Skip to main content

Carbon-Based Nanostructures for Matrix-Free Mass Spectrometry

  • Chapter
  • First Online:
Carbon Nanoparticles and Nanostructures

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become a widespread analytical tool for peptides, proteins and most other biomolecules. However, due to a competitive desorption of parasitic ions from the matrix, it is difficult to detect low molecular weight compounds (<700 Da). To enable desorption/ionization of small molecules, techniques operating in absence of an organic matrix were developed. These techniques known as surface assisted laser desorption/ionization mass spectrometry (SALDI-MS) rely on the use of nanostructured surfaces as laser desorption/ionization-assisted material. As compared to traditional MALDI-MS, SALDI-MS offers several advantages such as the ability to detect small molecules (<700 Da), easy sample preparation, low noise background, high salt tolerance and fast data collection. Carbon-based interfaces such as carbon-like graphite, carbon nanotubes, fullerenes or amorphous carbon have been employed as SALDI substrates for the detection of small macromolecules such as synthetic polymers and biomolecules. While the drawback of fullerenes and their derivatives is the general limited sensitivity, carbon nanotubes, which exhibit high sensitivities, are hardly soluble in aqueous solutions, limiting their use in bioanalytical applications. More recently, diamond-like carbon (DLC) and diamond nanowires have been successfully introduced as SALDI interfaces. This chapter summarizes recent developments in the use of carbon-based materials for SALDI-MS. A particular emphasis will be put on the use of diamond nanowires as novel SALDI substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Karas, F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 259–280 (1988). doi:10.1021/ac00171a028

    Article  Google Scholar 

  2. S.D. Hanton, Mass spectrometry of polymers and polymer surfaces. Chem. Rev. 101, 527–569 (2001). doi:10.1021/cr9901081

    Article  Google Scholar 

  3. R. Knochenmuss, R. Zenobi, MALDI ionization: the role of in-plume processes. Chem. Rev. 103, 441–452 (2003). doi:10.1021/cr0103773

    Article  Google Scholar 

  4. L. Li, MALDI Mass Spectrometry for Synthetic Polymer Analysis (Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications) (Wiley-VCH, 2009). ISBN: 978–0-471-77579-9

    Google Scholar 

  5. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 151–153 (1988). doi:10.1002/rcm.1290020802

    Google Scholar 

  6. R. Arakawa, H. Kawasaki, Functionalized nanoparticles and nanostructured surfaces for surface-assisted laser desorption/ionization mass spectrometry. Anal. Sci. 26, 1229 (2010). doi:10.2116/analsci.26.1229

    Article  Google Scholar 

  7. J. Sunner, E. Dratz, Y.C. Chen, Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 67, 4335–4342 (1995). doi:10.1021/ac00119a021

    Article  Google Scholar 

  8. J. Wei, J.M. Buriak, G. Siuzdak, Desorption–ionization mass spectrometry on porous silicon. Nature 399, 243–246 (1999). doi:10.1038/20400

    Article  Google Scholar 

  9. J.J. Thomas, Z. Shen, J.E. Crowell, M.G. Finn, G. Siuzdak, Desorption/ionization on silicon (DIOS): a diverse mass spectrometry platform for protein characterization. Proc. Natl. Acad. Sci. USA 98, 4932–4937 (2001). doi:10.1073/pnas.081069298

    Article  Google Scholar 

  10. S.A. Trauger, E.P. Go, Z. Shen, J.V. Apon, B.J. Compton, E.S.P. Bouvier, M.G. Finn, G. Siuzdak, High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Anal. Chem. 76, 4484–4489 (2004). doi:10.1021/ac049657j

    Article  Google Scholar 

  11. G. Piret, H. Drobecq, Y. Coffinier, O. Melnyk, R. Boukherroub, Matrix-free laser desorption/ionization mass spectrometry on silicon nanowire arrays prepared by chemical etching of crystalline silicon. Langmuir 26(2), 1354–1361 (2010). doi:10.1021/la902266x

    Article  Google Scholar 

  12. E.P. Go, J.V. Apon, G. Luo, A. Saghatelian, R.H. Daniels, V. Sahi, R. Dubrow, B.F. Cravatt, A. Vertes, G. Siuzdak, Desorption/ionization on silicon nanowires. Anal. Chem. 77, 1641–1646 (2005). doi:10.1021/ac048460o

    Article  Google Scholar 

  13. K.P. Law, J.R. Larkin, Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal. Bioanal. Chem. 399, 2597–2622 (2011). doi:10.1007/s00216-010-4063-3

    Article  Google Scholar 

  14. M. Najam-ul-haq, M. Rainer, Z. Szabo, R. Vallant, C.W. Huck, G.K. Bonn, Role of carbon nano-materials in the analysis of biological materials by laser desorption/ionization-mass spectrometry. J. Biochem. Biophys. Methods 70, 319–328 (2007). doi:10.1016/j.jbbm.2006.11.004

    Article  Google Scholar 

  15. J.T. Shiea, J.P. Huang, C.F. Teng, J.Y. Jeng, L.Y. Wang, L.Y. Chiang, Use of a water-soluble fullerene derivative as precipitating reagent and matrix-assisted laser desorption/ionization matrix to selectively detect charged species in aqueous solutions. Anal. Chem. 75, 3587–3595 (2003). doi:10.1021/ac020750m

    Article  Google Scholar 

  16. M.J. Dale, R. Knochenmuss, R. Zenobi, Graphite/liquid mixed matrices for laser desorption/ionization mass spectrometry. Anal. Chem. 68, 3321–3329 (1996). doi:10.1021/ac960558i

    Article  Google Scholar 

  17. S. Zumbuhl, R. Knochenmuss, S. Wulfert, F. Dubois, M.J. Dale, R. Zenobi, A graphite-assisted laser desorption/ionization study of light-induced aging in triterpene dammar and mastic varnishes. Anal. Chem. 70, 707–715 (1998). doi:10.1021/ac970574v

    Article  Google Scholar 

  18. S. Xu, Y. Li, H. Zou, J. Qiu, Z. Guo, B. Guo, Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 75, 6191–6195 (2003). doi:10.1021/ac0345695

    Article  Google Scholar 

  19. X. Zhou, Y. Wei, Q. He, F. Boey, Q. Zhang, H. Zhang, Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chem. Commun. 46, 6974–6976 (2010). doi:10.1039/C0CC01681K

    Article  Google Scholar 

  20. Y.-K. Kim, H.-K. Na, S.-J. Kwack, S.-R. Ryoo, Y. Lee, S. Hong, S. Hong, Y. Jeong, D.-H. Min, Synergistic effect of graphene oxide/MWCNT films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging. ACS Nano 5, 4550–4561 (2011). doi:10.1021/nn200245v

    Article  Google Scholar 

  21. M.V. Ugarov, T. Egan, D.V. Khabashesku, J.A. Schultz, H. Peng, V.N. Khabashesku, H. Furutani, K.S. Prather, H.W.J. Wang, S.N. Jackson, A.S. Woods, MALDI matrices for biomolecular analysis based on functionalized carbon nanomaterials. Anal. Chem. 76, 6734–6742 (2004). doi:10.1021/ac049192x

    Article  Google Scholar 

  22. C. Pan, S. Xu, L. Hu, X. Su, J. Ou, H. Zou, Z. Guo, Y. Zhang, B. Guo, Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS. J. Am. Soc. Mass Spectrom. 16, 883–892 (2005). doi:10.1016/j.jasms.2005.03.009

    Article  Google Scholar 

  23. S.F. Ren, Y.L. Guo, Oxidized carbon nanotubes as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of biomolecules. Rapid Commun. Mass Spectrom. 19, 255–260 (2005). doi:10.1002/rcm.1779

    Article  Google Scholar 

  24. Y. Coffinier, S. Szunerits, H. Drobecq, O. Melnyk, R. Boukherroub, Diamond nanowires for highly sensitive matrix-free mass spectrometry analysis of small molecules. Nanoscale 4, 231–238 (2012). doi:10.1039/C1NR11274K

    Article  Google Scholar 

  25. Y. Yu, L. Wu, J. Zhi, Diamond nanowires: fabrication, structure, properties, and applications. Angew. Chem. Int. Ed. 53, 14326–14351 (2014). doi:10.1002/anie.201310803

    Article  Google Scholar 

  26. S. Szunerits, R. Boukherroub, Different strategies for chemical functionalization of diamond surfaces. J. Solid-State Electrochem. 12, 1205–1218 (2008). doi:10.1007/s10008-007-0473-3

    Article  Google Scholar 

  27. N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned diamond nanowires for DNA sensing. Angew. Chem. Int. Ed. 47, 5183–5185 (2008). doi:10.1002/anie.200801706

    Article  Google Scholar 

  28. H. Uetsuka, D. Shin, N. Tokuda, K. Saeki, C.E. Nebel, Electrochemical grafting of boron-doped single-crystalline chemical vapor deposition diamond with nitrophenyl molecules. Langmuir 23, 3466–3472 (2007). doi:10.1021/la063241e

    Article  Google Scholar 

  29. C.E. Nebel, N. Yang, H. Uetsuka, E. Osawa, N. Tokuda, O. Williams, Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diamond Relat. Mater. 18, 910 (2009). doi:10.1016/j.diamond.2008.11.024

    Article  Google Scholar 

  30. N. Yang, W. Smirnov, C.E. Nebel, Three-dimensional electrochemical reactions on tip-coated diamond nanowires with nickel nanoparticles. Electrochem. Commun. 27, 89–91 (2013). doi:10.1016/j.elecom.2012.10.044

    Article  Google Scholar 

  31. D. Luo, L. Wu, J. Zhi, Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose sensing. ACS Nano 3, 2121–2128 (2009). doi:10.1021/nn9003154

    Article  Google Scholar 

  32. Q. Wang, P. Subramanian, M. Li, W.S. Yeap, K. Haenen, Y. Coffinier, R. Boukherroub, S. Szunerits, Non-enzymatic glucose sensing on long and short diamond nanowires electrodes. Electrochem. Commun. 34, 286–290 (2013). doi:10.1016/j.elecom.2013.07.014

    Article  Google Scholar 

  33. Q. Wang, A. Vasilescu, P. Subramanian, V. Andrei, Y. Coffinier, M. Li, R. Boukherroub, S. Szunerits, Simultaneous electrochemical detection of tryptophan and tyrosine using boron-doped diamond and diamond nanowires electrodes. Electrochem. Commun. 35, 84–87 (2013). doi:10.1016/j.elecom.2013.08.010

    Google Scholar 

  34. S. Szunerits, Y. Coffinier, E. Galopin, J. Brenner, R. Boukherroub, Preparation of boron-doped diamond nanowires and their application for sensitive electrochemical detection of tryptophan. Electrochem. Commun. 12, 438 (2010). doi:10.1016/j.elecom.2010.01.014

    Article  Google Scholar 

  35. P. Subramanian, I. Mazurenko, V. Zaitsev, Y. Coffinier, R. Boukherroub, S. Szunerits, Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides. Analyst 139, 4343–4349 (2014). doi:10.1039/c4an00146j

    Article  Google Scholar 

  36. P. Subramanian, J. Foord, D. Steinmueller, Y. Coffinier, R. Boukherroub, S. Szunerits, Diamond nanowires decorated with metallic nanoparticles: a novel electrical interface for the immobilization of histidinylated biomolecules. Electrochim. Acta 110, 4–8 (2013). doi:10.1016/j.electacta.2012.11.010

    Article  Google Scholar 

  37. P. Subramanian, A. Motorina, W.S. Yeap, K. Haenen, Y. Coffinier, V. Zaitsev, J. Niedziolka-Jonsson, R. Boukherroub, S. Szunerits, Impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles. Analyst 139, 1726–1731 (2014). doi:10.1039/c3an02045b

    Article  Google Scholar 

  38. S. Szunerits, Y. Coffinier, R. Boukherroub, Diamond nanowires: a recent success story for biosensing. In: Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors (Springer, Heidelberg, 2015) (in print)

    Google Scholar 

  39. Y.C. Chen, J. Shiea, J. Sunner, Thin-layer chromatography–mass spectrometry using activated carbon, surface-assisted laser desorption/ionization. J. Chromatogr. A 826, 77–86 (1998). doi:10.1016/S0021-9673(98)00726-2

    Article  Google Scholar 

  40. H.J. Kim, J.K. Lee, S.J. Park, H.W. Ro, D.Y. Yoo, D.Y. Yoon, Observation of low molecular weight poly(methylsilsesquioxane)s by graphite plate laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 72, 5673–5678 (2000). doi:10.1021/ac0003899

    Article  Google Scholar 

  41. K.H. Park, H.J. Kim, Analysis of fatty acid by graphite plate laser desorption/ionization time of flight mass spectrometry. Rapid Commun. Mass Spectrom. 15, 1494–1499 (2001). doi:10.1002/rcm.387

    Article  Google Scholar 

  42. J. Kim, K. Paek, W. Kang, Visible surface-assisted laser desorption/ ionization mass spectrometry of small macromolecules deposited on the graphite plate. Bull. Korean Chem. Soc. 23, 315–319 (2002). doi:10.1002/pmic.200401023

    Article  Google Scholar 

  43. Y.C. Chen, J.Y. Wu, Analysis of small organics on planar silica surfaces using surface-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 20, 1899–1903 (2001). doi:10.1002/rcm.451

    Article  Google Scholar 

  44. C. Black, C. Poile, J. Langley, J. Herniman, The use of pencil lead as a matrix and calibrant for matrix-assisted laser desorption/ionisation. Rapid Commun. Mass Spectrom. 20, 1053–1060 (2006). doi:10.1002/rcm.2408

    Article  Google Scholar 

  45. S. Cha, E.S. Yeung, Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebosides directly from rat brain tissue. Anal. Chem. 79, 2373–2385 (2007). doi:10.1021/ac062251h

    Article  Google Scholar 

  46. S. Cha, H. Zhang, H.I. Ilarsaln, Z.S. Wurtele, L. Brachova, B.J. Nikolau, E.S. Yeung, Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry. Plant. J. 55, 348–360 (2008). doi:10.1111/j.1365-313X.2008.03507

    Article  Google Scholar 

  47. H. Zhang, S. Cha, E.S. Yeung, Colloidal graphite-assisted laser desorption/ionization MS and MS n of small molecules. 2. Direct profiling and MS imaging of small metabolites from fruits. Anal. Chem. 79, 6575–6584 (2007). doi:10.1021/ac0706170

    Article  Google Scholar 

  48. H. Kawasaki, T. Takahashi, F. Fujimori, O. Okumura, W. Watanabe, M. Matsumura, T. Takemine, T. Nakano, R. Arakawa, Functionalized pyrolytic highly oriented graphite polymer film for surface-assisted laser desorption/ ionization mass spectrometry in environmental analysis. Rapid Commun. Mass Spectrom. 23, 3323–3332 (2009). doi:10.1002/rcm.4254

    Article  Google Scholar 

  49. M. Najam-ul-haq, M. Rainer, T. Schwarzenauer, C.W. Huck, G.K. Bonn, Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling. Anal. Chim. Acta 561, 32–39 (2006). doi:10.1016/j.aca.2006.01.012

    Article  Google Scholar 

  50. W.Y. Chen, L.S. Wang, H.T. Chiu, Y.C. Chen, C.Y. Lee, Carbon nanotubes as affinity probes for peptides and proteins in MALDI MS analysis. J. Am. Soc. Mass Spectrom. 15, 629–635 (2004). doi:10.1016/j.jasms.2004.08.001

    Article  Google Scholar 

  51. L.-S. Wang, C.-Y. Lee, H.-T. Chiu, New nanotube synthesis strategy—application of sodium nanotubes formed inside anodic aluminium oxide as a reactive template. Chem. Commun. 15, 1964–1965 (2003). doi:10.1039/B305610D

    Article  Google Scholar 

  52. C.-T. Chen, Y.-C. Chen, Desorption/ionization mass spectrometry on nanocrystalline titania sol–gel-deposited films. Rapid Commun. Mass Spectrom. 18, 1956–1964 (2004). doi:10.1002/rcm.1572

    Article  Google Scholar 

  53. C. Pan, S. Xu, H. Zou, Z. Guo, Y. Zhang, B. Guo, Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 263–270 (2005). doi:10.1016/j.jasms.2004.11.005

    Article  Google Scholar 

  54. J. Zhang, H.Y. Wang, Y.L. Guo, Amino acids analysis by MALDI mass spectrometry using carbon nanotube as matrix. Chin. J. Chem. 23, 185–189 (2005)

    Article  Google Scholar 

  55. E. Nakamura, H. Isobe, Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 36, 807–815 (2003). doi:10.1021/ar030027y

    Article  Google Scholar 

  56. F.G. Hopwood, L. Michalak, D.S. Alderdice, K.J. Fisher, G.D. Willet, C60-assisted laser desorption/ionization mass spectrometry in the analysis of phospho tungstic acid. Rapid Commun. Mass Spectrom. 8, 881–885 (1994). doi:10.1002/rcm.1290081105

    Article  Google Scholar 

  57. Y.H. Lee, J.W. Shin, S. Ryu, S.W. Lee, C.H. Lee, K. Lee, Enrichment of N-terminal sulfonated peptides by water-soluble fullerene derivative and its applications to highly efficient proteomics. Anal. Chim. Acta 556, 140–144 (2006). doi:10.1016/j.aca.2005.06.060

    Google Scholar 

  58. R.M. Vallant, Z. Szabo, L. Trojer, M. Najam-ul-Haq, M. Rainer, C.W. Huck, R. Bakry, G.K. Bonn, A new analytical approach for the determination of low mass serum constituents employing fullerene derivatives for selective enrichment. J. Proteome Res. 6, 44–53 (2007). doi:10.1021/pr060347m

    Article  Google Scholar 

  59. X. Chen, L. Hu, X. Su, L. Kong, M. Ye, H. Zou, Separation and detection of compounds in Honeysuckle by integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. J. Pharm. Biomed. Anal. 40, 559–570 (2006). doi:10.1016/j.jpba.2005.07.043

    Article  Google Scholar 

  60. X. Chen, L. Kong, X. Su, C. Pan, M. Ye, H. Zou, Integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography atmospheric pressure chemical ionization mass spectrometer and matrix assisted laser desorption/ionization time-of-flight mass spectrometry for isolation and identification of compounds in Psoralea corylifolia. J. Chromatogr. A 1089, 87–100 (2005). doi:10.1016/j.chroma.2005.06.067

    Article  Google Scholar 

  61. L. Hu, S. Xu, C. Pan, C. Yuan, H. Zou, G. Jiang, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a matrix of carbon nanotubes for the analysis of low-mass compounds in environmental samples. Environ. Sci. Technol. 39, 8442–8447 (2005). doi:10.1021/es0508572

    Article  Google Scholar 

  62. M. Rainer, M.N. Quershi, G.K. Bonn, Matrix-free and material-enhanced laser desorption/ionization mass spectrometry for the analysis of low molecular weight compounds. Anal. Bioanal. Chem. 400, 2281–2288 (2011). doi:10.1007/s00216-010-4138-1

    Article  Google Scholar 

  63. X.L. Kong, L.C.L. Huang, C.M. Hsu, W.H. Chen, C.C. Han, H.C. Chang, High affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal. Chem. 77, 259–265 (2005). doi:10.1021/ac048971a

    Article  Google Scholar 

  64. M. Najam-ul-Haq, M. Rainer, C.W. Huck, G. Stecher, I. Feuerstein, D. Steinmueller, G.K. Bonn, Chemically modified nano crystalline diamond layer as material enhanced laser desorption ionisation (MELDI) surface in protein profiling. Curr. Nanosci. 2, 1–7 (2006). doi:10.2174/157341306775473836

    Google Scholar 

  65. X.L. Kong, L.C.L. Huang, S.C.V. Liau, C.C. Han, H.C. Chang, Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides. Anal. Chem. 77, 4273–4277 (2005). doi:10.1021/ac050213c

    Article  Google Scholar 

  66. L. Sage, Femtomolar sensitivity with matrix-free LDI MS. Anal. Chem. 80, 5515–5523 (2008). doi:10.1021/ac801668w

    Article  Google Scholar 

  67. W. Winkler, W. Balika, P. Hausberger, H. Kraushaar, G. Allmaier, Diamond-like diamond coated polymer-based target in microscope slide format for MALDI mass spectrometry. J. Mass Spectrom. 45, 566–569 (2010). doi:10.1002/jms.1744

    Article  Google Scholar 

  68. B.V. Derjaguin, D.V. Fedoseev, V.M. Lukyanovich, B.V. Spitzin, V.A. Ryabov, A.V. Lavrentyev, Filamentary diamond crystals. J. Cryst. Growth 2, 380–384 (1968). doi:10.1016/0022-0248(68)90033-X

    Article  Google Scholar 

  69. N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I.N. Lin, M. Chu, A. Stamboulis, Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. ACS Nano 3, 1032–1038 (2009). doi:10.1021/nn900167p

    Article  Google Scholar 

  70. C.-H. Hsu, J. Xu, Diamond nanowire—a challenge from extremes. Nanoscale 4, 5293 (2012). doi:10.1039/c2nr31260c

    Article  Google Scholar 

  71. B.J.M. Hausmann, M. Khan, Y. Zhang, T.M. Bainec, K. Martinick, M. McCutcheon, P. Hemmer, M. Loncar, Fabrication of diamond nanowires for quantum information processing applications. Diamond Relat. Mater. 19, 621–629 (2010). doi:10.1016/j.diamond.2010.01.011

    Article  Google Scholar 

  72. H. Masuda, M. Watanaba, K. Yasui, D. Tryk, T. Rao, A. Fujishima, Fabrication of a nanostructured diamond honeycomb film. Adv. Mater. 12, 444–447 (2000). doi:10.1002/(SICI)1521-4095(200003)12:63.3.CO;2-B

    Article  Google Scholar 

  73. T.M. Babinec, B.J.M. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer, M. Loncar, A diamond nanowire single-photon source. Nat. Nanotechnol. 5, 195–199 (2010). doi:10.1038/nnano.2010.6

    Article  Google Scholar 

  74. H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, N. Rao, A. Fujishima, Synthesis of well-aligned diamond nanocylinders. Adv. Mater. 13, 247 (2001). doi:10.1002/1521-4095(200102)13:4<247:AID-ADMA247>3.0.CO;2-H

    Article  Google Scholar 

  75. Y. Coffinier, E. Galopin, S. Szunerits, R. Boukherroub, Preparation of superhydrophobic and oleophobic diamond nanograss array. J. Mater. Chem. 20, 10671–10675 (2010). doi:10.1039/C0JM01296C

    Article  Google Scholar 

  76. Y. Ando, Y. Nishibayashi, A. Sawaben, ‘Nano-rods’ of single crystalline diamond. Diamond Relat. Mater. 13, 633 (2004). doi:10.1016/j.diamond.2003.10.066

    Article  Google Scholar 

  77. S. Okuyama, S.I. Matsushita, A. Fujishima, Periodic submicrocylinder diamond surfaces using two-dimensional fine particle arrays. Langmuir 18, 8282–8287 (2002). doi:10.1021/la011107i

    Article  Google Scholar 

  78. Y.S. Zou, T. Yang, W.J. Zhang, Y.M. Chong, B. He, I. Bello, S.T. Lee, Fabrication of diamond nanopillar and their arrays. Appl. Phys. Lett. 92, 053105 (2008). doi:10.1063/1.2841822

    Article  Google Scholar 

  79. N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned nanowires from boron-doped diamond. Nano Lett. 8, 3572–3576 (2008). doi:10.1021/nl801136h

    Article  Google Scholar 

  80. W. Smirnov, A. Kriele, N. Yang, C.F. Nebel, Aligned diamond nano-wires: fabrication and characterisation for advanced applications in bio and electrochemistry. Diamond Relat. Mater. 18, 186–189 (2009). doi:10.1016/j.diamond.2009.09.001

    Article  Google Scholar 

  81. M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.-Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. 3624 (2009). doi:10.1039/B903284C

  82. S. Szunerits, Y. Coffinier, E. Galopin, J. Brenner, R. Boukherroub, Preparation of boron-doped diamond nanowires and their application for sensitive electrochemical detection of tryptophan. Electrochem. Commun. 12, 438–441 (2010). doi:10.1016/j.elecom.2010.01.014

    Article  Google Scholar 

  83. E.-S. Baik, Y.-J. Baik, D. Jeaon, Aligned diamond nanowhiskers. J. Mater. Res. 15, 923 (2000). doi:10.1557/JMR.2000.0131

    Article  Google Scholar 

  84. S.F. Ren, L. Zhang, Z.H. Cheng, Y.L. Guo, Immobilized carbon nanotubes as matrix for MALDI-TOF-MS analysis: applications to neutral small carbohydrates. J. Am. Soc. Mass Spectrom. 16, 333–339 (2005). doi:10.1016/j.jasms.2004.11.017

    Article  Google Scholar 

  85. S. Szunerits, C.E. Nebel, R.J. Hamers, Surface functionalization and biological applications of CVD diamond. MRS Bull. 309(6), 517–524 (2014). doi:10.1557/mrs.2014.99

    Article  Google Scholar 

  86. F. Lapierre, G. Piret, H. Drobecq, O. Melnyk, Y. Coffinier, V. Thomy, R. Boukherroub, High sensitive matrix-free mass spectrometry analysis of peptides using silicon nanowires-based digital microfluidic device. Lab Chip 11, 1620–1628 (2011). doi:10.1039/c0lc00716a

    Article  Google Scholar 

  87. M. Jönsson-Niedziolka, F. Lapierre, Y. Coffinier, S.J. Parry, F. Zoueshtiagh, T. Foat, V. Thomy, R. Boukherroub, EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces. Lab Chip 11, 490–496 (2011). doi:10.1039/c0lc00203h

    Article  Google Scholar 

  88. F. Lapierre, M. Harnois, Y. Coffinier, R. Boukherroub, V. Thomy, Split and flow: reconfigurable capillary connection for digital microfluidic systems. Lab Chip 14, 3589–3593 (2014). doi:10.1039/c4lc00650j

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge financial support from the Centre National de la Recherche Scientifique (CNRS), the Université Lille 1 and the Nord Pas de Calais region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Szunerits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coffinier, Y., Boukherroub, R., Szunerits, S. (2016). Carbon-Based Nanostructures for Matrix-Free Mass Spectrometry. In: Yang, N., Jiang, X., Pang, DW. (eds) Carbon Nanoparticles and Nanostructures. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-28782-9_10

Download citation

Publish with us

Policies and ethics