossRefGoogle Scholar
  124. 124.
    J. Wei, J. Shen, X. Zhang, S. Guo, J. Pan, X. Hou, H. Zhang, L. Wang, B. Feng, Simple one-step synthesis of water-soluble fluorescent carbon dots derived from paper ash. RSC Adv. 3(32), 13119–13122 (2013). doi: 10.1039/c3ra41751d CrossRefGoogle Scholar
  125. 125.
    J. Wang, C.F. Wang, S. Chen, Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew. Chem. Int. Ed. 51(37), 9297–9301 (2012). doi: 10.1002/anie CrossRefGoogle Scholar
  126. 126.
    J. Zhou, Z. Sheng, H. Han, M. Zou, C. Li, Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater. Lett. 66(1), 222–224 (2012). doi: 10.1016/j.matlet.2011.08.081 CrossRefGoogle Scholar
  127. 127.
    X. Dong, Y. Su, H. Geng, Z. Li, C. Yang, X. Li, Y. Zhang, Fast one-step synthesis of N-doped carbon dots by pyrolyzing ethanolamine. J. Mater. Chem. C 2(36), 7477–7481 (2014). doi: 10.1039/c4tc01139b CrossRefGoogle Scholar
  128. 128.
    Z. Jiang, A. Nolan, J.G. Walton, A. Lilienkampf, R. Zhang, M. Bradley, Photoluminescent carbon dots from 1,4-addition polymers. Chem. Eur. J. 20(35), 10926–10931 (2014). doi: 10.1002/chem.201403076 CrossRefGoogle Scholar
  129. 129.
    D. Pan, J. Zhang, Z. Li, C. Wu, X. Yan, M. Wu, Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 46(21), 3681–3683 (2010). doi: 10.1039/c000114g CrossRefGoogle Scholar
  130. 130.
    F. Wang, M. Kreiter, B. He, S. Pang, C.Y. Liu, Synthesis of direct white-light emitting carbogenic quantum dots. Chem. Commun. 46(19), 3309–3311 (2010). doi: 10.1039/c002206c CrossRefGoogle Scholar
  131. 131.
    X. Guo, C.F. Wang, Z.Y. Yu, L. Chen, S. Chen, Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem. Commun. 48(21), 2692–2694 (2012). doi: 10.1039/c2cc17769b CrossRefGoogle Scholar
  132. 132.
    H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 34, 5118–5120 (2009). doi: 10.1039/b907612c CrossRefGoogle Scholar
  133. 133.
    X. Wang, K. Qu, B. Xu, J. Ren, X. Qu, Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J. Mater. Chem. 21(8), 2445–2450 (2011). doi: 10.1039/c0jm02963g CrossRefGoogle Scholar
  134. 134.
    X. Zhai, P. Zhang, C. Liu, T. Bai, W. Li, L. Dai, W. Liu, Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem. Commun. 48(64), 7955–7957 (2012). doi: 10.1039/c2cc33869f CrossRefGoogle Scholar
  135. 135.
    Z. Lin, W. Xue, H. Chen, J.M. Lin, Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal. Chem. 83(21), 8245–8251 (2011). doi: 10.1021/ac202039h CrossRefGoogle Scholar
  136. 136.
    A. Salinas-Castillo, M. Ariza-Avidad, C. Pritz, M. Camprubi-Robles, B. Fernandez, M.J. Ruedas-Rama, A. Megia-Fernandez, A. Lapresta-Fernandez, F. Santoyo-Gonzalez, A. Schrott-Fischer, L.F. Capitan-Vallvey, Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem. Commun. 49(11), 1103–1105 (2013). doi: 10.1039/c2cc36450f CrossRefGoogle Scholar
  137. 137.
    A. Zhao, C. Zhao, M. Li, J. Ren, X. Qu, Ionic liquids as precursors for highly luminescent, surface-different nitrogen-doped carbon dots used for label-free detection of Cu2+/Fe3+ and cell imaging. Anal. Chem. Acta 809, 128–133 (2014). doi: 10.1016/j.aca.2013.10.046 CrossRefGoogle Scholar
  138. 138.
    Y. Zhai, Z. Zhu, C. Zhu, J. Ren, E. Wang, S. Dong, Multifunctional water-soluble luminescent carbon dots for imaging and Hg2+ sensing. J. Mater. Chem. B 2(40), 6995–6999 (2014). doi: 10.1039/c4tb01035c CrossRefGoogle Scholar
  139. 139.
    E.F. Simoes, J.C. da Silva, J.M. Leitao, Carbon dots from tryptophan doped glucose for peroxynitrite sensing. Anal. Chem. Acta 852, 174–180 (2014). doi: 10.1016/j.aca.2014.08.050 CrossRefGoogle Scholar
  140. 140.
    W. Wang, Y. Li, L. Cheng, Z. Cao, W. Liu, Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J. Mater. Chem. B 2(1), 46–48 (2014). doi: 10.1039/c3tb21370f CrossRefGoogle Scholar
  141. 141.
    Y.F. Huang, X. Zhou, R. Zhou, H. Zhang, K.B. Kang, M. Zhao, Y. Peng, Q. Wang, H.L. Zhang, W.Y. Qiu, One-pot synthesis of highly luminescent carbon quantum dots and their nontoxic ingestion by zebrafish for in vivo imaging. Chem. Eur. J. 20(19), 5640–5648 (2014). doi: 10.1002/chem.201400011 CrossRefGoogle Scholar
  142. 142.
    C. Liu, P. Zhang, X. Zhai, F. Tian, W. Li, J. Yang, Y. Liu, H. Wang, W. Wang, W. Liu, Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33(13), 3604–3613 (2012). doi: 10.1016/j.biomaterials.2012.01.052 CrossRefGoogle Scholar
  143. 143.
    J. Gong, X. An, X. Yan, A novel rapid and green synthesis of highly luminescent carbon dots with good biocompatibility for cell imaging. New J. Chem. 38(4), 1376–1379 (2014). doi: 10.1039/c3nj01320k CrossRefGoogle Scholar
  144. 144.
    Q. Liu, S. Xu, C. Niu, M. Li, D. He, Z. Lu, L. Ma, N. Na, F. Huang, H. Jiang, J. Ouyang, Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosens. Bioelectron. 64, 119–125 (2015). doi: 10.1016/j.bios.2014.08.052 CrossRefGoogle Scholar
  145. 145.
    J. Wang, C. Cheng, Y. Huang, B. Zheng, H. Yuan, L. Bo, M.-W. Zheng, S.-Y. Yang, Y. Guo, D. Xiao, A facile large-scale microwave synthesis of highly fluorescent carbon dots from benzenediol isomers. J. Mater. Chem. C 2(25), 5028–5035 (2014). doi: 10.1039/c3tc32131b CrossRefGoogle Scholar
  146. 146.
    S. Liu, L. Wang, J. Tian, J. Zhai, Y. Luo, W. Lu, X. Sun, Acid-driven, microwave-assisted production of photoluminescent carbon nitride dots from N. N-dimethylformamide. RSC Adv. 1(6), 951–953 (2011). doi: 10.1039/c1ra00249j CrossRefGoogle Scholar
  147. 147.
    C. Liu, P. Zhang, F. Tian, W. Li, F. Li, W. Liu, One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. J. Mater. Chem. 21(35), 13163–13167 (2011). doi: 10.1039/c1jm12744f CrossRefGoogle Scholar
  148. 148.
    R.J. Libin Tang, Xiangke Cao, Jingyu Lin, Hongxing Jiang, Xueming Li, Kar Seng Teng, Chi Man Luk, Songjun Zeng, Jianhua Hao, Shu Ping Lau, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6, 5102–5110 (2012). doi: 10.1021/nn300760g CrossRefGoogle Scholar
  149. 149.
    L.B. Tang, R.B. Ji, X.M. Li, G.X. Bai, C.P. Liu, J.H. Hao, J.Y. Lin, H.X. Jiang, K.S. Teng, Z.B. Yang, Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 8(6), 6312–6320 (2014). doi: 10.1021/nn501796r CrossRefGoogle Scholar
  150. 150.
    R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. Int. Ed. 48(25), 4598–4601 (2009). doi: 10.1002/anie.200900652 CrossRefGoogle Scholar
  151. 151.
    J. Zong, Y. Zhu, X. Yang, J. Shen, C. Li, Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chem. Commun. (Camb.) 47(2), 764–766 (2011). doi: 10.1039/c0cc03092a CrossRefGoogle Scholar
  152. 152.
    J. Zong, X. Yang, A. Trinchi, S. Hardin, I. Cole, Y. Zhu, C. Li, T. Muster, G. Wei, Carbon dots as fluorescent probes for “off-on” detection of Cu2+ and L-cysteine in aqueous solution. Biosens. Bioelectron. 51, 330–335 (2014). doi: 10.1016/j.bios.2013.07.042 CrossRefGoogle Scholar
  153. 153.
    S. Liu, J. Tian, L. Wang, Y. Luo, J. Zhai, X. Sun, Preparation of photoluminescent carbon nitride dots from CCl4 and 1,2-ethylenediamine: a heat-treatment-based strategy. J. Mater. Chem. 21(32), 11726–11729 (2011). doi: 10.1039/c1jm12149a CrossRefGoogle Scholar
  154. 154.
    E.J. Goh, K.S. Kim, Y.R. Kim, H.S. Jung, S. Beack, W.H. Kong, G. Scarcelli, S.H. Yun, S.K. Hahn, Bioimaging of hyaluronic acid derivatives using nanosized carbon dots. Biomacromolecules 13(8), 2554–2561 (2012). doi: 10.1021/bm300796q CrossRefGoogle Scholar
  155. 155.
    R. Liu, H. Li, W. Kong, J. Liu, Y. Liu, C. Tong, X. Zhang, Z. Kang, Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots. Mater. Res. Bull. 48(7), 2529–2534 (2013). doi: 10.1016/j.materresbull.2013.03.015 Google Scholar
  156. 156.
    H. Nie, M. Li, Q. Li, S. Liang, Y. Tan, L. Sheng, W. Shi, S.X.-A. Zhang, Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem. Mater. 26(10), 3104–3112 (2014). doi: 10.1021/cm5003669 CrossRefGoogle Scholar
  157. 157.
    W. Kong, R. Liu, H. Li, J. Liu, H. Huang, Y. Liu, Z. Kang, High-bright fluorescent carbon dots and their application in selective nucleoli staining. J. Mater. Chem. B 2(31), 5077–5082 (2014). doi: 10.1039/c4tb00579a CrossRefGoogle Scholar
  158. 158.
    C.-W. Lai, Y.-H. Hsiao, Y.-K. Peng, P.-T. Chou, Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J. Mater. Chem. 22(29), 14403–14409 (2012). doi: 10.1039/c2jm32206d CrossRefGoogle Scholar
  159. 159.
    Y.Y. Zhang, M. Wu, Y.Q. Wang, X.W. He, W.Y. Li, X.Z. Feng, A new hydrothermal refluxing route to strong fluorescent carbon dots and its application as fluorescent imaging agent. Talanta 117, 196–202 (2013). doi: 10.1016/j.talanta.2013.09.003 CrossRefGoogle Scholar
  160. 160.
    Y. Hu, J. Yang, J. Tian, L. Jia, J.-S. Yu, Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon 77, 775–782 (2014). doi: 10.1016/j.carbon.2014.05.081 CrossRefGoogle Scholar
  161. 161.
    X. Yan, B. Li, X. Cui, Q. Wei, K. Tajima, Li L-s, Independent tuning of the band gap and redox potential of graphene quantum dots. J. Phys. Chem. Lett. 2(10), 1119–1124 (2011). doi: 10.1021/jz200450r CrossRefGoogle Scholar
  162. 162.
    X. Yan, X. Cui, B. Li, L.S. Li, Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10(5), 1869–1873 (2010). doi: 10.1021/nl101060h CrossRefGoogle Scholar
  163. 163.
    Yan L-sLX, Colloidal graphene quantum dots. J. Phys. Chem. Lett. 1, 2572–2576 (2010). doi: 10.1021/jz100862f|J CrossRefGoogle Scholar
  164. 164.
    X.C. Xin Yan, Liang-shi Li, Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 132, 5944–5945 (2010). doi: 10.1021/ja1009376 CrossRefGoogle Scholar
  165. 165.
    M.L. Mueller, X. Yan, J.A. McGuire, L.S. Li, Triplet states and electronic relaxation in photoexcited graphene quantum dots. Nano Lett. 10(7), 2679–2682 (2010). doi: 10.1021/nl101474d CrossRefGoogle Scholar
  166. 166.
    J. Zhang, W. Shen, D. Pan, Z. Zhang, Y. Fang, M. Wu, Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose. New J. Chem. 34(4), 591–593 (2010). doi: 10.1039/b9nj00662a CrossRefGoogle Scholar
  167. 167.
    Y. Liu, Liu C-y, Zhang Z-y, Synthesis of highly luminescent graphitized carbon dots and the application in the Hg2+ detection. Appl. Surf. Sci. 263, 481–485 (2012). doi: 10.1016/j.apsusc.2012.09.088 CrossRefGoogle Scholar
  168. 168.
    Y. Dong, H. Pang, H. Yang, J. Jiang, Y. Chi, T. Yu, Nitrogen-doped carbon-based dots prepared by dehydrating EDTA with hot sulfuric acid and their electrocatalysis for oxygen reduction reaction. RSC Adv. 4(62), 32791–32795 (2014). doi: 10.1039/c4ra06594h CrossRefGoogle Scholar
  169. 169.
    S.S. Wee, Y.H. Ng, S.M. Ng, Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta 116, 71–76 (2013). doi: 10.1016/j.talanta.2013.04.081 CrossRefGoogle Scholar
  170. 170.
    D. Sun, R. Ban, P.-H. Zhang, G.-H. Wu, J.-R. Zhang, J.-J. Zhu, Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64, 424–434 (2013). doi: 10.1016/j.carbon.2013.07.095 CrossRefGoogle Scholar
  171. 171.
    J.S. Suh JKa, Size-controllable and low-cost fabrication of graphene quantum dots using thermal plasma jet. ACS Nano 8, 4190–4196 (2014)CrossRefGoogle Scholar
  172. 172.
    C. Jiang, H. Wu, X. Song, X. Ma, J. Wang, M. Tan, Presence of photoluminescent carbon dots in Nescafe(R) original instant coffee: applications to bioimaging. Talanta 127, 68–74 (2014). doi: 10.1016/j.talanta.2014.01.046 CrossRefGoogle Scholar
  173. 173.
    H. Li, X. He, Y. Liu, H. Huang, S. Lian, S.-T. Lee, Z. Kang, One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49(2), 605–609 (2011). doi: 10.1016/j.carbon.2010.10.004 CrossRefGoogle Scholar
  174. 174.
    Z. Ma, H. Ming, H. Huang, Y. Liu, Z. Kang, One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J. Chem. 36(4), 861–864 (2012). doi: 10.1039/c2nj20942j CrossRefGoogle Scholar
  175. 175.
    Y. Fang, S. Guo, D. Li, C. Zhu, W. Ren, S. Dong, E. Wang, Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano 6, 400–409 (2012). doi: 10.1021/nn2046373 CrossRefGoogle Scholar
  176. 176.
    J. Lu, P.S. Yeo, C.K. Gan, P. Wu, K.P. Loh, Transforming C60 molecules into graphene quantum dots. Nat. Nanotechnol. 6(4), 247–252 (2011). doi: 10.1038/nnano.2011.30 CrossRefGoogle Scholar
  177. 177.
    J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 36(1), 97–101 (2012). doi: 10.1039/c1nj20658c Google Scholar
  178. 178.
    H. Peng, J. Travas-Sejdic, Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 21(23), 5563–5565 (2009). doi: 10.1021/cm901593y CrossRefGoogle Scholar
  179. 179.
    Y. Liu, Liu C-y, Zhang Z-y, Synthesis and surface photochemistry of graphitized carbon quantum dots. J. Colloid Interface Sci. 356(2), 416–421 (2011). doi: 10.1016/j.jcis.2011.01.065 CrossRefGoogle Scholar
  180. 180.
    H. Sun, L. Wu, N. Gao, J. Ren, X. Qu, Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. ACS Appl. Mater. Interfaces 5(3), 1174–1179 (2013). doi: 10.1021/am3030849 CrossRefGoogle Scholar
  181. 181.
    G.S. Kumar, R. Roy, D. Sen, U.K. Ghorai, R. Thapa, N. Mazumder, S. Saha, K.K. Chattopadhyay, Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence. Nanoscale 6(6), 3384–3391 (2014). doi: 10.1039/c3nr05376h CrossRefGoogle Scholar
  182. 182.
    S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7(2), 1239–1245 (2012). doi: 10.1021/nn3046759 CrossRefGoogle Scholar
  183. 183.
    Y. Feng, J. Zhao, X. Yan, F. Tang, Q. Xue, Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction. Carbon 66, 334–339 (2014). doi: 10.1016/j.carbon.2013.09.008 CrossRefGoogle Scholar
  184. 184.
    H. Zheng, Q. Wang, Y. Long, H. Zhang, X. Huang, R. Zhu, Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun. 47(38), 10650–10652 (2011). doi: 10.1039/c1cc14741b CrossRefGoogle Scholar
  185. 185.
    K. Lingam, R. Podila, H. Qian, S. Serkiz, A.M. Rao, Evidence for edge-state photoluminescence in graphene quantum dots. Adv. Funct. Mater. 23(40), 5062–5065 (2013). doi: 10.1002/adfm.201203441 CrossRefGoogle Scholar
  186. 186.
    G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22(4), 505–509 (2010). doi: 10.1002/adma.200901996 CrossRefGoogle Scholar
  187. 187.
    K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2(12), 1015–1024 (2010). doi: 10.1038/nchem.907 CrossRefGoogle Scholar
  188. 188.
    J. Robertson, G.A.J. Amaratunga, Photoluminescence behavior of hydrogenated amorphous carbon. J. Appl. Phys. 80(5), 2998–3003 (1996). doi: 10.1063/1.363158 CrossRefGoogle Scholar
  189. 189.
    F. Demichelis, S. Schreiter, A. Tagliaferro, Photoluminescence in a-C-H films. Phys. Rev. B 51(4), 2143–2147 (1995). doi: 10.1103/PhysRevB.51.2143 CrossRefGoogle Scholar
  190. 190.
    M. Li, W. Wu, W. Ren, H.-M. Cheng, N. Tang, W. Zhong, Y. Du, Synthesis and upconversion luminescence of N-doped graphene quantum dots. Appl. Phys. Lett. 101(10), 103107 (2012). doi: 10.1063/1.4750065 CrossRefGoogle Scholar
  191. 191.
    X. Wang, L. Cao, S.T. Yang, F. Lu, M.J. Meziani, L. Tian, K.W. Sun, M.A. Bloodgood, Y.P. Sun, Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chem. Int. Ed. 49(31), 5310–5314 (2010). doi: 10.1002/anie.201000982 CrossRefGoogle Scholar
  192. 192.
    P. Anilkumar, X. Wang, L. Cao, S. Sahu, J.H. Liu, P. Wang, K. Korch, K.N. Tackett 2nd, A. Parenzan, Y.P. Sun, Toward quantitatively fluorescent carbon-based “quantum” dots. Nanoscale 3(5), 2023–2027 (2011). doi: 10.1039/c0nr00962h CrossRefGoogle Scholar
  193. 193.
    Y.P. Sun, X. Wang, F.S. Lu, L. Cao, M.J. Meziani, P.J.G. Luo, L.R. Gu, L.M. Veca, Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J. Phys. Chem. C 112(47), 18295–18298 (2008). doi: 10.1021/jp8076485 CrossRefGoogle Scholar
  194. 194.
    A. Cayuela, M.L. Soriano, M. Valcarcel, Strong luminescence of carbon dots induced by acetone passivation: efficient sensor for a rapid analysis of two different pollutants. Anal. Chim. Acta 804, 246–251 (2013). doi: 10.1016/j.aca.2013.10.031 CrossRefGoogle Scholar
  195. 195.
    S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, X. Wang, H. Sun, B. Yang, Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Func. Mater. 22(22), 4732–4740 (2012). doi: 10.1002/adfm.201201499 CrossRefGoogle Scholar
  196. 196.
    Y. Dong, R. Dai, T. Dong, Y. Chi, G. Chen, Photoluminescence, chemiluminescence and anodic electrochemiluminescence of hydrazide-modified graphene quantum dots. Nanoscale 6(19), 11240–11245 (2014). doi: 10.1039/c4nr02539c CrossRefGoogle Scholar
  197. 197.
    Q. Liu, B. Guo, Z. Rao, B. Zhang, J.R. Gong, Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 13(6), 2436–2441 (2013). doi: 10.1021/nl400368v CrossRefGoogle Scholar
  198. 198.
    C. Hu, Y. Liu, Y. Yang, J. Cui, Z. Huang, Y. Wang, L. Yang, H. Wang, Y. Xiao, J. Rong, One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J. Mater. Chem. B 1(1), 39–42 (2013). doi: 10.1039/c2tb00189f CrossRefGoogle Scholar
  199. 199.
    X.-M. Wei, Y. Xu, Y.-H. Li, X.-B. Yin, X.-W. He, Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing applications. RSC Adv. 4(84), 44504–44508 (2014). doi: 10.1039/c4ra08523j CrossRefGoogle Scholar
  200. 200.
    L. Tang, R. Ji, X. Li, K.S. Teng, S.P. Lau, Energy-level structure of nitrogen-doped graphene quantum dots. J. Mater. Chem. C 1(32), 4908–4915 (2013). doi: 10.1039/c3tc30877d CrossRefGoogle Scholar
  201. 201.
    Q.-Q. Shi, Y.-H. Li, Y. Xu, Y. Wang, X.-B. Yin, X.-W. He, Y.-K. Zhang, High-yield and high-solubility nitrogen-doped carbon dots: formation, fluorescence mechanism and imaging application. RSC Adv. 4(4), 1563–1566 (2014). doi: 10.1039/c3ra45762a CrossRefGoogle Scholar
  202. 202.
    J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 36(1), 97–101 (2012). doi: 10.1039/c1nj20658c CrossRefGoogle Scholar
  203. 203.
    S.J. Zhuo, M.W. Shao, S.T. Lee, Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 6(2), 1059–1064 (2012). doi: 10.1021/nn2040395 CrossRefGoogle Scholar
  204. 204.
    S. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hu, B. Yang, Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv. 2(7), 2717–2720 (2012). doi: 10.1039/c2ra20182h CrossRefGoogle Scholar
  205. 205.
    Y. Su, M. Xie, X. Lu, H. Wei, H. Geng, Z. Yang, Y. Zhang, Facile synthesis and photoelectric properties of carbon dots with upconversion fluorescence using arc-synthesized carbon by-products. RSC Adv. 4(10), 4839–4842 (2014). doi: 10.1039/c3ra45453c CrossRefGoogle Scholar
  206. 206.
    D.Z. Tan, S.F. Zhou, J.R. Qiu, Comment on “upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis”. ACS Nano 6(8), 6530–6531 (2012). doi: 10.1021/nn3016822 CrossRefGoogle Scholar
  207. 207.
    Z. Gan, X. Wu, G. Zhou, J. Shen, P.K. Chu, Is there real upconversion photoluminescence from graphene quantum dots. Adv. Opt. Mater. 1(8), 554–558 (2013). doi: 10.1002/adom.201300152 CrossRefGoogle Scholar
  208. 208.
    S.K. Poznyak, D.V. Talapin, E.V. Shevchenko, H. Weller, Quantum dot chemiluminescence. Nano Lett. 4(4), 693–698 (2004). doi: 10.1021/nl049713w CrossRefGoogle Scholar
  209. 209.
    Z. Ding, B.M. Quinn, S.K. Haram, L.E. Pell, B.A. Korgel, A.J. Bard, Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571), 1293–1297 (2002). doi: 10.1126/science.1069336 CrossRefGoogle Scholar
  210. 210.
    Y. Bae, N. Myung, A.J. Bard, Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett. 4(6), 1153–1161 (2004). doi: 10.1021/nl049516x CrossRefGoogle Scholar
  211. 211.
    Y. Dong, W. Tian, S. Ren, R. Dai, Y. Chi, G. Chen, Graphene quantum dots/L-cysteine coreactant electrochemiluminescence system and its application in sensing lead(II) ions. ACS Appl. Mater. Interface 6(3), 1646–1651 (2014). doi: 10.1021/am404552s CrossRefGoogle Scholar
  212. 212.
    Y. Dong, C. Chen, J. Lin, N. Zhou, Y. Chi, G. Chen, Electrochemiluminescence emission from carbon quantum dot-sulfite coreactant system. Carbon 56, 12–17 (2013). doi: 10.1016/j.carbon.2012.12.086 CrossRefGoogle Scholar
  213. 213.
    T.T. Zhang, H.M. Zhao, X.F. Fan, S. Chen, X. Quan, Electrochemiluminescence immunosensor for highly sensitive detection of 8-hydroxy-2′-deoxyguanosine based on carbon quantum dot coated Au/SiO2 core-shell nanoparticles. Talanta 131, 379–385 (2015). doi: 10.1016/j.talanta.2014.08.024 CrossRefGoogle Scholar
  214. 214.
    M. Zhang, H. Liu, L. Chen, M. Yan, L. Ge, S. Ge, J. Yu, A disposable electrochemiluminescence device for ultrasensitive monitoring of K562 leukemia cells based on aptamers and ZnO@carbon quantum dots. Biosens. Bioelectron. 49, 79–85 (2013). doi: 10.1016/j.bios.2013.05.003 CrossRefGoogle Scholar
  215. 215.
    S. Yang, J. Liang, S. Luo, C. Liu, Y. Tang, Supersensitive detection of chlorinated phenols by multiple amplification electrochemiluminescence sensing based on carbon quantum dots/graphene. Anal. Chem. 85(16), 7720–7725 (2013). doi: 10.1021/ac400874h CrossRefGoogle Scholar
  216. 216.
    M. Su, H. Liu, L. Ge, Y. Wang, S. Ge, J. Yu, M. Yan, Aptamer-Based electrochemiluminescent detection of MCF-7 cancer cells based on carbon quantum dots coated mesoporous silica nanoparticles. Electrochim. Acta 146, 262–269 (2014). doi: 10.1016/j.electacta.2014.08.129 CrossRefGoogle Scholar
  217. 217.
    Q. Lu, W. Wei, Z. Zhou, Z. Zhou, Y. Zhang, S. Liu, Electrochemiluminescence resonance energy transfer between graphene quantum dots and gold nanoparticles for DNA damage detection. Analyst 139(10), 2404–2410 (2014). doi: 10.1039/c4an00020j CrossRefGoogle Scholar
  218. 218.
    J. Lu, M. Yan, L. Ge, S. Ge, S. Wang, J. Yan, J. Yu, Electrochemiluminescence of blue-luminescent graphene quantum dots and its application in ultrasensitive aptasensor for adenosine triphosphate detection. Biosens. Bioelectron. 47, 271–277 (2013). doi: 10.1016/j.bios.2013.03.039 CrossRefGoogle Scholar
  219. 219.
    Y. Chen, Y. Dong, H. Wu, C. Chen, Y. Chi, G. Chen, Electrochemiluminescence sensor for hexavalent chromium based on the graphene quantum dots/peroxodisulfate system. Electrochim. Acta 151, 552–557 (2015). doi: 10.1016/j.electacta.2014.11.068 CrossRefGoogle Scholar
  220. 220.
    W. Xue, Z. Lin, H. Chen, C. Lu, J.-M. Lin, Enhancement of ultraweak chemiluminescence from reaction of hydrogen peroxide and bisulfite by water-soluble carbon nanodots. J. Phys. Chem. C 115(44), 21707–21714 (2011). doi: 10.1021/jp207554t CrossRefGoogle Scholar
  221. 221.
    Z. Lin, W. Xue, H. Chen, J.M. Lin, Classical oxidant induced chemiluminescence of fluorescent carbon dots. Chem. Commun. 48(7), 1051–1053 (2012). doi: 10.1039/c1cc15290d CrossRefGoogle Scholar
  222. 222.
    L. Zhao, F. Di, D. Wang, L.H. Guo, Y. Yang, B. Wan, H. Zhang, Chemiluminescence of carbon dots under strong alkaline solutions: a novel insight into carbon dot optical properties. Nanoscale 5(7), 2655–2658 (2013). doi: 10.1039/c3nr00358b CrossRefGoogle Scholar
  223. 223.
    H. Gonçalves, P.A.S. Jorge, J.R.A. Fernandes, J.C.G. Esteves da Silva, Hg(II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sensor. Actuat. B-Chem. 145(2), 702–707 (2010). doi: 10.1016/j.snb.2010.01.031 CrossRefGoogle Scholar
  224. 224.
    H.M. Goncalves, A.J. Duarte, J.C. Esteves da Silva, Optical fiber sensor for Hg(II) based on carbon dots. Biosens. Bioelectron. 26(4), 1302–1306 (2010). doi: 10.1016/j.bios.2010.07.018 CrossRefGoogle Scholar
  225. 225.
    B. Cao, C. Yuan, B. Liu, C. Jiang, G. Guan, M.Y. Han, Ratiometric fluorescence detection of mercuric ion based on the nanohybrid of fluorescence carbon dots and quantum dots. Anal. Chim. Acta 786, 146–152 (2013). doi: 10.1016/j.aca.2013.05.015 CrossRefGoogle Scholar
  226. 226.
    W. Wang, T. Kim, Z. Yan, G. Zhu, I. Cole, N.T. Nguyen, Q. Li, Carbon dots functionalized by organosilane with double-sided anchoring for nanomolar Hg2+ detection. J. Colloid Interface Sci. 437, 28–34 (2015). doi: 10.1016/j.jcis.2014.09.013 CrossRefGoogle Scholar
  227. 227.
    F. Yan, Y. Zou, M. Wang, X. Mu, N. Yang, L. Chen, Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sens. Actuat. B Chem. 192, 488–495 (2014). doi: 10.1016/j.snb.2013.11.041 CrossRefGoogle Scholar
  228. 228.
    H. Li, J. Zhai, J. Tian, Y. Luo, X. Sun, Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution. Biosens. Bioelectron. 26(12), 4656–4660 (2011). doi: 10.1016/j.bios.2011.03.026 CrossRefGoogle Scholar
  229. 229.
    X. Cui, L. Zhu, J. Wu, Y. Hou, P. Wang, Z. Wang, M. Yang, A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury(II) detection. Biosens. Bioelectron. 63, 506–512 (2015). doi: 10.1016/j.bios.2014.07.085 CrossRefGoogle Scholar
  230. 230.
    I. Costas-Mora, V. Romero, I. Lavilla, C. Bendicho, In situ building of a nanoprobe based on fluorescent carbon dots for methylmercury detection. Anal. Chem. 86(9), 4536–4543 (2014). doi: 10.1021/ac500517h CrossRefGoogle Scholar
  231. 231.
    Y. Dong, R. Wang, G. Li, C. Chen, Y. Chi, G. Chen, Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal. Chem. 84(14), 6220–6224 (2012). doi: 10.1021/ac3012126 CrossRefGoogle Scholar
  232. 232.
    X. Lin, G. Gao, L. Zheng, Y. Chi, G. Chen, Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing. Anal. Chem. 86(2), 1223–1228 (2014). doi: 10.1021/ac403536a CrossRefGoogle Scholar
  233. 233.
    Y. Dong, R. Wang, W. Tian, Y. Chi, G. Chen, “Turn-on” fluorescent detection of cyanide based on polyamine-functionalized carbon quantum dots. RSC Adv. 4(8), 3701–3705 (2014). doi: 10.1039/c3ra45893h CrossRefGoogle Scholar
  234. 234.
    Q. Qu, A. Zhu, X. Shao, G. Shi, Y. Tian, Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem. Commun. 48(44), 5473–5475 (2012). doi: 10.1039/c2cc31000g CrossRefGoogle Scholar
  235. 235.
    A. Zhu, Q. Qu, X. Shao, B. Kong, Y. Tian, Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew. Chem. Int. Ed. 51(29), 7185–7189 (2012). doi: 10.1002/anie.201109089 CrossRefGoogle Scholar
  236. 236.
    X. Liu, N. Zhang, T. Bing, D. Shangguan, Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu2+. Anal. Chem. 86(5), 2289–2296 (2014). doi: 10.1021/ac404236y CrossRefGoogle Scholar
  237. 237.
    H. Sun, N. Gao, L. Wu, J. Ren, W. Wei, X. Qu, Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chem. Eur. J. 19(40), 13362–13368 (2013). doi: 10.1002/chem.201302268 CrossRefGoogle Scholar
  238. 238.
    S. Zhang, Q. Wang, G. Tian, H. Ge, A fluorescent turn-off/on method for detection of Cu2+ and oxalate using carbon dots as fluorescent probes in aqueous solution. Mater. Lett. 115, 233–236 (2014). doi: 10.1016/j.matlet.2013.10.086 CrossRefGoogle Scholar
  239. 239.
    L. Liu, Y. Li, L. Zhan, Y. Liu, C. Huang, One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions. Sci. China Chem. 54(8), 1342–1347 (2011). doi: 10.1007/s11426-011-4351-6 CrossRefGoogle Scholar
  240. 240.
    Y. Song, S. Zhu, S. Xiang, X. Zhao, J. Zhang, H. Zhang, Y. Fu, B. Yang, Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale 6(9), 4676–4682 (2014). doi: 10.1039/c4nr00029c CrossRefGoogle Scholar
  241. 241.
    Y. Liu, N. Xiao, N. Gong, H. Wang, X. Shi, W. Gu, L. Ye, One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 68, 258–264 (2014). doi: 10.1016/j.carbon.2013.10.086 CrossRefGoogle Scholar
  242. 242.
    S. Hu, Q. Zhao, Q. Chang, J. Yang, J. Liu, Enhanced performance of Fe3+ detection via fluorescence resonance energy transfer between carbon quantum dots and Rhodamine B. RSC Adv. 4(77), 41069–41075 (2014). doi: 10.1039/c4ra06371f CrossRefGoogle Scholar
  243. 243.
    X. Li, S. Zhu, B. Xu, K. Ma, J. Zhang, B. Yang, W. Tian, Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale 5(17), 7776–7779 (2013). doi: 10.1039/c3nr00006k CrossRefGoogle Scholar
  244. 244.
    S. Gomez-de Pedro, A. Salinas-Castillo, M. Ariza-Avidad, A. Lapresta-Fernandez, C. Sanchez-Gonzalez, C.S. Martinez-Cisneros, M. Puyol, L.F. Capitan-Vallvey, J. Alonso-Chamarro, Microsystem-assisted synthesis of carbon dots with fluorescent and colorimetric properties for pH detection. Nanoscale 6(11), 6018–6024 (2014). doi: 10.1039/c4nr00573b CrossRefGoogle Scholar
  245. 245.
    W. Wei, C. Xu, J. Ren, B. Xu, X. Qu, Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chem. Commun. 48(9), 1284–1286 (2012). doi: 10.1039/c2cc16481g CrossRefGoogle Scholar
  246. 246.
    Y. Dong, G. Li, N. Zhou, R. Wang, Y. Chi, G. Chen, Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal. Chem. 84(19), 8378–8382 (2012). doi: 10.1021/ac301945z CrossRefGoogle Scholar
  247. 247.
    Z. Huang, F. Lin, M. Hu, C. Li, T. Xu, C. Chen, X. Guo, Carbon dots with tunable emission, controllable size and their application for sensing hypochlorous acid. J. Lumin. 151, 100–105 (2014). doi: 10.1016/j.jlumin.2014.02.013 CrossRefGoogle Scholar
  248. 248.
    H.X. Zhao, L.Q. Liu, Z.D. Liu, Y. Wang, X.J. Zhao, C.Z. Huang, Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chem. Commun. 47(9), 2604–2606 (2011). doi: 10.1039/c0cc04399k CrossRefGoogle Scholar
  249. 249.
    J.M. Bai, L. Zhang, R.P. Liang, J.D. Qiu, Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing. Chem. Eur. J. 19(12), 3822–3826 (2013). doi: 10.1002/chem.201204295 CrossRefGoogle Scholar
  250. 250.
    J.J. Liu, X.L. Zhang, Z.X. Cong, Z.T. Chen, H.H. Yang, G.N. Chen, Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites. Nanoscale 5(5), 1810–1815 (2013). doi: 10.1039/c3nr33794d CrossRefGoogle Scholar
  251. 251.
    J. Xu, Y. Zhou, G. Cheng, M. Dong, S. Liu, C. Huang, Carbon dots as a luminescence sensor for ultrasensitive detection of phosphate and their bioimaging properties. Luminescence 30(4), 411–415 (2015). doi: 10.1002/bio.2752 Google Scholar
  252. 252.
    Y.H. Li, L. Zhang, J. Huang, R.P. Liang, J.D. Qiu, Fluorescent graphene quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution. Chem. Commun. 49(45), 5180–5182 (2013). doi: 10.1039/c3cc40652k CrossRefGoogle Scholar
  253. 253.
    Z.B. Qu, X.G. Zhou, L. Gu, R.M. Lan, D.D. Sun, D.J. Yu, G.Y. Shi, Boronic acid functionalized Graphene quantum dots as fluorescent. Chem. Comm. 49(84), 9830–9832 (2013). doi: 10.1039/C3CC44393K CrossRefGoogle Scholar
  254. 254.
    L. Zhu, X. Cui, J. Wu, Z. Wang, P. Wang, Y. Hou, M. Yang, Fluorescence immunoassay based on carbon dots as labels for the detection of human immunoglobulin G. Anal. Methods 6(12), 4430–4436 (2014). doi: 10.1039/c4ay00717d Google Scholar
  255. 255.
    H. Zhao, Y. Chang, M. Liu, S. Gao, H. Yu, X. Quan, A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots. Chem. Commun. 49(3), 234–236 (2013). doi: 10.1039/c2cc35503e CrossRefGoogle Scholar
  256. 256.
    D. Bu, H. Zhuang, G. Yang, X. Ping, An immunosensor designed for polybrominated biphenyl detection based on fluorescence resonance energy transfer (FRET) between carbon dots and gold nanoparticles. Sens. Actuat. B Chem. 195, 540–548 (2014). doi: 10.1016/j.snb.2014.01.079 CrossRefGoogle Scholar
  257. 257.
    Y. Wang, L. Zhang, R.P. Liang, J.M. Bai, J.D. Qiu, Using graphene quantum dots as photoluminescent probes for protein kinase sensing. Anal. Chem. 85(19), 9148–9155 (2013). doi: 10.1021/ac401807b CrossRefGoogle Scholar
  258. 258.
    Z.S. Qian, X.Y. Shan, L.J. Chai, J.J. Ma, J.R. Chen, H. Feng, DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens. Bioelectron. 60, 64–70 (2014). doi: 10.1016/j.bios.2014.04.006 CrossRefGoogle Scholar
  259. 259.
    Y. Shi, Y. Pan, H. Zhang, Z. Zhang, M.J. Li, C. Yi, M. Yang, A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens. Bioelectron. 56, 39–45 (2014). doi: 10.1016/j.bios.2013.12.038 CrossRefGoogle Scholar
  260. 260.
    S. Li, J. Luo, G. Yin, Z. Xu, Y. Le, X. Wu, N. Wu, Q. Zhang, Selective determination of dimethoate via fluorescence resonance energy transfer between carbon dots and a dye-doped molecularly imprinted polymer. Sens. Actuat. B Chem. 206, 14–21 (2015). doi: 10.1016/j.snb.2014.09.038 CrossRefGoogle Scholar
  261. 261.
    L. Wu, M. Li, M. Zhang, M. Yan, S. Ge, J. Yu, Ultrasensitive electrochemiluminescence immunosensor for tumor marker detection based on nanoporous sliver@carbon dots as labels. Sens. Actuat. B Chem. 186, 761–767 (2013). doi: 10.1016/j.snb.2013.06.092 CrossRefGoogle Scholar
  262. 262.
    J. Lou, S. Liu, W. Tu, Z. Dai, Graphene quantums dots combined with endonuclease cleavage and bidentate chelation for highly sensitive electrochemiluminescent DNA biosensing. Anal. Chem. 87(2), 1145–1151 (2015). doi: 10.1021/ac5037318 CrossRefGoogle Scholar
  263. 263.
    J. Shi, C. Lu, D. Yan, L. Ma, High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system. Biosens. Bioelectron. 45, 58–64 (2013). doi: 10.1016/j.bios.2013.01.056 CrossRefGoogle Scholar
  264. 264.
    M. Amjadi, J.L. Manzoori, T. Hallaj, Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. J. Lumin. 153, 73–78 (2014). doi: 10.1016/j.jlumin.2014.03.020 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyFuzhou UniversityFujianChina
  2. 2.Department of ChemistryFuzhou UniversityFujianChina

Personalised recommendations