Carbon Nanohorns and Their High Potential in Biological Applications

  • Minfang ZhangEmail author
  • Masako Yudasaka
Part of the Carbon Nanostructures book series (CARBON)


Carbon nanohorns, also called single-wall carbon nanohorns (SWNHs), are single-graphene tubules with horn-shaped tips, and were first reported by Iijima and colleagues in 1999 [1]. The tubule lengths and diameters range from 30 to 50 nm and 2 to 5 nm, respectively, and therefore, SWNHs are not uniform in size. Thousands of SWNHs assemble to form an aggregate, which in turn has an average diameter of ~80–100 nm. SWNHs are produced in large quantities (1 kg/day) by laser ablation of graphite. This process does not require a metal catalyst, and thus it is possible to prepare SWNHs with high purity (>95 %). Owing to their large surface area, molecular sieving effects and photo-thermal conversion characteristics, SWNHs show promise for applications in gas adsorption and storage, biosensor and nanomedicine such as drug delivery and photo-hyperthermia cancer therapy. In this chapter, we briefly introduce nanohorn production methods, biomaterial properties, and functionalization, and then highlight the potential use of SWNHs in various biological research fields. Issues concerning toxicity and biodegradation are also discussed.


Biomaterial Biosensor Carbon nanohorn Drug delivery system Nanomedicine Photo-hyperthermia 


  1. 1.
    S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, K. Takahashi, Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309, 165–170 (1999). doi: 10.1016/S0009-2614(99)00642-9 CrossRefGoogle Scholar
  2. 2.
    S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993). doi: 10.1038/363603a0 CrossRefGoogle Scholar
  3. 3.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). doi: 10.1038/354056a0 CrossRefGoogle Scholar
  4. 4.
    F. Kokai, K. Takahashi, D. Kasuya, M. Yudasaka, S. Iijima, Growth dynamics of single-wall carbon nanotubes and nanohorn aggregates by CO2 laser vaporization at room temperature. Appl. Surf. Sci. 197–198, 650–655 (2002). doi: 10.1016/S0169-4332(02)00434-8 CrossRefGoogle Scholar
  5. 5.
    T. Azami, D. Kasuya, R. Yuge, M. Yudasaka, S. Iijima, T. Yoshitake, Y. Kubo, Large-scale production of single-wall carbon nanohorns with high purity. J. Phys. Chem. C 112, 1330–1334 (2008). doi: 10.1021/jp076365o CrossRefGoogle Scholar
  6. 6.
    T. Yamaguchi, S. Bandow, S. Iijima, Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods. Chem. Phys. Lett. 389, 181–185 (2004). doi: 10.1016/j.cplett.2004.03.068 CrossRefGoogle Scholar
  7. 7.
    N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, S. Xu, Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism. 48, 1580–1585 (2010). doi: 10.1016/j.carbon.2009.12.055 Google Scholar
  8. 8.
    N. Sano, J. Nakano, T. Kanki, Synthesis of single-walled carbon nanotubes with nanohorns by arc in liquid nitrogen. Carbon 42, 688–696 (2003). doi: 10.1016/j.carbon.2003.12.078 Google Scholar
  9. 9.
    H. Wang, M. Chhowalla, N. Sano, S. Jia, G.A.J. Amaratunga, Large-scale synthesis of single-walled carbon nanohorns by submerged arc. Nanotechnology 15, 546 (2004). doi: 10.1088/0957-4484/15/5/024 CrossRefGoogle Scholar
  10. 10.
    N. Sano, Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection. J. Phys. D Appl. Phys. 37, L17 (2004). doi: 10.1088/0022-3727/37/8/L01 CrossRefGoogle Scholar
  11. 11.
    S. Bandow, F. Kokai, K. Takahashi, M. Yudasaka, L. Qin, S. Iijima, Interlayer spacing anomaly of single-wall carbon nanohorn aggregate. 321, 514–519 (2000). doi: 10.1016/S0009-2614(00)00353-5 Google Scholar
  12. 12.
    D. Kasuya, M. Yudasaka, K. Takahashi, F. Kokai, S. Iijima, Selective production of single-wall carbon nanohorn aggregates and their formation mechanism. J. Phy. Chem. B 106, 4947–4951 (2002). doi: 10.1021/jp020387n CrossRefGoogle Scholar
  13. 13.
    M. Inagaki, K. Kaneko, T. Nishizawa, Nanocarbons-recent research in Japan. Carbon 42, 8–9 (2004). doi: 10.1016/j.carbon.2004.02.032 Google Scholar
  14. 14.
    K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, S. Iijima, Pore structure of single-wall carbon nanohorn aggregates. Chem. Phys. Lett. 331, 14–20 (2000). doi: 10.1016/S0009-2614(00)01152-0 CrossRefGoogle Scholar
  15. 15.
    C. Yang, H. Noguchi, K. Murata, M. Yudasaka, A. Hashimoto, S. Iijima, K. Kaneko, Highly ultramicroporous single-walled carbon nanohorn assemblies. Adv. Mater. 17, 866–870 (2005). doi: 10.1002/adma.200400712 CrossRefGoogle Scholar
  16. 16.
    S. Utsumi, J. Miyawaki, H. Tanaka, Y. Hattori, T. Ito, N. Ichikuni, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. J. Phys. Chem. B 109, 14319–14324 (2005). doi: 10.1021/jp0512661 CrossRefGoogle Scholar
  17. 17.
    K. Murata, K. Kaneko, W. Steele, F. Kokai, K. Takahashi, D. Kasuya, K. Hirahara, M. Yudasaka, S. Iijima, Molecular potential structures of heat-treated Single-Wall Carbon Nanohorn Assemblies. J. Phys. Chem. B 105, 10210–10216 (2001). doi: 10.1021/jp010754f CrossRefGoogle Scholar
  18. 18.
    J. Fan, M. Yudasaka, J. Miyawaki, K. Ajima, K. Murata, S. Iijima, Control of hole opening in single-wall carbon nanotubes and single-wall carbon nanohorns using oxygen. J. Phys. Chem. B 110, 1587–1591 (2006). doi: 10.1021/jp0538870 CrossRefGoogle Scholar
  19. 19.
    K. Ajima, M. Yudasaka, K. Suenaga, D. Kasuya, T. Azami, S. Iijima, Material storage mechanism in porous nanocarbon. Adv. Mater. 16, 397–401 (2004). doi: 10.1002/adma.200306142 CrossRefGoogle Scholar
  20. 20.
    E. Bekyarova, K. Kaneko, M. Yudasaka, D. Kasuya, S. Iijima, A. Huidobro, F. Rodriguez-Reinoso, Controlled opening of single-wall carbon nanohorns by heat treatment in carbon dioxide. J. Phys. Chem. B 107, 4479–4484 (2003). doi: 10.1021/jp026737n CrossRefGoogle Scholar
  21. 21.
    C. Yang, D. Kasuya, M. Yudasaka, S. Iijima, K. Kaneko, Microporosity development of single-wall carbon nanohorn with chemically induced coalescence of the assembly structure. J. Phys. Chem. B 106, 17775–17782 (2004). doi: 10.1021/jp048391h CrossRefGoogle Scholar
  22. 22.
    M. Zhang, M. Yudasaka, K. Ajima, J. Miyawaki, Sumio Iijima, Light-assisted oxidation of single-wall carbon nanohorns for abundant creation of oxygenated groups that enable chemical modifications with proteins to enhance biocompatibility. ACS Nano 1, 265–272 (2007). doi: 10.1021/nn700130f CrossRefGoogle Scholar
  23. 23.
    T. Kawai, Y. Miyamoto, O. Sugino, Y. Koga, Nanotube and nanohorn nucleation from graphitic patches: Tight-binding molecular-dynamics simulations. Phys. Rev. B 66, 033404 (2002). doi: 10.1103/PhysRevB.66.033404 CrossRefGoogle Scholar
  24. 24.
    J. Miyawaki, R. Yuge, T. Kawai, M. Yudasaka, S. Iijima, Evidence of thermal closing of atomic-vacancy holes in single-wall carbon nanohorns. J. Phys. Chem. C 111, 1553–1555 (2007). doi: 10.1021/jp067283n CrossRefGoogle Scholar
  25. 25.
    M. Zhang, M. Yudasaka, J. Miyawaki, J. Fan, S. Iijima, Isolating single-wall carbon nanohorns as small aggregates through a dispersion method. J. Phys. Chem. B 109, 22201–22204 (2005). doi: 10.1021/jp054793t CrossRefGoogle Scholar
  26. 26.
    M. Zhang, T. Yamaguchi, S. Iijima, M. Yudasaka, Individual single-wall carbon nanohorns separated from aggregates. J. Phys. Chem. C 113, 11184–11186 (2009). doi: 10.1021/jp9037705 CrossRefGoogle Scholar
  27. 27.
    M. Zhang, X. Zhou, S. Iijima, M. Yudasaka, Small-sized carbon nanohorns enabling cellular uptake control. Sm Iijima all 8, 2524–2531 (2012). doi: 10.1002/smll.201102595 Google Scholar
  28. 28.
    W. Hummer, R. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958). doi: 10.1021/ja01539a017 CrossRefGoogle Scholar
  29. 29.
    S. Zhu, Z. Liu, L. Hu, Y. Yuan, G. Xu, Turn-on fluorescence sensor based on single-walled-carbon-nanohorn–peptide complex for the detection of thrombin. Chem. Eur. J. 18, 16556–16561 (2012). doi: 10.1002/chem.201201468 CrossRefGoogle Scholar
  30. 30.
    G. Pagona, N. Tagmatarchis, J. Fan, M. Yudasaka, S. Iijima, Cone-end functionalization of carbon nanohorns. Chem. Mater. 18, 3918–3920 (2006). doi: 10.1021/cm0604864 CrossRefGoogle Scholar
  31. 31.
    C. Cioffi, S. Campidelli, C. Sooambar, M. Marcaccio, G. Marcolongo, M. Meneghetti, D. Paolucci, F. Paolucci, C. Ehli, G.M. Rahman, V. Sgobba, D.M. Guldi, M. Prato, Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns. J. Am. Chem. Soc. 129, 3938–3945 (2007). doi: 10.1021/ja068007 CrossRefGoogle Scholar
  32. 32.
    H. Isobe, T. Tanaka, R. Maeda, E. Noiri, N. Solin, M. Yudasaka, S. Iijima, E. Nakamura, Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates. Angew. Chem. Int. Ed. 45, 6676–6680 (2006). doi: 10.1002/ange.200601718 CrossRefGoogle Scholar
  33. 33.
    C. Cioffi, S. Campidelli, F.G. Brunetti, M. Meneghetti, M. Prato, Functionalisation of carbon nanohorns, ChemComm 2129–2131 (2006). doi: 10.1039/B601176D
  34. 34.
    N. Tagmatarchis, A. Maigne, M. Yudasaka, S. Iijima, Functionalization of carbon nanohorns with azomethine ylides: towards solubility enhancement and electron-transfer processes. Small 2, 490–494 (2006). doi: 10.1002/smll.200500393 Google Scholar
  35. 35.
    T. Murakami, J. Fan, M. Yudasaka, S. Iijima, K. Shiba, Solubilization of single-wall carbon nanohorns using a PEG—doxorubicin conjugate. Mol. Pharm. 3, 407–414 (2006). doi: 10.1021/mp060027a CrossRefGoogle Scholar
  36. 36.
    S. Matsumura, S. Sato, M. Yudasaka, A. Tomida, T. Tsuruo, S. Iijima, K. Shiba, Prevention of carbon nanohorn agglomeration using a conjugate composed of comb-shaped polyethylene glycol and a peptide aptamer. Mol. Pharm. 6, 441–447 (2009). doi: 10.1021/mp800141v CrossRefGoogle Scholar
  37. 37.
    J. Xu, S. Iijima, M. Yudasaka, Appropriate PEG compounds for dispersion of single wall carbon nanohorns in salted aqueous solution. Appl. Phys. A 99, 15–21 (2010). doi: 10.1007/s00339-010-5582-7 CrossRefGoogle Scholar
  38. 38.
    M. Yang, M. Wada, M. Zhang, K. Kostarelos, R. Yuge, S. Iijima, M. Masuda, M. Yudasaka, A high poly(ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid–poly(ethylene glycol) and macrophage uptake. Acta Biomater. 9, 4744–4753 (2013). doi: 10.1016/j.actbio.2012.09.012 CrossRefGoogle Scholar
  39. 39.
    M. Zhang, M.T. Murakami, K. Ajima, K. Tsuchida, O. Ito, S. Iijima, M. Yudasaka, Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc. Natl. Acad. Sci. U.S.A. 105, 14773–14778 (2008). doi: 10.1073/pnas.0801349105 CrossRefGoogle Scholar
  40. 40.
    E. Miyakoa, T. Deguchi, Y. Nakajima, M. Yudasaka, Y. Hagihara, M. Horie, M. Shichiri, Y. Higuchi, F. Yamashita, M. Hashida, Y. Shigeri, Y. Yoshida, S. Iijima, Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns. Proc. Natl. Acad. Sci. USA, 109, 7523–7528 (2012). doi: 10.1073/pnas.1204391109 Google Scholar
  41. 41.
    J.R. Whitney, S. Sarkar, J. Zhang, T. Do, T. Young, M.K. Manson, T. Campbell, A. Puretzky, C. Rouleau, K. More, D. Geohegan, C. Rylander, H. Dorn, M.N. Rylander, Single-walled carbon nanohorns as photothermal cancer agents. Lasers Surg. Med. 43, 43–51 (2011). doi: 10.1002/lsm.21025 CrossRefGoogle Scholar
  42. 42.
    E. Miyako, H. Nagata, K. Hirano, Y. Makita, K. Nakayama, T. Hirotsu, Near-infrared laser-triggered carbon nanohorns for selective elimination of microbes. Nanotechnology 18, 475103 (2007). doi: 10.1088/0957-4484/18/47/475103 CrossRefGoogle Scholar
  43. 43.
    E. Miyako, H. Nagata, K. Hirano, K. Sakamoto, Y. Makita, K. Nakayama, T. Hirotsu, Photoinduced antiviral carbon nanohorns. Nanotechnology 19, 075106 (2008). doi: 10.1088/0957-4484/19/7/075106 CrossRefGoogle Scholar
  44. 44.
    E. Miyako, C. Hosokawa, M. Kojima, M. Yudasaka, R. Funahashi, I. Oishi, Y. Hagihara, M. Shichiri, M. Takashima, K. Nishio, Y. Yoshida, A photo-thermal-electrical convertor based on carbon nanotubes for bioelectronic applications. Angew. Chem. Int. Ed. 51, 2266–12270 (2011). doi: 10.1002/ange.201106136 Google Scholar
  45. 45.
    E. Miyako, H. Nagata, H. Hirano, T. Hirotsu, Carbon nanotube–polymer composite for light-driven microthermal control. Angew. Chem. Int. Ed. Engl. 47, 3610–3613 (2008). doi: 10.1002/anie.200800296 CrossRefGoogle Scholar
  46. 46.
    S. Chechetka, B. Pichon, M. Zhang, M. Yudasaka, S. Begin-Colin, A. Bianco, E. Miyako, Multifunctional carbon nanohorn complexes for cancer treatment. Chem. Asian J. 10, 160–165 (2015). doi: 10.1002/asia.201403059 CrossRefGoogle Scholar
  47. 47.
    T. Murakami, K. Ajima, J. Miyawaki, M. Yudasaka, S. Iijima, K. Shiba, Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol. Pharm. 1, 399–405 (2004). doi: 10.1021/mp049928e CrossRefGoogle Scholar
  48. 48.
    K. Ajima, T. Murakami A. Maigne, K. Shiba, S. Iijima, Carbon nanohorns as anticancer drug carriers. Mol. Pharm. 2:475–80 (2005). doi: 10.1021/mp0500566 Google Scholar
  49. 49.
    K. Ajima, A. Maigné, M. Yudasaka, Sumio Iijima, Optimum Hole-opening condition for cisplatin incorporation in single-wall carbon nanohorns and its release. J. Phys. Chem. B 110, 19097–19099 (2006). doi: 10.1021/jp064915x CrossRefGoogle Scholar
  50. 50.
    K. Ajima, T. Murakami, Y. Mizoguchi, K. Tsuchida, T. Ichihashi, S. Iijima, M. Yudasaka, Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano 2, 2057–2064 (2008). doi: 10.1021/nn800395t CrossRefGoogle Scholar
  51. 51.
    T. Murakami, H. Sawada, G. Tamura, M. Yudasaka, S. Iijima, K. Tsuchida, Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Nanomed. Lond. 3, 453–463 (2008). doi: 10.2217/17435889.3.4.453 CrossRefGoogle Scholar
  52. 52.
    J. Xu, M. Yudasaka, S. Kouraba, M. Sekido, Y. Yamamoto, S. Iijima, Single wall carbon nanohorn as a drug carrier for controlled release. Chem. Phys. Lett. 461, 189–192 (2008). doi: 10.1016/j.cplett.2008.06.077 CrossRefGoogle Scholar
  53. 53.
    K. Tsuchida, T. Murakami, Recent advances in inorganic nanoparticle-based drug delivery systems. Mini Rev. Med. Chem. 8, 175–183 (2008). doi: 10.2174/138955708783498078 CrossRefGoogle Scholar
  54. 54.
    M. Nakamura, Y. Tahara, Y. Ikehara, T. Murakami, K. Tsuchida, S. Iijima, I. Waga, M. Yudasaka, Single-walled carbon nanohorns as drug carriers: adsorption of prednisolone and anti-inflammatory effects on arthritis. Nanotechnology 22, 465102 (2011). doi: 10.1088/0957-4484/22/46/465102 CrossRefGoogle Scholar
  55. 55.
    A.S.D. Sandanayaka, O. Ito, M. Zhang, K. Ajima, S. Iijima, M. Yudasaka, T. Murakami, K. Tsuchida, Photoinduced electron transfer in zinc phthalocyanine loaded on single-walled carbon nanohorns in aqueous solution. Adv. Mater. 21, 4366–4371 (2009). doi: 10.1002/adma.200901256 CrossRefGoogle Scholar
  56. 56.
    E. Miyako, J. Russier, M. Mauro, C. Cebrian, H. Yawo, C. Ménard-Moyon, J. Hutchison, M. Yudasaka, S. Iijima, L. De Cola, A. Bianco, Photofunctional nanomodulators for bioexcitation. Angew. Chem. Int. Ed. 53, 13121–13125 (2014). doi: 10.1002/annie.201407169 CrossRefGoogle Scholar
  57. 57.
    M. Mitsunaga, M. Ogawa, N. Kosaka, L. Rosenblum, P. Choyke, H. Kobayashi, Cancer cell–selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 17, 1685–1691 (2011). doi: 10.1038/nm.2554 CrossRefGoogle Scholar
  58. 58.
    X. Peng, D. Draney, W. Volcheck, G. Bashford, D. Lamb, D. Grone, Y. Zhang, C. Johnson, Phthalocyanine dye as an extremely photostable and highly fluorescent near-infrared labeling reagent. Proc. SPIE Int. Soc. Opt. Eng. 6097, 113–124 (2006). doi: 10.1117/12.669173 Google Scholar
  59. 59.
    M. Ohkita, S. Saito, T. Imagawa, K. Takahashi, M. Tominaga, T. Ohta, Molecular cloning and functional characterization of xenopus tropicalis frog transient receptor potential vanilloid 1 reveal its functional evolution for heat, acid, and capsaicin sensitivities in terrestrial vertebrates. J. Biol. Chem. 287, 2388–2397 (2012). doi: 10.1074/jbc.M111.305698 CrossRefGoogle Scholar
  60. 60.
    R. Weissleder, A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317 (2001). doi: 10.1038/86684 CrossRefGoogle Scholar
  61. 61.
    X. Liu, L. Shi, W. Niu, H. Li, S. Han, J. Chen, G. Xu, Amperometric glucose biosensor based on single-walled carbon nanohorns. Biosens. Bioelectron. 23, 1887–1890 (2008). doi: 10.1016/j.bios.2008.07.001 CrossRefGoogle Scholar
  62. 62.
    L. Shi, X. Liu, W. Niu, H. Li, S. Han, J. Chen, G. Xu, Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Biosens. Bioelectron. 24(2009), 1159–1163 (2009)CrossRefGoogle Scholar
  63. 63.
    X. Liu, H. Li, F. Wanga, S. Zhu, Y. Wang, G. Xu, Functionalized single-walled carbon nanohorns for electrochemical biosensing. Biosens. Bioelectron. 25, 2194–2199 (2010). doi: 10.1016/j.bios.2010.02.027 CrossRefGoogle Scholar
  64. 64.
    J. Zhang, J. Lei, C. Xu, L. Ding, H. Ju, Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal. Chem. 82, 1117–1122 (2010). doi: 10.1021/ac902914r CrossRefGoogle Scholar
  65. 65.
    I. Ojeda, B. Garcinuñ, M. Moreno-Guzman, A. Gonzalez-Cortes, M. Yudasaka, S. Iijima, F. Langa, P. Yanez-Sedeno, J. Pingarron, Carbon nanohorns as a scaffold for the construction of disposable electrochemical immunosensing platforms. Application to the determination of fibrinogen in human plasma and urine. Anal. Chem. 86, 7749–7756 (2014). doi: 10.1021/ac501681n CrossRefGoogle Scholar
  66. 66.
    F. Yang, J. Han, Y. Zhuo, Z. Yang, Y. Chai, R. Yuan, Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosens. Bioelectron. 55, 360–365 (2014). doi: 10.1016/j.bios.2013.12.040 CrossRefGoogle Scholar
  67. 67.
    WHO, Guidelines for drinking-water quality, Addendum to Volume 2, Health Criteria and Other Supporting Information (World Health Organization, Geneva, Switzerland, 1998)Google Scholar
  68. 68.
    J. Miyawaki, M. Yudasaka, T. Azami, Y Kubo, S. Iijima, Toxicity of single-walled carbon nanohorns, ACS Nano, 2(2), 213–226 (2008). doi: 10.1021/nn700185t Google Scholar
  69. 69.
    Y. Tahara1, J. Miyawaki,, M. Zhang, M. Yang, I. Waga, S. Iijima, H. Irie, M. Yudasaka, Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology 22, 265106, 8 (2011). doi: 10.1088/0957-4484/22/26/265106 Google Scholar
  70. 70.
    M. Zhang, T. Yamaguchi, S. Iijima, M. Yudasaka, Size-dependent biodistribution of carbon nanohorns in vivo, Nanomedicine. NBM 9, 657–664 (2013). doi: 10.1016/j.nano.2012.11.011 CrossRefGoogle Scholar
  71. 71.
    Y. Tahara, M. Nakamura, M. Yang, M. Zhang, S. Iijima, M. Yudasaka, Lysosomal membrane destabilization induced by high accumulation of single-walled carbon nanohorns in murine macrophage RAW 264.7. Biomaterials 33, 2762–2769 (2012). doi: 10.1016/j.biomaterials.2011.12.023 CrossRefGoogle Scholar
  72. 72.
    M. Yang, M. Zhang, Y. Tahara, S. Chechetka, E. Miyako, S. Iijima, M. Yudasaka, Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism. Toxicol. Appl. Pharmacol. 280, 117–126 (2014). doi: 10.1016/j.taap.2014.07.022 CrossRefGoogle Scholar
  73. 73.
    A. Hashimoto, H. Yorimitsu, K. Ajima, K. Suenaga, H. Isobe, J. Miyawaki, M. Yudasaka, S. Iijima, E. Nakamura, Selective deposition of a gadolinium(III) cluster in a hole opening of single-wall carbon nanohorn Proc. Natl. Acad. Sci. U.S.A. 101, 8527–8530 (2004). doi: 10.1073/pnas.0400596101 CrossRefGoogle Scholar
  74. 74.
    J. Miyawaki, M. Yudasaka, H. Imai, H. Yorimitsu, H. Isobe, E. Nakamura, S. Iijima, Synthesis of ultrafine Gd2O3 nanoparticles inside single-wall carbon nanohorns. J. Phys. Chem. B 110, 5179–5181 (2006). doi: 10.1021/jp0607622 CrossRefGoogle Scholar
  75. 75.
    R. Yuge, R. Ichihashi, J. Miyawaki, T. Yoshitake, S. Iijima, M. Yudasaka, Hidden caves in an aggregate of single-wall carbon nanohorns found by using Gd2O3 Probes. J. Phys. Chem. C 113, 2741–2744 (2009)CrossRefGoogle Scholar
  76. 76.
    J. Miyawaki, S. Matsumura, R. Yuge, T. Murakami, S. Sato, A. Tomida, T. Tsuruo, T. Ichihashi, T. Fujinami, H. Irie, K. Tsuchida, S. Iijima, K. Shiba, M. Yudasaka, Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano 3, 1399–1406 (2009). doi: 10.1021/nn9004846 CrossRefGoogle Scholar
  77. 77.
    M. Zhang, Y. Tahara, M. Yang, X. Zhou, S. Iijima, M. Yudasaka, Quantification of whole body and excreted carbon nanohorns intravenously injected into mice. Advanced Healthcare Materials 3, 239–244 (2013). doi: 10.1002/adhm.201300192 CrossRefGoogle Scholar
  78. 78.
    H. Irie, W. Mori, Long term effects of thorium dioxide (Thorotrast) administration on heman liver. Acta Pathol. Jpn. 34, 221–228 (1984). doi: 10.1111/j.1440-1827.1984.tb07551.x Google Scholar
  79. 79.
    M. Yamamoto, K. Kato, Y. Ikada, Ultrastructure of the interface between cultured osteoblasts and surface modified polymer substrates. J. Biomed. Mater. Res. 37, 29–36 (1997). doi: 10.1002/(SICI)1097-4636(199710)37:1<29:AID-JBM4>3.0.CO;2-L CrossRefGoogle Scholar
  80. 80.
    A.E. Porter, M. Gass, K. Muller, J.N. Skepper, P.A. Midgley, M. Welland, Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2, 713–717 (2007). doi: 10.1038/nnano.2007.347 CrossRefGoogle Scholar
  81. 81.
    C. Thakaral, J.L. Abraham, Automated scanning electron microscopy and X-ray microanalysis for in-situ quantification of gadolinium deposits in skin. J. Electron Microsc. 56, 181–187 (2007). doi: 10.1093/jmicro/dfm020 CrossRefGoogle Scholar
  82. 82.
    B.L. Allen, P.D. Kichambare, P. Gou, I. Vlasova, A. Kapralov, N. Konduru, V.E. Kagan, A. Star, Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett. 8, 3899–3903 (2008). doi: 10.1021/nl802315h CrossRefGoogle Scholar
  83. 83.
    B.L. Allen, G.P. Kotchey, Y. Chen, N. Yanamala, J. Klein-Seetharaman, V.E. Kagan, A. Star, Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 17194–17205 (2009). doi: 10.1021/ja9083623 CrossRefGoogle Scholar
  84. 84.
    V. Kagan, N. Konduru, W. Feng, B. Allen, J. Conroy, Y. Volkov, I. Vlasova, N. Belikova, N. Yanamala, A. Kapralov, Y. Tyurina, J. Shi, E. Kisin, A. Murray, J. Franks, D. Stolz, P. Gou, J. Klein-Seetharaman, B. Fadeel, A. Star, A. Shvedova, Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol. 5, 354–359 (2010). doi: 10.1038/nnano.2010.44 CrossRefGoogle Scholar
  85. 85.
    Y. Zhao, B. Allen, A. Star, Enzymatic degradation of multiwalled carbon nanotubes. J. Phys. Chem. A 115, 9536–9544 (2011). doi: 10.1021/jp112324d CrossRefGoogle Scholar
  86. 86.
    G.P. Kotchey, Y. Zhao, V.E. Kagan, A. Star, Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo. Adv. Drug Delivery Rev. 65, 1921–1932 (2013). doi: 10.1016/j.addr.2013.07.007 CrossRefGoogle Scholar
  87. 87.
    G.P. Kotchey, S.A. Hasan, A. Kapralov, S. Ha, K. Kim, A. Shvedova, V.E. Kagan, A. Star, A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials. Acc. Chem. Res. 45, 1770–1781 (2012). doi: 10.1021/ar300106h CrossRefGoogle Scholar
  88. 88.
    A. Shvedova, A. Kapralov, W. Feng, E. Kisin, A. Murray, R. Mercer, C. St Croix, M. Lang, S. Watkins, N. Konduru, B. Allen, J. Conroy, G. Kotchey, B. Mohamed, A. Meade, Y. Volkov, A. Star, B. Fadeel, V. Kagan, Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS ONE 7, e30923 (2012). doi: 10.1371/journal.pone.0030923 CrossRefGoogle Scholar
  89. 89.
    A. Nunes, C. Bussy, L. Gherardini, M. Meneghetti, M.A. Herrero, A. Bianco, M. Prato, T. Pizzorusso, K. Al-Jamal, K. Kostarelos, In vivo degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomed. Lond. 7, 1485–1494 (2012). doi: 10.2217/nnm.12.33 CrossRefGoogle Scholar
  90. 90.
    Y. Sato, A. Yokoyama, Y. Nodasaka, T. Kohgo, K. Motomiya, H. Matsumoto, E. Nakazawa, T. Numata, M. Zhang, M. Yudasaka, H. Hara, R. Araki, O. Tsukamoto, H. Saito, T. Kamino, F. Watari, K. Tohji, Long-term biopersistence of tangled oxidized carbon nanotubes inside and outside macrophages in rat subcutaneous tissue. Sci. Rep. 3, 2516 (2013). doi: 10.1038/srep0216 Google Scholar
  91. 91.
    V.E. Kagan, A. Kapralov, C. St, S.C. Croix, E.R. Watkins, G.P. Kisin, K.Balasubramanian Kotchey, I. Vlasova, J. Yu, K. Kim, W. Seo, R.K. Mallampalli, A. Star, A. Shvedova, Lung macrophages “digest” carbon nanotubes using a superoxide/peroxynitrite oxidative pathway. ACS Nano 8, 5610–5621 (2014). doi: 10.1021/nn406484b CrossRefGoogle Scholar
  92. 92.
    M. Zhang, M. Yang, C. Bussay, S. Iijima, K. Kostarelos, M. Yudasaka, Biodegradation of carbon nanohorns in macrophage cells. Nanoscale 7, 2834–3840 (2015). doi: 10.1039/c4nr06175f CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Nanotube Application Research CenterNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Nanomaterials Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  3. 3.Meijo UniversityNagoyaJapan

Personalised recommendations