One-Dimensional Carbon Nanostructures: Low-Temperature Chemical Vapor Synthesis and Applications

  • Yao Ma
  • Nianjun Yang
  • Xin JiangEmail author
Part of the Carbon Nanostructures book series (CARBON)


Chemical vapor deposition (CVD) is a powerful method to synthesize various carbon nanostructures (e.g., carbon nanotubes). A conventional CVD process has to be carried out at the temperatures over 600 °C. To extend the applications of carbon nanostructures, for example in the semiconductor industry, low-temperature synthesis processes are thus always pursued. In this chapter we review the CVD growth of carbon nanostructures at low temperatures (<450 °C). These growth processes are discussed in detail with respect to the applied catalyst system, carbon source, reaction atmosphere, catalyst faces, morphology control as well as unique structural characteristics of grown products. For the low-temperature CVD growth, catalytic reaction occurring on the low index faces of a metal catalyst is a crucial issue, and the growth is rate-limited by surface diffusion. Instead of the classical Vapor-Liquid-Solid (VLS) growth mechanism, the growth mechanism at low temperatures is interpreted with a novel Vapor-Facet-Solid (VFS) mechanism. Due to their unique features, the synthesized carbon nanostructures are promising to be applied for interconnects in large-scale integrated circuits, field emission, microwave adsorption, and as the anode material of lithium ion secondary battery, etc.


Carbon nanostructure CVD Low temperature Catalyst Growth mechanism 



The authors would like to acknowledge financial support of this work by the German Research Foundation (DFG JI22/16-1, DFG JI22/21-1).


  1. 1.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). doi: 10.1038/354056a0 CrossRefGoogle Scholar
  2. 2.
    J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Electrical and thermal transport properties of magnetically aligned single walt carbon nanotube films. Appl. Phys. Lett. 77(5), 666–668 (2000). doi: 10.1063/1.127079 CrossRefGoogle Scholar
  3. 3.
    M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000). doi: 10.1103/PhysRevLett.84.5552 CrossRefGoogle Scholar
  4. 4.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Optical properties of single-wall carbon nanotubes. Synth. Met. 103(1–3), 2555–2558 (1999). doi: 10.1016/s0379-6779(98)00278-1 CrossRefGoogle Scholar
  5. 5.
    J.L. Hutchison, N.A. Kiselev, E.P. Krinichnaya, A.V. Krestinin, R.O. Loutfy, A.P. Morawsky, V.E. Muradyan, E.D. Obraztsova, J. Sloan, S.V. Terekhov, D.N. Zakharov, Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39(5), 761–770 (2001). doi: 10.1016/s0008-6223(00)00187-1 CrossRefGoogle Scholar
  6. 6.
    E.G. Gamaly, T.W. Ebbesen, Mechanism of carbon nanotube formation in the arc-discharge. Phys. Rev. B. 52(3), 2083–2089 (1995). doi: 10.1103/PhysRevB.52.2083 CrossRefGoogle Scholar
  7. 7.
    C.D. Scott, S. Arepalli, P. Nikolaev, R.E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A Mater. Sci. Process. 72(5), 573–580 (2001). doi: 10.1007/s003390100761 CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, S. Iijima, Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl. Phys. Lett. 75(20), 3087–3089 (1999). doi: 10.1063/1.125239 CrossRefGoogle Scholar
  9. 9.
    A. Tanaka, S.H. Yoon, I. Mochida, Formation of fine Fe–Ni particles for the non-supported catalytic synthesis of uniform carbon nanofibers. Carbon 42(7), 1291–1298 (2004). doi: 10.1016/j.carbon.2004.01.029 CrossRefGoogle Scholar
  10. 10.
    J.H. Xia, X. Jiang, C.L. Jia, C. Dong, Hexahedral nanocementites catalyzing the growth of carbon nanohelices. Appl. Phys. Lett. 92(6), 063121 (2008). doi: 10.1063/1.2842410 CrossRefGoogle Scholar
  11. 11.
    S. Motojima, Q.Q. Chen, Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. J. Appl. Phys. 85(7), 3919–3921 (1999). doi: 10.1063/1.369765 CrossRefGoogle Scholar
  12. 12.
    G.Y. Zhang, X. Jiang, E.G. Wang, Tubular graphite cones. Science 300(5618), 472–474 (2003). doi: 10.1126/science.1082264 CrossRefGoogle Scholar
  13. 13.
    X.S. Qi, W. Zhong, Y. Deng, C.T. Au, Y.W. Du, Characterization and magnetic properties of helical carbon nanotubes and carbon nanobelts synthesized in acetylene decomposition over Fe–Cu nanoparticles at 450 °C. J. Phys. Chem. C 113(36), 15934–15940 (2009). doi: 10.1021/jp905387v CrossRefGoogle Scholar
  14. 14.
    A.M. Cassell, J.A. Raymakers, J. Kong, H.J. Dai, Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103(31), 6484–6492 (1999). doi: 10.1021/jp990957s CrossRefGoogle Scholar
  15. 15.
    E. Couteau, K. Hernadi, J.W. Seo, L. Thien-Nga, C. Miko, R. Gaal, L. Forro, CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem. Phys. Lett. 378(1–2), 9–17 (2003). doi: 10.1016/s0009-2614(03)01218-1 CrossRefGoogle Scholar
  16. 16.
    Y.A. Kim, T. Hayashi, S. Naokawa, T. Yanaisawa, M. Endo, Comparative study of herringbone and stacked-cup carbon nanofibers. Carbon 43(14), 3005–3008 (2005). doi: 10.1016/j.carbon.2005.06.037 CrossRefGoogle Scholar
  17. 17.
    Y.A. Zhu, Z.J. Sui, T.J. Zhao, Y.C. Dai, Z.M. Cheng, W.K. Yuan, Modeling of fishbone-type carbon nanofibers: a theoretical study. Carbon 43(8), 1694–1699 (2005). doi: 10.1016/j.carbon.2005.02.011 CrossRefGoogle Scholar
  18. 18.
    A. de Lucas, P.B. Garcia, A. Garrido, A. Romero, J.L. Valverde, Catalytic synthesis of carbon nanofibers with different graphene plane alignments using Ni deposited on iron pillared clays. Appl. Catal. A Gen. 301(1), 123–132 (2006). doi: 10.1016/j.apcata.2005.11.026 CrossRefGoogle Scholar
  19. 19.
    H. Cui, O. Zhou, B.R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 88(10), 6072–6074 (2000). doi: 10.1063/1.1320024 CrossRefGoogle Scholar
  20. 20.
    C.J. Lee, J. Park, Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Appl. Phys. Lett. 77(21), 3397–3399 (2000). doi: 10.1063/1.1320851 CrossRefGoogle Scholar
  21. 21.
    C.J. Lee, J.H. Park, J. Park, Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 323(5–6), 560–565 (2000). doi: 10.1016/s0009-2614(00)00548-0 CrossRefGoogle Scholar
  22. 22.
    M. Lin, J.P.Y. Tan, C. Boothroyd, K.P. Loh, E.S. Tok, Y.L. Foo, Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett. 7(8), 2234–2238 (2007). doi: 10.1021/nl070681x CrossRefGoogle Scholar
  23. 23.
    J.P. Tu, L.P. Zhu, K. Hou, S.Y. Guo, Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon 41(6), 1257–1263 (2003). doi: 10.1016/s0008-6223(03)00047-2 CrossRefGoogle Scholar
  24. 24.
    Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou, G. Wang, Direct growth of aligned open carbon nanotubes by chemical vapor deposition. Chem. Phys. Lett. 299(1), 97–102 (1999). doi: 10.1016/s0009-2614(98)01240-8 CrossRefGoogle Scholar
  25. 25.
    M.J. de Andrede, M.D. Lima, C.P. Bergmann, G.D. Ramminger, N.M. Balzaretti, T.M.H. Costa, M.R. Gallas, Carbon nanotube/silica composites obtained by sol-gel and high-pressure techniques. Nanotechnology 19(26), 265607 (2008). doi: 10.1088/0957-4484/19/26/265607 CrossRefGoogle Scholar
  26. 26.
    R.R. Bacsa, C. Laurent, A. Peigney, W.S. Bacsa, T. Vaugien, A. Rousset, High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chem. Phys. Lett. 323(5–6), 566–571 (2000). doi: 10.1016/s0009-2614(00)00558-3 CrossRefGoogle Scholar
  27. 27.
    J.P. Pinheiro, M.C. Schouler, P. Gadelle, Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts I. Growth versus catalyst state. Carbon 41(15), 2949–2959 (2003). doi: 10.1016/s0008-6223(03)00410-x CrossRefGoogle Scholar
  28. 28.
    Y.M. Li, W. Kim, Y.G. Zhang, M. Rolandi, D.W. Wang, H.J. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105(46), 11424–11431 (2001). doi: 10.1021/jp012085b CrossRefGoogle Scholar
  29. 29.
    D. Venegoni, P. Serp, R. Feurer, Y. Kihn, C. Vahlas, P. Kalck, Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40(10), 1799–1807 (2002). doi: 10.1016/s0008-6223(02)00057-x CrossRefGoogle Scholar
  30. 30.
    K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, A. Fudala, A.A. Lucas, Catalytic synthesis of carbon nanotubes using zeolite support. Zeolites 17(5–6), 416–423 (1996). doi: 10.1016/s0144-2449(96)00088-7 CrossRefGoogle Scholar
  31. 31.
    H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79–81 (2000). doi: 10.1063/1.126883 CrossRefGoogle Scholar
  32. 32.
    Y. Li, J. Liu, Y.Q. Wang, Z.L. Wang, Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13(3), 1008–1014 (2001). doi: 10.1021/cm000787s CrossRefGoogle Scholar
  33. 33.
    C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B. 106(10), 2429–2433 (2002). doi: 10.1021/jp0142278 CrossRefGoogle Scholar
  34. 34.
    Y. Qin, Z.K. Zhang, Z.L. Cui, Helical carbon nanofibers with a symmetric growth mode. Carbon 42(10), 1917–1922 (2004). doi: 10.1016/j.carbon.2004.03.020 CrossRefGoogle Scholar
  35. 35.
    N.G. Shang, X. Jiang, Large-sized tubular graphite cones with nanotube tips. Appl. Phys. Lett. 87(16), 163102 (2005). doi: 10.1063/1.2093919 CrossRefGoogle Scholar
  36. 36.
    N.G. Shang, W.I. Milne, X. Jiang, Tubular graphite cones with single-crystal nanotips and their antioxygenic properties. J. Am. Chem. Soc. 129(28), 8907–8911 (2007). doi: 10.1021/ja071830g CrossRefGoogle Scholar
  37. 37.
    G.Y. Zhang, X.C. Ma, D.Y. Zhong, E.G. Wang, Polymerized carbon nitride nanobells. J. Appl. Phys. 91(11), 9324–9332 (2002). doi: 10.1063/1.1476070 CrossRefGoogle Scholar
  38. 38.
    Y.G. Zhang, A.L. Chang, J. Cao, Q. Wang, W. Kim, Y.M. Li, N. Morris, E. Yenilmez, J. Kong, H.J. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001). doi: 10.1063/1.1415412 CrossRefGoogle Scholar
  39. 39.
    A. Ural, Y.M. Li, H.J. Dai, Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl. Phys. Lett. 81(18), 3464–3466 (2002). doi: 10.1063/1.1518773 CrossRefGoogle Scholar
  40. 40.
    R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth (New method growth catalysis from impurity whisker epitaxial + large crystals Si E). Appl. Phys. Lett. 4(5), 89 (1964). doi: 10.1063/1.1753975 CrossRefGoogle Scholar
  41. 41.
    H. Kanzow, A. Ding, Formation mechanism of single-wall carbon nanotubes on liquid-metal particles. Phys. Rev. B 60(15), 11180–11186 (1999). doi: 10.1103/PhysRevB.60.11180 CrossRefGoogle Scholar
  42. 42.
    M.A. Ermakova, D.Y. Ermakov, A.L. Chuvilin, G.G. Kuvshinov, Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J. Catal. 201(2), 183–197 (2001). doi: 10.1006/jcat.2001.3243 CrossRefGoogle Scholar
  43. 43.
    Y. Shibuta, S. Maruyama, Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method. Chem. Phys. Lett. 382(3–4), 381–386 (2003). doi: 10.1016/j.cplett.2003.10.080 CrossRefGoogle Scholar
  44. 44.
    S. Tsunekawa, S. Ito, Y. Kawazoe, J.T. Wang, Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles. Nano Lett. 3(7), 871–875 (2003). doi: 10.1021/ni034129t CrossRefGoogle Scholar
  45. 45.
    S.S. Fan, W.J. Liang, H.Y. Dang, N. Franklin, T. Tombler, M. Chapline, H.J. Dai, Carbon nanotube arrays on silicon substrates and their possible application. Physica E 8(2), 179–183 (2000). doi: 10.1016/s1386-9477(00)00136-3 CrossRefGoogle Scholar
  46. 46.
    R.T.K. Baker, Catalytic growth of carbon filaments. Carbon 27(3), 315–323 (1989). doi: 10.1016/0008-6223(89)90062-6 CrossRefGoogle Scholar
  47. 47.
    J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J.C. Charlier, Root-growth mechanism for single-wall carbon nanotubes. Phys. Rev. Lett. 87(27), 275504 (2001). doi: 10.1103/PhysRevLett.87.275504 CrossRefGoogle Scholar
  48. 48.
    N.M. Rodriguez, A. Chambers, R.T.K. Baker, Catalytic engineering of carbon nanostructures. Langmuir 11(10), 3862–3866 (1995). doi: 10.1021/la00010a042 CrossRefGoogle Scholar
  49. 49.
    R.T. Yang, J.P. Chen, Mechanism of carbon-filament growth on metal-catalysts. J. Catal. 115(1), 52–64 (1989). doi: 10.1016/0021-9517(89)90006-7 CrossRefGoogle Scholar
  50. 50.
    J.A. Lobo, G.H. Geiger, Thermodynamics and solubility of carbon in ferrite and ferritic Fe–Mo alloys. Metall. Trans. A Phys. Metall. Mater. Sci. 7(9), 1347–1357 (1976). doi: 10.1007/bf02658820 CrossRefGoogle Scholar
  51. 51.
    C.P. Deck, K. Vecchio, Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams. Carbon 44(2), 267–275 (2006). doi: 10.1016/j.carbon.2005.07.023 CrossRefGoogle Scholar
  52. 52.
    T. Maruyama, K. Sato, Y. Mizutani, K. Tanioku, T. Shiraiwa, S. Naritsuka, Low-temperature synthesis of single-walled carbon nanotubes by alcohol gas source growth in high vacuum. J. Nanosci. Nanotechnol. 10(6), 4095–4101 (2010). doi: 10.1166/jnn.2010.2000 CrossRefGoogle Scholar
  53. 53.
    J. Highfield, Y.S. Loo, Z. Zhong, B. Grushko, Thermogravimetric studies of carbon nanofiber formation from methane at low temperature over Ni-based skeletal catalysts and the effect of substrate pre-carburization. Carbon 45(13), 2597–2607 (2007). doi: 10.1016/j.carbon.2007.08.012 CrossRefGoogle Scholar
  54. 54.
    D. He, J. Bai, Acetylene-enhanced growth of carbon nanotubes on ceramic microparticles for multi-scale hybrid structures. Chem. Vap. Depos. 17(4–6), 98–106 (2011). doi: 10.1002/cvde.201006878 CrossRefGoogle Scholar
  55. 55.
    A. Magrez, J.W. Seo, R. Smajda, B. Korbely, J.C. Andresen, M. Mionic, S. Casimirius, L. Forro, Low-temperature, highly efficient growth of carbon nanotubes on functional materials by an oxidative dehydrogenation reaction. ACS Nano 4(7), 3702–3708 (2010). doi: 10.1021/nn100279j CrossRefGoogle Scholar
  56. 56.
    N. Halonen, A. Sapi, L. Nagy, R. Puskas, A.-R. Leino, J. Maklin, J. Kukkola, G. Toth, M.-C. Wu, H.-C. Liao, W.-F. Su, A. Shchukarev, J.-P. Mikkola, A. Kukovecz, Z. Konya, K. Kordas, Low-temperature growth of multi-walled carbon nanotubes by thermal CVD. Physica Status Solidi B Basic Solid State Phys. 248(11), 2500–2503 (2011). doi: 10.1002/pssb.201100137 CrossRefGoogle Scholar
  57. 57.
    O. Pitkanen, N. Halonen, A.R. Leino, J. Maklin, A. Dombovari, J.H. Lin, G. Toth, K. Kordas, Low-temperature growth of carbon nanotubes on bi- and tri-metallic catalyst templates. Top. Catal. 56(9–10), 522–526 (2013). doi: 10.1007/s11244-013-0047-9 CrossRefGoogle Scholar
  58. 58.
    Y.M. Shyu, F.C.N. Hong, Low-temperature growth and field emission of aligned carbon nanotubes by chemical vapor deposition. Mater. Chem. Phys. 72(2), 223–227 (2001). doi: 10.1016/s0254-0584(01)00441-2 CrossRefGoogle Scholar
  59. 59.
    Y.M. Shyu, F.C.N. Hong, The effects of pre-treatment and catalyst composition on growth of carbon nanofibers at low temperature. Diam. Relat. Mater. 10(3–7), 1241–1245 (2001). doi: 10.1016/s0925-9635(00)00550-1 CrossRefGoogle Scholar
  60. 60.
    K. Aoki, T. Yamamoto, H. Furuta, T. Ikuno, S. Honda, M. Furuta, K. Oura, T. Hirao, Low-temperature growth of carbon nanofiber by thermal chemical vapor deposition using CuNi catalyst. Jpn. J. Appl. Phys. Part 1 Regular Pap. Brief Commun. Rev. Pap. 45(6A), 5329–5331 (2006). doi: 10.1143/jjap.45.5329 CrossRefGoogle Scholar
  61. 61.
    N. Na, D.Y. Kim, Y.-G. So, Y. Ikuhara, S. Noda, Simple and engineered process yielding carbon nanotube arrays with 1.2 × 1013 cm−2 wall density on conductive underlayer at 400 °C. Carbon 81, 773–781 (2015). doi: 10.1016/j.carbon.2014.10.023 CrossRefGoogle Scholar
  62. 62.
    K. Tanioku, T. Maruyama, S. Naritsuka, Low temperature growth of carbon nanotubes on Si substrates in high vacuum. Diam. Relat. Mater. 17(4–5), 589–593 (2008). doi: 10.1016/j.diamond.2007.10.028 CrossRefGoogle Scholar
  63. 63.
    X. Li, Z. Xu, One-step catalytic growth of carbon nanofiber arrays vertically aligned on carbon substrate. Mater. Res. Bull. 47(6), 1557–1561 (2012). doi: 10.1016/j.materresbull.2012.02.027 CrossRefGoogle Scholar
  64. 64.
    Y. Ma, C. Weimer, N. Yang, L. Zhang, T. Staedler, X. Jiang, Low-temperature growth of carbon nanofiber using a vapor–facet–solid process. Mater. Today Commun. 2, e55–e61 (2015). doi: 10.1016/j.mtcomm.2014.12.003 CrossRefGoogle Scholar
  65. 65.
    B. Yu, S. Wang, Q. Zhang, Y. He, H. Huang, J. Zou, Ni3C-assisted growth of carbon nanofibres 300 °C by thermal CVD. Nanotechnology 25(32), 325602 (2014). doi: 10.1088/0957-4484/25/32/325602 CrossRefGoogle Scholar
  66. 66.
    W.-H. Chiang, R.M. Sankaran, Synergistic effects in bimetallic nanoparticles for low temperature carbon nanotube growth. Adv. Mater. 20(24), 4857–4861 (2008). doi: 10.1002/adma.200801006 CrossRefGoogle Scholar
  67. 67.
    Y. Ma, X. Sun, N. Yang, J. Xia, L. Zhang, X. Jiang, Shape-controlled growth of carbon nanostructures: yield and mechanism. Chem. Eur. J. 21, 12370–12375 (2015). doi: 10.1002/chem.201500440 CrossRefGoogle Scholar
  68. 68.
    Y. Qin, Q. Zhang, Z.L. Cui, Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene. J. Catal. 223(2), 389–394 (2004). doi: 10.1016/j.jcat.2004.02.004 CrossRefGoogle Scholar
  69. 69.
    J.H. Xia, X. Jiang, C.L. Jia, The size effect of catalyst on the growth of helical carbon nanofibers. Appl. Phys. Lett. 95(22), 223110 (2009). doi: 10.1063/1.3271031 CrossRefGoogle Scholar
  70. 70.
    Y. Qin, M. Eggers, T. Staedler, X. Jiang, Symmetric growth of carbon nanosheets on Cu nanowires by a surface diffusion mechanism. Nanotechnology 18(34), 345607 (2007). doi: 10.1088/0957-4484/18/34/345607 CrossRefGoogle Scholar
  71. 71.
    Y. Qin, X. Jiang, Z.L. Cui, Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis. J. Phys. Chem. B 109(46), 21749–21754 (2005). doi: 10.1021/jp054412b CrossRefGoogle Scholar
  72. 72.
    X. Sun, Y.W. Zhang, R. Si, C.H. Yan, Metal (mn Co, and Cu) oxide nanocrystals from simple formate precursors. Small 1(11), 1081–1086 (2005). doi: 10.1002/smll.200500119 CrossRefGoogle Scholar
  73. 73.
    J.H. Xia, Growth of carbon nanofibers studied by using transmission electron microscopy. Shaker Verlag, D-52018 Aachen (2010)Google Scholar
  74. 74.
    A.J. Hart, A.H. Slocum, L. Royer, Growth of conformal single-walled carbon nanotube films from Mo/Fe/Al2O3 deposited by electron beam evaporation. Carbon 44(2), 348–359 (2006). doi: 10.1016/j.carbon.2005.07.008 CrossRefGoogle Scholar
  75. 75.
    Y.J. Tian, Z. Hu, Y. Yang, X.Z. Wang, X. Chen, H. Xu, Q. Wu, W.J. Ji, Y. Chen, In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J. Am. Chem. Soc. 126(4), 1180–1183 (2004). doi: 10.1021/ja037561i CrossRefGoogle Scholar
  76. 76.
    B. Zheng, C.G. Lu, G. Gu, A. Makarovski, G. Finkelstein, J. Liu, Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Lett. 2(8), 895–898 (2002). doi: 10.1021/nl025634d CrossRefGoogle Scholar
  77. 77.
    A.J. Hart, A.H. Slocum, Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. J. Phys. Chem. B. 110(16), 8250–8257 (2006). doi: 10.1021/jp055498b CrossRefGoogle Scholar
  78. 78.
    M. Jung, K.Y. Eun, J.K. Lee, Y.J. Baik, K.R. Lee, J.W. Park, Growth of carbon nanotubes by chemical vapor deposition. Diam. Relat. Mater. 10(3–7), 1235–1240 (2001). doi: 10.1016/s0925-9635(00)00446-5 CrossRefGoogle Scholar
  79. 79.
    A.V. Vasenkov, D. Sengupta, M. Frenklach, Multiscale modeling catalytic decomposition of hydrocarbons during carbon nanotube growth. J. Phys. Chem. B. 113(7), 1877–1882 (2009). doi: 10.1021/jp808346h CrossRefGoogle Scholar
  80. 80.
    G.D. Nessim, A. Al-Obeidi, H. Grisaru, E.S. Polsen, C.R. Oliver, T. Zimrin, A.J. Hart, D. Aurbach, C.V. Thompson, Synthesis of tall carpets of vertically aligned carbon nanotubes by in situ generation of water vapor through preheating of added oxygen. Carbon 50(11), 4002–4009 (2012). doi: 10.1016/j.carbon.2012.04.043 CrossRefGoogle Scholar
  81. 81.
    D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95(5), 4 (2005). doi: 10.1103/PhysRevLett.95.056104 CrossRefGoogle Scholar
  82. 82.
    S. Hussain, R. Amade, E. Bertran, Study of CNTs structural evolution during water assisted growth and transfer methodology for electrochemical applications. Mater. Chem. Phys. 148(3), 914–922 (2014). doi: 10.1016/j.matchemphys.2014.08.070 CrossRefGoogle Scholar
  83. 83.
    M. Bansal, C. Lal, R. Srivastava, M.N. Kamalasanan, L.S. Tanwar, Comparison of structure and yield of multiwall carbon nanotubes produced by the CVD technique and a water assisted method. Physica B Condens. Matter 405(7), 1745–1749 (2010). doi: 10.1016/j.physb.2010.01.031 CrossRefGoogle Scholar
  84. 84.
    C.-S. Chen, C.-K. Hsieh, Oxygen-assisted low-pressure chemical vapor deposition for the low-temperature direct growth of graphitic nanofibers on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cell. Jpn. J. Appl. Phys. 53(11), 11RE02 (2014). doi: 10.7567/jjap.53.11re02 Google Scholar
  85. 85.
    I.H. Son, H.J. Song, S. Kwon, A. Bachmatiuk, S.J. Lee, A. Benayad, J.H. Park, J.-Y. Choi, H. Chang, M.H. Ruemmeli, CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8(9), 9224–9232 (2014). doi: 10.1021/nn504342e CrossRefGoogle Scholar
  86. 86.
    J.Q. Huang, Q. Zhang, M.Q. Zhao, F. Wei, Process intensification by CO2 for high quality carbon nanotube forest growth: double-walled carbon nanotube convexity or single-walled carbon nanotube bowls? Nano Res. 2(11), 872–881 (2009). doi: 10.1007/s12274-009-9088-6 CrossRefGoogle Scholar
  87. 87.
    Z. Zhu, H. Jiang, T. Susi, A.G. Nasibulin, E.I. Kauppinen, The use of NH3 to promote the production of large-diameter single-walled carbon nanotubes with a narrow (n, m) distribution. J. Am. Chem. Soc. 133(5), 1224–1227 (2011). doi: 10.1021/ja1087634 CrossRefGoogle Scholar
  88. 88.
    T. Susi, A.G. Nasibulin, P. Ayala, Y. Tian, Z. Zhu, H. Jiang, C. Roquelet, D. Garrot, J.-S. Lauret, E.I. Kauppinen, High quality SWCNT synthesis in the presence of NH3 using a vertical flow aerosol reactor. Physica Status Solidi B Basic Solid State Phys. 246(11–12), 2507–2510 (2009). doi: 10.1002/pssb.200982338 CrossRefGoogle Scholar
  89. 89.
    A.F. Carley, P.R. Davies, K.R. Harikumar, R.V. Jones, M.W. Roberts, Oxygen states at magnesium and copper surfaces revealed by scanning tunneling microscopy and surface reactivity. Top. Catal. 24(1–4), 51–59 (2003). doi: 10.1023/B:TOCA.0000003076.82649.c4 CrossRefGoogle Scholar
  90. 90.
    P.R. Davies, D. Edwards, D. Richards, Possible role for Cu(II) compounds in the oxidation of malonyl dichloride and HCl at Cu (110) surfaces. J. Phys. Chem. C 113(24), 10333–10336 (2009). doi: 10.1021/jp903042f CrossRefGoogle Scholar
  91. 91.
    Y. Ma, Vapor-facet-solid (VFS) mechanism: a new route for catalytic CVD growth of one-dimensional nanostructures at low temperature. Schriftenreihe der Arbeitsgruppe des Lehrstuhls für Oberfächen- und Werkstofftechnologie im Institut für Werkstofftechnik. 4 (2015)Google Scholar
  92. 92.
    J.T. Hu, L.S. Li, W.D. Yang, L. Manna, L.W. Wang, A.P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods. Science 292(5524), 2060–2063 (2001). doi: 10.1126/science.1060810 CrossRefGoogle Scholar
  93. 93.
    A.X. Yin, X.Q. Min, Y.W. Zhang, C.H. Yan, Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 133(11), 3816–3819 (2011). doi: 10.1021/ja200329p CrossRefGoogle Scholar
  94. 94.
    S. Mostafa, F. Behafarid, J.R. Croy, L.K. Ono, L. Li, J.C. Yang, A.I. Frenkel, B.R. Cuenya, Shape-dependent catalytic properties of Pt nanoparticles. J. Am. Chem. Soc. 132(44), 15714–15719 (2010). doi: 10.1021/ja106679z CrossRefGoogle Scholar
  95. 95.
    H. Zhang, M.S. Jin, Y.J. Xiong, B. Lim, Y.N. Xia, Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 46(8), 1783–1794 (2013). doi: 10.1021/ar300209w CrossRefGoogle Scholar
  96. 96.
    R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B. 109(26), 12663–12676 (2005). doi: 10.1021/jp051066p CrossRefGoogle Scholar
  97. 97.
    Y.H. Leng, Y.H. Zhang, T. Liu, M. Suzuki, X.G. Li, Synthesis of single crystalline triangular and hexagonal Ni nanosheets with enhanced magnetic properties. Nanotechnology 17(6), 1797–1800 (2006). doi: 10.1088/0957-4484/17/6/042 CrossRefGoogle Scholar
  98. 98.
    Y.W. Jun, J.S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angewandte Chemie International Edition 45(21), 3414–3439 (2006). doi: 10.1002/anie.200503821 CrossRefGoogle Scholar
  99. 99.
    Y.N. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition 48(1), 60–103 (2009). doi: 10.1002/anie.200802248 CrossRefGoogle Scholar
  100. 100.
    A.R. Tao, S. Habas, P.D. Yang, Shape control of colloidal metal nanocrystals. Small 4(3), 310–325 (2008). doi: 10.1002/smll.200701295 CrossRefGoogle Scholar
  101. 101.
    E.F. Kukovitsky, S.G. L’Vov, N.A. Sainov, VLS-growth of carbon nanotubes from the vapor. Chem. Phys. Lett. 317(1–2), 65–70 (2000). doi: 10.1016/s0009-2614(99)01299-3 CrossRefGoogle Scholar
  102. 102.
    B.C. Satishkumar, P.J. Thomas, A. Govindaraj, C.N.R. Rao, Y-junction carbon nanotubes. Appl. Phys. Lett. 77(16), 2530–2532 (2000). doi: 10.1063/1.1319185 CrossRefGoogle Scholar
  103. 103.
    J. Li, C. Papadopoulos, J. Xu, Nanoelectronics—growing Y-junction carbon nanotubes. Nature 402(6759), 253–254 (1999). doi: 10.1038/46214 Google Scholar
  104. 104.
    H. Takikawa, M. Yatsuki, R. Miyano, M. Nagayama, T. Sakakibara, S. Itoh, Y. Ando, Amorphous carbon fibrilliform nanomaterials prepared by chemical vapor deposition. Jpn. J. Appl. Phys. Part 1 Regular Pap. Short Notes Rev. Pap. 39(9A), 5177–5179 (2000). doi: 10.1143/jjap.39.5177 Google Scholar
  105. 105.
    K. Inomata, N. Aoki, H. Koinuma, Production of fullerenes by low-temperature plasma chemical-vapor-deposition under atmospheric-pressure. Jpn. J. Appl. Phys. Part 2 Lett. 33(2A), L197–L199 (1994). doi: 10.1143/jjap.33.l197 Google Scholar
  106. 106.
    Y. Suda, Y. Shimizu, M. Ozaki, H. Tanoue, H. Takikawa, H. Ue, K. Shimizu, Y. Umeda, Electrochemical properties of fuel cell catalysts loaded on carbon nanomaterials with different geometries. Mater. Today Commun. 3, 96–103 (2015). doi: 10.1016/j.mtcomm.2015.02.003 CrossRefGoogle Scholar
  107. 107.
    G. Wang, G. Ran, G. Wan, P. Yang, Z. Gao, S. Lin, C. Fu, Y. Qin, Size-selective catalytic growth of nearly 100 % pure carbon nanocoils with copper nanoparticles produced by atomic layer deposition. ACS Nano 8(5), 5330–5338 (2014). doi: 10.1021/nn501709h CrossRefGoogle Scholar
  108. 108.
    G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). doi: 10.1021/nn304630h CrossRefGoogle Scholar
  109. 109.
    K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, A.A. Lucas, Fe-catalyzed carbon nanotube formation. Carbon 34(10), 1249–1257 (1996). doi: 10.1016/0008-6223(96)00074-7 CrossRefGoogle Scholar
  110. 110.
    D. Chen, K.O. Christensen, E. Ochoa-Fernandez, Z.X. Yu, B. Totdal, N. Latorre, A. Monzon, A. Holmen, Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J. Catal. 229(1), 82–96 (2005). doi: 10.1016/j.jcat.2004.10.017 CrossRefGoogle Scholar
  111. 111.
    P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295(5562), 2053–2055 (2002). doi: 10.1126/science.1069325 CrossRefGoogle Scholar
  112. 112.
    C.A. Wert, Diffusion coefficient of C in α-iron. Phys. Rev. 79(4), 601–605 (1950). doi: 10.1103/PhysRev.79.601 CrossRefGoogle Scholar
  113. 113.
    J.J. Lander, H.E. Kern, A.L. Beach, Solubility and diffusion coefficient of carbon in nickel-reaction rates of nickel-carbon alloys with barium oxide. J. Appl. Phys. 23(12), 1305–1309 (1952). doi: 10.1063/1.1702064 CrossRefGoogle Scholar
  114. 114.
    B.C. Stipe, M.A. Rezaei, W. Ho, Single-molecule vibrational spectroscopy and microscopy. Science 280(5370), 1732–1735 (1998). doi: 10.1126/science.280.5370.1732 CrossRefGoogle Scholar
  115. 115.
    B.C. Stipe, M.A. Rezaei, W. Ho, Coupling of vibrational excitation to the rotational motion of a single adsorbed molecule. Phys. Rev. Lett. 81(6), 1263–1266 (1998). doi: 10.1103/PhysRevLett.81.1263 CrossRefGoogle Scholar
  116. 116.
    J. Szanyi, M.T. Paffett, Dimerization and trimerization of acetylene over a model Sn/Pt catalyst. J. Am. Chem. Soc. 117(3), 1034–1042 (1995). doi: 10.1021/ja00108a020 CrossRefGoogle Scholar
  117. 117.
    S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Norskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973), 426–429 (2004). doi: 10.1038/nature02278 CrossRefGoogle Scholar
  118. 118.
    T.E. Fischer, S.R. Kelemen, Influence of the substrate structure on the bonding of chemisorbed acetylene to transition metal surfaces. Surf. Sci. 74(47), 47–53 (1978). doi: 10.1016/0039-6028(78)90270-4 CrossRefGoogle Scholar
  119. 119.
    J. Dvorak, J. Hrbek, Adsorbate ordering effects in the trimerization reaction of acetylene on Cu (100). J. Phys. Chem. B. 102(47), 9443–9450 (1998). doi: 10.1021/jp981956n CrossRefGoogle Scholar
  120. 120.
    J.R. Lomas, C.J. Baddeley, M.S. Tikhov, R.M. Lambert, Ethyne cyclization to benzene over Cu (110). Langmuir 11(8), 3048–3053 (1995). doi: 10.1021/la00008a033 CrossRefGoogle Scholar
  121. 121.
    G. Kyriakou, J. Kim, M.S. Tikhov, N. Macleod, R.M. Lambert, Acetylene coupling on Cu (111): formation of butadiene, benzene, and cyclooctatetraene. J. Phys. Chem. B. 109(21), 10952–10956 (2005). doi: 10.1021/jp044213c CrossRefGoogle Scholar
  122. 122.
    W. Alter, D. Borgmann, M. Stadelmann, M. Worn, G. Wedler, Interaction of acetylene with films of the transition-metals iron, nickel, and palladium. J. Am. Chem. Soc. 116(22), 10041–10049 (1994). doi: 10.1021/ja00101a024 CrossRefGoogle Scholar
  123. 123.
    F. Zaera, R.B. Hall, High-resolution electron energy loss spectroscopy and thermal programmed desorption studies of the chemisorption and thermal decomposition of ethylene and acetylene on Ni (100) single-crystal surfaces. J. Phys. Chem. 91(16), 4318–4323 (1987). doi: 10.1021/j100300a023 CrossRefGoogle Scholar
  124. 124.
    J.C. Bertolini, J. Massardier, G. Dalmaiimelik, Evolution of adsorbed species during C2H2 adsorption on Ni (111) in relation to their vibrational spectra. J. Chem. Soc. Faraday Trans. I. 74, 1720–1725 (1978). doi: 10.1039/f19787401720 CrossRefGoogle Scholar
  125. 125.
    J.A. Stroscio, S.R. Bare, W. Ho, The chemisorption and decomposition of ethylene and acetylene on Ni (110). Surf. Sci. 148(2–3), 499–525 (1984). doi: 10.1016/0039-6028(84)90596-x CrossRefGoogle Scholar
  126. 126.
    A. Benninghoven, P. Beckmann, D. Greifendorf, M. Schemmer, Investigation of surface-reactions by SIMS and TDMS—interaction of ethylene and acetylene with hydrogen on polycrystalline nickel. Appl. Surf. Sci. 6(3–4), 288–296 (1980). doi: 10.1016/0378-5963(80)90018-5 CrossRefGoogle Scholar
  127. 127.
    P.M. Mattlis, The oligomerization of acetylenes induced by metals of the nickel triad. Pure Appl. Chem. 30(3–4), 427–448 (1972). doi: 10.1351/pac197230030427 Google Scholar
  128. 128.
    D.L. Trimm, I.O.Y. Liu, N.W. Cant, The oligornerization of acetylene in hydrogen over Ni/SiO2 catalysts: product distribution and pathways. J. Mol. Catal. A Chem. 288(1–2), 63–74 (2008). doi: 10.1016/j.molcata.2008.03.022 CrossRefGoogle Scholar
  129. 129.
    B. Lesiak, A. Jablonski, W. Palczewska, I. Kulszewiczbajer, M. Zagorska, Identification of the carbonaceous residues at nickel and platinum surfaces on the basis of the carbon Kll spectra. Surf. Interf. Anal. 18(6), 430–438 (1992). doi: 10.1002/sia.740180610 CrossRefGoogle Scholar
  130. 130.
    S. Hofmann, G. Csanyi, A.C. Ferrari, M.C. Payne, J. Robertson, Surface diffusion: the low activation energy path for nanotube growth. Phys. Rev. Lett. 95(3), 036101 (2005). doi: 10.1103/PhysRevLett.95.036101 CrossRefGoogle Scholar
  131. 131.
    O.V. Yazyev, A. Pasquarello, Effect of metal elements in catalytic growth of carbon nanotubes. Phys. Rev. Lett. 100(15), 4 (2008). doi: 10.1103/PhysRevLett.100.156102 CrossRefGoogle Scholar
  132. 132.
    K. Bartsch, K. Biedermann, T. Gemming, A. Leonhardt, On the diffusion-controlled growth of multiwalled carbon nanotubes. J. Appl. Phys. 97(11), 7 (2005). doi: 10.1063/1.1922067 CrossRefGoogle Scholar
  133. 133.
    Z.Y. Juang, J.F. Lai, C.H. Weng, J.H. Lee, H.J. Lai, T.S. Lai, C.H. Tsai, On the kinetics of carbon nanotube growth by thermal CVD method. Diam. Relat. Mater. 13(11–12), 2140–2146 (2004). doi: 10.1016/j.diamond.2004.03.007 CrossRefGoogle Scholar
  134. 134.
    O.A. Louchev, Y. Sato, H. Kanda, Multiwall carbon nanotubes: self-organization and inhibition of step-flow growth kinetics. J. Appl. Phys. 89(6), 3438–3446 (2001). doi: 10.1063/1.1347407 CrossRefGoogle Scholar
  135. 135.
    S. Hofmann, B. Kleinsorge, C. Ducati, A.C. Ferrari, J. Robertson, Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes. Diam. Relat. Mater. 13(4–8), 1171–1176 (2004). doi: 10.1016/j.diamond.2003.11.046 CrossRefGoogle Scholar
  136. 136.
    O.A. Louchev, T. Laude, Y. Sato, H. Kanda, Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition. J. Chem. Phys. 118(16), 7622–7634 (2003). doi: 10.1063/1.1562195 CrossRefGoogle Scholar
  137. 137.
    O.A. Louchev, Formation mechanism of pentagonal defects and bamboo-like structures in carbon nanotube growth mediated by surface diffusion. Physica Status Solidi A Appl. Res. 193(3), 585–596 (2002). doi: 10.1002/1521-396x(200210)193:3<585:aid-pssa585>;2-y CrossRefGoogle Scholar
  138. 138.
    O.A. Louchev, Y. Sato, H. Kanda, Growth mechanism of carbon nanotube forests by chemical vapor deposition. Appl. Phys. Lett. 80(15), 2752–2754 (2002). doi: 10.1063/1.1468266 CrossRefGoogle Scholar
  139. 139.
    D.C. Li, L.M. Dai, S.M. Huang, A.W.H. Mau, Z.L. Wang, Structure and growth of aligned carbon nanotube films by pyrolysis. Chem. Phys. Lett. 316(5–6), 349–355 (2000). doi: 10.1016/s0009-2614(99)01334-2 CrossRefGoogle Scholar
  140. 140.
    S.A. Dayeh, E.T. Yu, D. Wang, III-V nanowire growth mechanism: V/III ratio and temperature effects. Nano Lett. 7(8), 2486–2490 (2007). doi: 10.1021/nl0712668 CrossRefGoogle Scholar
  141. 141.
    P.B. Amama, O. Ogebule, M.R. Maschmann, T.D. Sands, T.S. Fisher, Dendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Chem. Commun. 27, 2899–2901 (2006). doi: 10.1039/b602623k CrossRefGoogle Scholar
  142. 142.
    H.Y. Wang, J.J. Moore, Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition. Carbon 50(3), 1235–1242 (2012). doi: 10.1016/j.carbon.2011.10.041 CrossRefGoogle Scholar
  143. 143.
    S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003). doi: 10.1063/1.1589187 CrossRefGoogle Scholar
  144. 144.
    T.M. Minea, S. Point, A. Granier, M. Touzeau, Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 85(7), 1244–1246 (2004). doi: 10.1063/1.1781352 CrossRefGoogle Scholar
  145. 145.
    M. Meyyappan, A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J. Phys. D Appl. Phys. 42(21), 15 (2009). doi: 10.1088/0022-3727/42/21/213001 CrossRefGoogle Scholar
  146. 146.
    Y. Ishikawa, K. Ishizuka, Growth of single-walled carbon nanotubes by hot-filament assisted chemical vapor deposition below 500 °C. Appl. Phys. Express 2(4), 3 (2009). doi: 10.1143/apex.2.045001 Google Scholar
  147. 147.
    N.G. Shang, Y.Y. Tan, V. Stolojan, P. Papakonstantinou, S.R.P. Silva, High-rate low-temperature growth of vertically aligned carbon nanotubes. Nanotechnology 21(50), 6 (2010). doi: 10.1088/0957-4484/21/50/505604 CrossRefGoogle Scholar
  148. 148.
    Y. Ishikawa, H. Jinbo, Synthesis of multiwalled carbon nanotubes at temperatures below 300 °C by hot-filament assisted chemical vapor deposition. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 44(12–15), L394–L397 (2005). doi: 10.1143/jjap.44.l394 Google Scholar
  149. 149.
    Y. Awano, S. Sato, M. Nihei, T. Sakai, Y. Ohno, T. Mizutani, Carbon nanotubes for VLSI: interconnect and transistor applications. Proc. IEEE 98(12), 2015–2031 (2010). doi: 10.1109/JPROC.2010.2068030 CrossRefGoogle Scholar
  150. 150.
    C.L. Long, D.P. Qi, T. Wei, J. Yan, L.L. Jiang, Z.J. Fan, Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 24(25), 3953–3961 (2014). doi: 10.1002/adfm.201304269 CrossRefGoogle Scholar
  151. 151.
    N.P. Wickramaratne, J.T. Xu, M. Wang, L. Zhu, L.M. Dai, M. Jaroniec, Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem. Mater. 26(9), 2820–2828 (2014). doi: 10.1021/cm5001895 CrossRefGoogle Scholar
  152. 152.
    W. Wei, H.W. Liang, K. Parvez, X.D. Zhuang, X.L. Feng, K. Mullen, Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angewandte Chemie-International Edition 53(6), 1570–1574 (2014). doi: 10.1002/anie.201307319 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Materials EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations