Skip to main content

Bioimaging and Quantum Sensing Using NV Centers in Diamond Nanoparticles

  • Chapter
  • First Online:
Carbon Nanoparticles and Nanostructures

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Diamond nanoparticle hosting negatively-charged nitrogen vacancy (NV) center has unique chemical, optical and spin properties in a wide range of nanotechnology applications. For instance, diamond nanoparticles containing NV centers have been well-known as Fluorescent NanoDiamond (FND) for fluorescence imaging. Recently the NV center has been applied for nanothermometry. In this chapter we are going to discuss the recent advances of the NV center for bioimaging and quantum sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014). doi:10.1146/annurev-physchem-040513-103659

    Article  Google Scholar 

  2. C. Bradac, T. Gaebel, J.R. Rabeau, Nitrogen-vacancy color centers in diamond: properties, synthesis, and applications. in Optical Engineering of Diamond, First edn. ed by R.P. Mildren, J.R. Rabeau. (Boschstr. 12, 69496, Wiley-VCH Verlag GmbH & Co. KGaA., Weinheim, Germany, 2013). doi: 10.1002/9783527648603.ch5

    Google Scholar 

  3. L. Rondin, J.P. Tetienne, T. Hingant, J.F. Roch, P. Maletinsky, V. Jacques, Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014). doi:10.1088/0034-4885/77/5/056503

    Article  Google Scholar 

  4. Y.Y. Hui, H.C. Chang, Recent developments and applications of nanodiamonds as versatile bioimaging agents. J. Chin. Chem. Soc. 161, 67–76 (2014). doi:10.1002/jccs.201300346

    Article  Google Scholar 

  5. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012). doi:10.1038/nnano.2011.209

    Article  Google Scholar 

  6. J.R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, M.D. Lukin, Properties of nitrogen vacancy centers in diamond: the group theoretic approach (Phys, New J, 2011). doi:10.1088/1367-2630/13/2/025025

    Google Scholar 

  7. L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, P. Bergonzo, S. Perruchas, T. Gacoin, M. Chaigneau, H.C. Chang, V. Jacques, J.F. Roch, Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys. Rev. B 82, 115449 (2010). doi:10.1103/PhysRevB.82.115449

    Article  Google Scholar 

  8. K.-M.C. Fu, C. Santori, P.E. Barclay, R.G. Beausoleil, Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation. Appl. Phys. Lett. 96, 121907 (2010). doi:10.1063/1.3364135

    Article  Google Scholar 

  9. C.C. Fu, H.Y. Lee, K. Chen, T.S. Lim, H.Y. Wu, P.K. Lin, P.K. Wei, P.H. Tsao, H.C. Chang, W. Fann, Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. U.S.A. 104, 727–732 (2007). doi:10.1073/pnas.0605409104

    Article  Google Scholar 

  10. V. Vaijayanthimala, Y.K. Tzeng, H.C. Chang, C.L. Li, The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotech. 20, 425103 (2009). doi:10.1088/0957-4484/20/42/425103

    Article  Google Scholar 

  11. N. Mohan, C.S. Chen, H.H. Hsieh, Y.C. Wu, H.C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010). doi:10.1021/nl1021909

    Article  Google Scholar 

  12. V. Vaijayanthimala, P.Y. Cheng, S.H. Yeh, K.K. Liu, C.H. Hsiao, J.I. Chao, H.C. Chang, The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomater. 33, 7794 (2012). doi:10.1016/j.biomaterials.2012.06.084

    Article  Google Scholar 

  13. D. Passeri, F. Rinaldi, C. Ingallina, M. Carafa, M. Rossi, M.L. Terranova, C. Marianecci, biomedical applications of nanodiamonds: an overview. J Nanosci Nanotech. 15(2), 972–988 (2015). doi:10.1166/jnn.2015.9734

    Article  Google Scholar 

  14. V.M. Acosta, A. Jarmola, E. Bauch, D. Budker, Optical properties of the ntrogen-vacancy singlet levels in diamond. Phys. Rev. B 82, 201202 (2010). doi:10.1103/PhysRevB.82.201202

    Article  Google Scholar 

  15. M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L.C. Hollenberg, The nitrogen vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013). doi:10.1016/j.physrep.2013.02.001

    Article  Google Scholar 

  16. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski, Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers. Sci. 276, 2012–2014 (1997). doi:10.1126/science.276.5321.2012

    Article  Google Scholar 

  17. N.B. Manson, J.P. Harrison, M.J. Sellars, Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phy. Rev B 74, 104303 (2006). doi:10.1103/PhysRevB.74.104303

    Article  Google Scholar 

  18. F. Jelezko, J. Wrachtrup, Single defect centres in diamond: a review. Phys. Stat. Solidus A 203, 3207–3225 (2006). doi:10.1002/pssa.200671403

    Article  Google Scholar 

  19. A. Beveratos, R. Brouri, T. Gacoin, J.P. Poizat, P. Grangier, Nonclassical radiation from diamond nanocrystals. Phys. Rev. A 64, 061802 (2002). doi:10.1103/PhysRevA.64.061802

    Article  Google Scholar 

  20. S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu, Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127, 17604–17605 (2005). doi:10.1021/ja0567081

    Article  Google Scholar 

  21. O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.P. Boudou et al., Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small 4, 2236–2239 (2008). doi:10.1002/smll.200800655

    Article  Google Scholar 

  22. J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz et al., Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959–1965 (2009). doi:10.1021/nn9003617

    Article  Google Scholar 

  23. N. Mohan, Y.K. Tzeng, L. Yang, Y.Y. Chen, Y.Y. Hui, C.Y. Fang, H.C. Chang, Sub-20 nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors Adv. Mater. 21, 1–5 (2010). doi:10.1002/adma.200901596

    Google Scholar 

  24. J. Havlik, V. Petrakova, I. Rehor, V. Petrak, M. Gulka et al., Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5, 3208–3211 (2013). doi:10.1039/C2NR32778C

    Article  Google Scholar 

  25. Y.R. Chang, H.Y. Lee, K. Chen, C.C. Chang, D.S. Tsai, C.C. Fu, T.S. Lim, Y.K. Tzeng, C.Y. Fang, C.C. Han, H.C. Chang, W. Fann, Mass production and dynamic imaging of fluorescent nanodiamonds Nat. Nanotech. 3, 284–288 (2008). doi:10.1038/nnano.2008.99

    Google Scholar 

  26. C. Bradac, G. Torsten, N. Naidoo, J.R. Rabeau, A.S. Barnard, Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale. Nano Lett. 9, 3555–3564 (2009). doi:10.1021/nl9017379

    Article  Google Scholar 

  27. B.R. Smith, D.W. Inglis, B. Sandnes, J.R. Rabeau, A.V. Zvyagin, D. Gruber, C.J. Noble, R. Vogel, E. Osawa, T. Plakhotnik, Five-nanometer diamond with luminescent nitrogen-vacancy defect centers. Small 5(14), 1649–1653 (2009). doi:10.1002/smll.200801802

    Article  Google Scholar 

  28. J.P. Boudou, P.A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thore, E. Gaffet, High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009). doi:10.1088/0957-4484/20/23/235602

    Article  Google Scholar 

  29. J.P. Boudou, J.J. Tisler, R. Reuter, A. Thorel, P.A. Curmi, F. Jelezko, J. Wrachtrup, Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm. Diam. Relat. Mater. 37, 80–86 (2013). doi:10.1016/j.diamond.2013.05.006

    Article  Google Scholar 

  30. B.R. Smith, D. Gruber, T. Plakhotnik, The effects of surface oxidation on luminescence of nanodiamonds. Diam. Relat. Mater. 19, 314–318 (2010). doi:10.1016/j.diamond.2009.12.009

    Article  Google Scholar 

  31. T. Gaebel, C. Bradac, J. Chen, J.M. Say, L. Brown, P. Hemmer, J.R. Rabeau, Size-reduction of nanodiamonds via air oxidation. Diam. Relat. Mater. 21, 28–32 (2012). doi:10.1016/j.diamond.2011.09.002

    Article  Google Scholar 

  32. J.R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, J. Wrachtrup, Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals. Nano Lett. 7, 3433–3437 (2007). doi:10.1021/nl0719271

    Article  Google Scholar 

  33. J. Michl, T. Teraji, S. Zaiser, I. Jakobi, G. Waldherr, F. Dolde, P. Neumann, M.W. Doherty, N.B. Manson, J. Isoya, J. Wrachtrup, Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces. Appl. Phys. Lett. 104, 102407 (2014). doi:10.1063/1.4868128

    Article  Google Scholar 

  34. A.M. Edmonds, U.F.S. D’Haenens-Johansson, R.J. Cruddace, M.E. Newton, K.-M.C. Fu, C. Santori, R.G. Beausoleil, D.J. Twitchen, M.L. Markham, Production of oriented nitrogen-vacancy color centers in synthetic diamond. Phy. Rev. B 86, 035201 (2012). doi:10.1103/PhysRevB.86.035201

    Article  Google Scholar 

  35. I. Aharonovich, Diamond nanocrystals for photonics and sensing. J.J. Appl. Phys. 53(5), 05FA01 (2014). doi.:10.7567/JJAP.53.05FA01

  36. Y.C. Lin, E. Perevedentseva, L.W. Tsai, K.T. Wu, C.L. Cheng, Nanodiamond for intracellular imaging in the microorganisms in vivo. J. Biophotonics 5, 838–847 (2012). doi:10.1002/jbio.201200088

    Article  Google Scholar 

  37. E. Perevedentseva, Y.C. Lin, M. Jani, C.L. Cheng, Biomedical applications of nanodiamonds in imaging and therapy. Nanomed. 8(12), 2041–2060 (2013). doi:10.2217/nnm.13.183

    Article  Google Scholar 

  38. T. C. Hsu, K. K. Liu, H. C. Chang, E. Hwang, J. I. Chao, Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds. Sci. Rep. 4 (2014). doi: 10.1038/srep05004

  39. O. Faklaris, J. Botsoa, T. Sauvage, J.F. Roch, F. Treussart, Photoluminescent nanodiamonds: comparison of the photoluminescence saturation properties of the NV color center and a cyanine dye at the single emitter level, and study of the color center concentration under different preparation conditions. Diam. Relat. Mater. 19(7–9), 988–995 (2010). doi:10.1016/j.diamond.2010.03.002

    Article  Google Scholar 

  40. C.Y. Fang, V. Vaijayanthimala, C.A. Cheng, S.H. Yeh, C.F. Chang, C.L. Li, H.C. Chang, The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker. Small 7(23), 3363–3370 (2011). doi:10.1002/smll.201101233

    Article  Google Scholar 

  41. Y. Kuo, T.Y. Hsu, Y.C. Wu, H.C. Chang, Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomat. 34, 8352–8360 (2013). doi:10.1016/j.biomaterials.2013.07.043

    Article  Google Scholar 

  42. D.A. Simpson, A.J. Thompson, M. Kowarsky, N.F. Zeeshan, M.S.J. Barson, L.T. Hall, Y. Yan, S. Kaufmann, B.C. Johnson, T. Ohshima, F. Caruso, R.E. Scholten, R.B. Saint, M.J. Murray, L.C.L. Hollenberg, In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos. Biomed. Opt. Exp. 5(4), 1250–1261 (2014). doi:10.1364/BOE.5.001250

    Article  Google Scholar 

  43. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Stable solid-state source of single photons. Phys. Rev. Lett. 85(2), 290–293 (2000). doi:10.1103/PhysRevLett.85.290

    Article  Google Scholar 

  44. A. Giangreco, S.D. Reynolds, B.R. Stripp, Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am. J. Pathol. 161, 173–182 (2002). doi:10.1016/S0002-9440(10)64169-7

    Article  Google Scholar 

  45. D.A. Chistiakov, Endogenous and exogenous stem cells: a role in lung repair and use in airway tissue engineering and transplantation. J. Biomed. Sci. 17, 92 (2010). doi:10.1186/1423-0127-17-92

    Article  Google Scholar 

  46. A.N. Lau, M. Goodwin, C.F. Kim, D.J. Weiss, Stem cells and regenerative medicine in lung biology and diseases. Mol. Ther. 20, 1116–1130 (2012). doi:10.1038/mt.2012.37

    Article  Google Scholar 

  47. T.J. Wu, Y.K. Tzeng, W.W. Chang, C.A. Cheng, Y. Kuo, C.H. Chien, H.C. Chang, J. Yu, Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nature Nanotech. 8, 682–689 (2013). doi:10.1038/nnano.2013.147

    Article  Google Scholar 

  48. B.R. Stripp, K. Maxson, R. Mera, G. Singh, Plasticity of airway cell proliferation and gene expression after acute naphthalene injury. Am. J. Physiol. Lung Cell Mol. Physiol. 269, L791–L799 (1995)

    Google Scholar 

  49. M. Jonathan, Austyn and Siamon Gordon, F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur. J. Immunol 11, 805–815 (1981). doi:10.1002/eji.1830111013

    Article  Google Scholar 

  50. Y.Y. Hui, L.J. Su, O.Y. Chen, Y.T. Chen, T.M. Liu, H.C. Chang, Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. Sci. Rep. 4, 5574 (2014). doi:10.1038/srep05574

    Article  Google Scholar 

  51. E. Galanzha, E.V. Shashkov, T. Kelly, J.W. Kim, L. Yang, V.P. Zharov, In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotech. 4, 855–860 (2009). doi:10.1038/NNANO.2009.333

    Article  Google Scholar 

  52. B.M. Chang, H.H. Lin, L.J. Su, W.D. Lin, R.J. Lin, Y.K. Tzeng, R.T. Lee, Y.C. Lee, A.L. Yu, H.C. Chang, Highly fluorescent nanodiamonds protein-functionalized for cell labeling and targeting. Adv. Funct. Mater. 23, 5737–5745 (2013). doi:10.1002/adfm.201301075

    Article  Google Scholar 

  53. K.Y. Han, K.I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, S.W. Hell, Three-Dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Lett. 9, 3323–3329 (2009). doi:10.1021/nl901597v

    Article  Google Scholar 

  54. Y.K. Tzeng, O. Faklaris, B.M. Chang, Y. Kuo, J.H. Hsu, H.C. Chang, Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew. Chem. Int. Ed. 50, 2262 (2011). doi:10.1002/anie.201007215

    Article  Google Scholar 

  55. N. Prabhakar, T. Näreoja, E. von Haartman, D.Ş. Karaman, H. Jiang, S. Koho, T.A. Dolenko, P.E. Hänninen, D.I. Vlasov, V.G. Ralchenko, S. Hosomi, I.I. Vlasov, C. Sahlgrenbci, J.M. Rosenholm, Core–shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application. Nanoscale 5, 3713–3722 (2013). doi:10.1039/c3nr33926b

    Article  Google Scholar 

  56. N.D. Lai, O. Faklaris, D. Zheng, V. Jacques, H.C. Chang, J.F. Roch, F. Treussart, Quenching nitrogen–vacancy center photoluminescence with an infrared pulsed laser. New J. Phys. 15, 033030 (2013). doi:10.1088/1367-2630/15/3/033030

    Article  Google Scholar 

  57. S. Arroyo-Camejo, M.P. Adam, M. Besbes, J.P. Hugonin, V. Jacques, J.J. Greffet, J.F. Roch, S.W. Hell, F. Treussart, Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals. ACS Nano 7, 10912–10919 (2013). doi:10.1021/nn404421b

    Article  Google Scholar 

  58. X. Yang, Y.K. Tzeng, Z. Zhu, Z. Huang, X. Chen, Y. Liu, H.C. Chang, L. Huang, W.D. Li, P. Xi, Sub-diffraction imaging of nitrogen-vacancy centers in diamond by stimulated emission depletion and structured illumination. RSC Adv. 4(11305–11310), 2014 (2014). doi:10.1039/c3ra47240j

    Google Scholar 

  59. M. Yamanaka, Y.K. Tzeng, S. Kawano, N.I. Smith, S. Kawata, H.C. Chang, K. Fujita, SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging. Biomed. Optics Exp. 2, 1946–1954 (2011). doi:10.1364/BOE.2.001946

    Article  Google Scholar 

  60. M. Gu, Y. Cao, S. Castelletto, B. Kouskousis, X. Li, Super-resolving single nitrogen vacancy centers within single nanodiamonds using a localization microscope. Opt. Exp. 21(15), 17639–17646 (2013). doi:10.1364/OE.21.017639

    Article  Google Scholar 

  61. E.H. Chen, O. Gaathon, M.E. Trusheim, D. Englund, Wide-field multispectral super-resolution imaging using spin-dependent fluorescence in nanodiamonds. Nano Lett. 13, 2073–2077 (2013). doi:10.1021/nl400346k

    Article  Google Scholar 

  62. Y.Y. Hui, Y.C. Lu, L.J. Su, C.Y. Fang, J.H. Hsu, H.C. Chang, Tip-enhanced sub-diffraction fluorescence imaging of nitrogen-vacancy centers in nanodiamonds. Appl. Phys. Lett. 102, 013102 (2013). doi:10.1063/1.4773364

    Article  Google Scholar 

  63. R. Beams, D. Smith, T.W. Johnson, S.H. Oh, L. Novotny, A.N. Vamivakas, Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center. Nano Lett. 13(8), 3807–3811 (2013). doi:10.1021/nl401791v

    Article  Google Scholar 

  64. A.W. Schell, P. Engel, J.F.M. Werra, C. Wolff, K. Busch, O. Benson, Scanning single quantum emitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states. Nano lett. 14(5), 2623–2627 (2014). doi:10.1021/nl500460c

    Article  Google Scholar 

  65. J. Kwon, Y. Lim, J. Jung, S.K. Kim, New sub-diffraction-limit microscopy technique: dual-point illumination AND-gate microscopy on nanodiamonds. Opt Exp 20, 13347–13356 (2014). doi:10.1364/OE.20.013347

    Article  Google Scholar 

  66. G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, S.W. Hell, Sharper low-power, STED nanoscopy by time gating. Nat. Meth. 8, 571–575 (2011). doi:10.1038/nmeth.1624

    Article  Google Scholar 

  67. F. Helmchen1, W. Denk, Deep tissue two-photon microscopy. Nat. Meth. 2(12), 932–940 (2005). doi:10.1038/NMETH818 2 photon review

  68. Y.Y. Hui, B. Zhang, Y.C. Chang, C.C. Chang, H.C. Chang, J.H. Hsu, K. Chang, F.H. Chang, Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Optics Express 18, 5896–5905 (2010). doi:10.1364/OE.18.005896

    Article  Google Scholar 

  69. R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, M. Shirakawa, Real-time background-free selective imaging of fluorescent nanodiamonds in Vivo. Nano Lett. 12, 5726–5732 (2012). doi:10.1021/nl302979d

    Article  Google Scholar 

  70. Y. Yoshinari, S. Mori, R. Igarashi, T. Sugi, H. Yokota, K. Ikeda, H. Sumiya, I. Mori, H. Tochio, Y. Harada, M. Shirakawa, Optically detected magnetic resonance of nanodiamonds in vivo; implementation of selective imaging and fast sampling. J. Nanosci. Nanotechnol 15, 1014–1021 (2015). doi:10.1166/jnn.2015.9739

    Article  Google Scholar 

  71. R. Chapman, T. Plakhoitnik, Background-free imaging of luminescent nanodiamonds using external magnetic field for contrast enhancement. Optics Lett. 38(11), 1847–1849 (2013). doi:10.1364/OL.38.001847

    Article  Google Scholar 

  72. S.K. Sarkar, A. Bumb, X. Wu, K.A. Sochacki, P. Kellman, M.W. Brechbiel, K.C. Neuman, Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence. Biomed. Opt. Exp. 5, 1190–1202 (2014). doi:10.1364/BOE.5.001190

    Article  Google Scholar 

  73. A. Hegyi, E. Yablonovitch, Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds. Nano. Lett. 13, 1173 (2013). doi:10.1021/nl304570b

    Article  Google Scholar 

  74. A. Hegyi, E. Yablonovitch, Nanodiamond molecular imaging with enhanced contrast and expanded field of view. J. Biomed. Opt. 19, 011015 (2014). doi: 10.1117/1.JBO.19.1.011015

    Google Scholar 

  75. G. Balasubramanian, I.Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler et al., Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008). doi:10.1038/nature07278

    Article  Google Scholar 

  76. L. Rondin, J.P. Tetienne, P. Spinicelli, C. Dal Savio, K. Karrai, G. Dantelle, A. Thiaville, S. Rohart, J.F. Roch, V. Jacques, Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012). doi:10.1063/1.3703128

    Article  Google Scholar 

  77. J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phy. 4, 810–816 (2008). doi:10.1038/nphys1075

    Article  Google Scholar 

  78. V. R. Horowitz, B. J. Alemán, D. J. Christle, A. N. Cleland, D. D. Awschalom, Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds. Proc. Nat. Acad. Sci. USA, 109, 13493 (2012). doi:10.1073/pnas.1211311109M

  79. M.L. Geiselmann, J. Juan, J.M. Renger, L.J. Say, F.J.G. de Brown, F. Abajo, R. Koppens, Quidant, three-dimensional optical manipulation of a single electron spin. Nat. Nantech. 8, 175–179 (2013). doi:10.1038/nnano.2012.259

    Article  Google Scholar 

  80. L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall et al., Quantum measurement and orientation tracking of fluorescent nanodiamonds. Nat. Nanotechnol. 6, 358–363 (2011). doi:10.1038/nnano.2011.64

    Article  Google Scholar 

  81. D. Maclaurin, L.T. Hall, A.M. Martin, L.C.L. Hollenberg, Nanoscale magnetometry through quantum control of nitrogen–vacancy centres in rotationally diffusing nanodiamonds. New J. Phys. 15, 013041 (2013). doi:10.1088/1367-2630/15/1/013041

    Article  Google Scholar 

  82. G. Baffou, H. Rigneault, D. Marguet, L. Jullien, A critique of methods for temperature imaging in single cells. Nat. Meth. 11(9), 899–901 (2014). doi:10.1038/nmeth.3073

    Article  Google Scholar 

  83. V.M. Acosta, E. Bauch, M.P. Ledbetter, A. Waxman, L.S. Bouchard, D. Budker, Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010). doi:10.1103/PhysRevLett.104.070801

    Article  Google Scholar 

  84. T. Plakhotnik, D. Gruber, Luminescence of nitrogen-vacancy centers in nanodiamonds at temperatures between 300 and 700 K: perspectives on nanothermometry. Phys. Chem. Chem. Phys. 12, 9751–9756 (2010). doi:10.1039/c001132k

    Article  Google Scholar 

  85. X.D. Chen, C.H. Dong, F.W. Sun, C.L. Zou, J.M. Cui et al., Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 99, 161903 (2011). doi:10.1063/1.3652910

    Article  Google Scholar 

  86. D.M. Toyli, D.J. Christle, A. Alkauskas, B.B. Buckley, C.G. van de Walle, D.D. Awschalom, Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys. Rev. X 2, 031001 (2012). doi:10.1103/PhysRevX.2.031001

    Google Scholar 

  87. P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter et al., High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 (2013). doi:10.1021/nl401216y

    Article  Google Scholar 

  88. D.M. Toyli, C.F. de las Casas, D.J. Christle, V.V. Dobrovitski, D.D. Awschalom, Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl. Acad. Sci. USA 110, 8417–8421 (2013). doi:10.1073/pnas.1306825110

    Article  Google Scholar 

  89. G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin, Nanometer scale quantum thermometry in a living cell. Nature 500, 54–58 (2013). doi:10.1038/nature12373

    Article  Google Scholar 

  90. T. Plakhotnik, M.W. Doherty, J.H. Cole, R. Chapman, N.B. Manson, All-optical thermometry and thermal properties of the optically detected spin resonances of the NV–center in nanodiamond. Nano Lett. 14, 4989–4996 (2014). doi:10.1021/nl501841d

    Article  Google Scholar 

  91. S. Kaufmann, D.A. Simpson, L.T. Hall, V. Perunicic, P. Senn, S. Steinertf, L.P. McGuinnessa, B.C. Johnsong, T. Ohshimag, F. Carusod, J. Wrachtrup, R.E. Scholtenh, P. Mulvaney, L. Hollenberg, Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe. Proc. Natl. Acad. Sci. USA 110, 10894–10898 (2013). doi:10.1073/pnas.1300640110

    Article  Google Scholar 

  92. A. Ermakova, G. Pramanik, J. Cai, G. Algara-Siller, U. Kaiser, T. Weil, Y.K. Tzeng, H.C. Chang, L.P. McGuinness, M.B. Plenio, B. Naydenov, F. Jelezko, Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 13, 3305–3309 (2013). doi:10.1021/nl4015233

    Article  Google Scholar 

  93. C. Hepp, T. Müller, V. Waselowski, J.N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J.R. Maze, M. Atatüre, C. Becher, Electronic structure of the silicon vacancy color center in diamond. Phys. Rev. Lett. 112, 036405 (2014). doi:10.1103/PhysRevLett.112.036405

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuen Yung Hui or Huan-Cheng Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hui, Y.Y., Cheng, CA., Chen, O.Y., Chang, HC. (2016). Bioimaging and Quantum Sensing Using NV Centers in Diamond Nanoparticles. In: Yang, N., Jiang, X., Pang, DW. (eds) Carbon Nanoparticles and Nanostructures. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-28782-9_4

Download citation

Publish with us

Policies and ethics