Carbon-Based Nanostructures for Matrix-Free Mass Spectrometry

  • Yannick Coffinier
  • Rabah Boukherroub
  • Sabine SzuneritsEmail author
Part of the Carbon Nanostructures book series (CARBON)


Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become a widespread analytical tool for peptides, proteins and most other biomolecules. However, due to a competitive desorption of parasitic ions from the matrix, it is difficult to detect low molecular weight compounds (<700 Da). To enable desorption/ionization of small molecules, techniques operating in absence of an organic matrix were developed. These techniques known as surface assisted laser desorption/ionization mass spectrometry (SALDI-MS) rely on the use of nanostructured surfaces as laser desorption/ionization-assisted material. As compared to traditional MALDI-MS, SALDI-MS offers several advantages such as the ability to detect small molecules (<700 Da), easy sample preparation, low noise background, high salt tolerance and fast data collection. Carbon-based interfaces such as carbon-like graphite, carbon nanotubes, fullerenes or amorphous carbon have been employed as SALDI substrates for the detection of small macromolecules such as synthetic polymers and biomolecules. While the drawback of fullerenes and their derivatives is the general limited sensitivity, carbon nanotubes, which exhibit high sensitivities, are hardly soluble in aqueous solutions, limiting their use in bioanalytical applications. More recently, diamond-like carbon (DLC) and diamond nanowires have been successfully introduced as SALDI interfaces. This chapter summarizes recent developments in the use of carbon-based materials for SALDI-MS. A particular emphasis will be put on the use of diamond nanowires as novel SALDI substrates.


Surface assisted laser desorption/ionization mass spectrometry (SALDI-MS) Carbon-based nanostructures Diamond nanowires Small molecules Biomolecules 



The authors gratefully acknowledge financial support from the Centre National de la Recherche Scientifique (CNRS), the Université Lille 1 and the Nord Pas de Calais region.


  1. 1.
    M. Karas, F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 259–280 (1988). doi: 10.1021/ac00171a028 CrossRefGoogle Scholar
  2. 2.
    S.D. Hanton, Mass spectrometry of polymers and polymer surfaces. Chem. Rev. 101, 527–569 (2001). doi: 10.1021/cr9901081 CrossRefGoogle Scholar
  3. 3.
    R. Knochenmuss, R. Zenobi, MALDI ionization: the role of in-plume processes. Chem. Rev. 103, 441–452 (2003). doi: 10.1021/cr0103773 CrossRefGoogle Scholar
  4. 4.
    L. Li, MALDI Mass Spectrometry for Synthetic Polymer Analysis (Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications) (Wiley-VCH, 2009). ISBN: 978–0-471-77579-9Google Scholar
  5. 5.
    K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 151–153 (1988). doi: 10.1002/rcm.1290020802 Google Scholar
  6. 6.
    R. Arakawa, H. Kawasaki, Functionalized nanoparticles and nanostructured surfaces for surface-assisted laser desorption/ionization mass spectrometry. Anal. Sci. 26, 1229 (2010). doi: 10.2116/analsci.26.1229 CrossRefGoogle Scholar
  7. 7.
    J. Sunner, E. Dratz, Y.C. Chen, Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 67, 4335–4342 (1995). doi: 10.1021/ac00119a021 CrossRefGoogle Scholar
  8. 8.
    J. Wei, J.M. Buriak, G. Siuzdak, Desorption–ionization mass spectrometry on porous silicon. Nature 399, 243–246 (1999). doi: 10.1038/20400 CrossRefGoogle Scholar
  9. 9.
    J.J. Thomas, Z. Shen, J.E. Crowell, M.G. Finn, G. Siuzdak, Desorption/ionization on silicon (DIOS): a diverse mass spectrometry platform for protein characterization. Proc. Natl. Acad. Sci. USA 98, 4932–4937 (2001). doi: 10.1073/pnas.081069298 CrossRefGoogle Scholar
  10. 10.
    S.A. Trauger, E.P. Go, Z. Shen, J.V. Apon, B.J. Compton, E.S.P. Bouvier, M.G. Finn, G. Siuzdak, High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Anal. Chem. 76, 4484–4489 (2004). doi: 10.1021/ac049657j CrossRefGoogle Scholar
  11. 11.
    G. Piret, H. Drobecq, Y. Coffinier, O. Melnyk, R. Boukherroub, Matrix-free laser desorption/ionization mass spectrometry on silicon nanowire arrays prepared by chemical etching of crystalline silicon. Langmuir 26(2), 1354–1361 (2010). doi: 10.1021/la902266x CrossRefGoogle Scholar
  12. 12.
    E.P. Go, J.V. Apon, G. Luo, A. Saghatelian, R.H. Daniels, V. Sahi, R. Dubrow, B.F. Cravatt, A. Vertes, G. Siuzdak, Desorption/ionization on silicon nanowires. Anal. Chem. 77, 1641–1646 (2005). doi: 10.1021/ac048460o CrossRefGoogle Scholar
  13. 13.
    K.P. Law, J.R. Larkin, Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal. Bioanal. Chem. 399, 2597–2622 (2011). doi: 10.1007/s00216-010-4063-3 CrossRefGoogle Scholar
  14. 14.
    M. Najam-ul-haq, M. Rainer, Z. Szabo, R. Vallant, C.W. Huck, G.K. Bonn, Role of carbon nano-materials in the analysis of biological materials by laser desorption/ionization-mass spectrometry. J. Biochem. Biophys. Methods 70, 319–328 (2007). doi: 10.1016/j.jbbm.2006.11.004 CrossRefGoogle Scholar
  15. 15.
    J.T. Shiea, J.P. Huang, C.F. Teng, J.Y. Jeng, L.Y. Wang, L.Y. Chiang, Use of a water-soluble fullerene derivative as precipitating reagent and matrix-assisted laser desorption/ionization matrix to selectively detect charged species in aqueous solutions. Anal. Chem. 75, 3587–3595 (2003). doi: 10.1021/ac020750m CrossRefGoogle Scholar
  16. 16.
    M.J. Dale, R. Knochenmuss, R. Zenobi, Graphite/liquid mixed matrices for laser desorption/ionization mass spectrometry. Anal. Chem. 68, 3321–3329 (1996). doi: 10.1021/ac960558i CrossRefGoogle Scholar
  17. 17.
    S. Zumbuhl, R. Knochenmuss, S. Wulfert, F. Dubois, M.J. Dale, R. Zenobi, A graphite-assisted laser desorption/ionization study of light-induced aging in triterpene dammar and mastic varnishes. Anal. Chem. 70, 707–715 (1998). doi: 10.1021/ac970574v CrossRefGoogle Scholar
  18. 18.
    S. Xu, Y. Li, H. Zou, J. Qiu, Z. Guo, B. Guo, Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 75, 6191–6195 (2003). doi: 10.1021/ac0345695 CrossRefGoogle Scholar
  19. 19.
    X. Zhou, Y. Wei, Q. He, F. Boey, Q. Zhang, H. Zhang, Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chem. Commun. 46, 6974–6976 (2010). doi: 10.1039/C0CC01681K CrossRefGoogle Scholar
  20. 20.
    Y.-K. Kim, H.-K. Na, S.-J. Kwack, S.-R. Ryoo, Y. Lee, S. Hong, S. Hong, Y. Jeong, D.-H. Min, Synergistic effect of graphene oxide/MWCNT films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging. ACS Nano 5, 4550–4561 (2011). doi: 10.1021/nn200245v CrossRefGoogle Scholar
  21. 21.
    M.V. Ugarov, T. Egan, D.V. Khabashesku, J.A. Schultz, H. Peng, V.N. Khabashesku, H. Furutani, K.S. Prather, H.W.J. Wang, S.N. Jackson, A.S. Woods, MALDI matrices for biomolecular analysis based on functionalized carbon nanomaterials. Anal. Chem. 76, 6734–6742 (2004). doi: 10.1021/ac049192x CrossRefGoogle Scholar
  22. 22.
    C. Pan, S. Xu, L. Hu, X. Su, J. Ou, H. Zou, Z. Guo, Y. Zhang, B. Guo, Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS. J. Am. Soc. Mass Spectrom. 16, 883–892 (2005). doi: 10.1016/j.jasms.2005.03.009 CrossRefGoogle Scholar
  23. 23.
    S.F. Ren, Y.L. Guo, Oxidized carbon nanotubes as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of biomolecules. Rapid Commun. Mass Spectrom. 19, 255–260 (2005). doi: 10.1002/rcm.1779 CrossRefGoogle Scholar
  24. 24.
    Y. Coffinier, S. Szunerits, H. Drobecq, O. Melnyk, R. Boukherroub, Diamond nanowires for highly sensitive matrix-free mass spectrometry analysis of small molecules. Nanoscale 4, 231–238 (2012). doi: 10.1039/C1NR11274K CrossRefGoogle Scholar
  25. 25.
    Y. Yu, L. Wu, J. Zhi, Diamond nanowires: fabrication, structure, properties, and applications. Angew. Chem. Int. Ed. 53, 14326–14351 (2014). doi: 10.1002/anie.201310803 CrossRefGoogle Scholar
  26. 26.
    S. Szunerits, R. Boukherroub, Different strategies for chemical functionalization of diamond surfaces. J. Solid-State Electrochem. 12, 1205–1218 (2008). doi: 10.1007/s10008-007-0473-3 CrossRefGoogle Scholar
  27. 27.
    N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned diamond nanowires for DNA sensing. Angew. Chem. Int. Ed. 47, 5183–5185 (2008). doi: 10.1002/anie.200801706 CrossRefGoogle Scholar
  28. 28.
    H. Uetsuka, D. Shin, N. Tokuda, K. Saeki, C.E. Nebel, Electrochemical grafting of boron-doped single-crystalline chemical vapor deposition diamond with nitrophenyl molecules. Langmuir 23, 3466–3472 (2007). doi: 10.1021/la063241e CrossRefGoogle Scholar
  29. 29.
    C.E. Nebel, N. Yang, H. Uetsuka, E. Osawa, N. Tokuda, O. Williams, Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diamond Relat. Mater. 18, 910 (2009). doi: 10.1016/j.diamond.2008.11.024 CrossRefGoogle Scholar
  30. 30.
    N. Yang, W. Smirnov, C.E. Nebel, Three-dimensional electrochemical reactions on tip-coated diamond nanowires with nickel nanoparticles. Electrochem. Commun. 27, 89–91 (2013). doi: 10.1016/j.elecom.2012.10.044 CrossRefGoogle Scholar
  31. 31.
    D. Luo, L. Wu, J. Zhi, Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose sensing. ACS Nano 3, 2121–2128 (2009). doi: 10.1021/nn9003154 CrossRefGoogle Scholar
  32. 32.
    Q. Wang, P. Subramanian, M. Li, W.S. Yeap, K. Haenen, Y. Coffinier, R. Boukherroub, S. Szunerits, Non-enzymatic glucose sensing on long and short diamond nanowires electrodes. Electrochem. Commun. 34, 286–290 (2013). doi: 10.1016/j.elecom.2013.07.014 CrossRefGoogle Scholar
  33. 33.
    Q. Wang, A. Vasilescu, P. Subramanian, V. Andrei, Y. Coffinier, M. Li, R. Boukherroub, S. Szunerits, Simultaneous electrochemical detection of tryptophan and tyrosine using boron-doped diamond and diamond nanowires electrodes. Electrochem. Commun. 35, 84–87 (2013). doi: 10.1016/j.elecom.2013.08.010 Google Scholar
  34. 34.
    S. Szunerits, Y. Coffinier, E. Galopin, J. Brenner, R. Boukherroub, Preparation of boron-doped diamond nanowires and their application for sensitive electrochemical detection of tryptophan. Electrochem. Commun. 12, 438 (2010). doi: 10.1016/j.elecom.2010.01.014 CrossRefGoogle Scholar
  35. 35.
    P. Subramanian, I. Mazurenko, V. Zaitsev, Y. Coffinier, R. Boukherroub, S. Szunerits, Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides. Analyst 139, 4343–4349 (2014). doi: 10.1039/c4an00146j CrossRefGoogle Scholar
  36. 36.
    P. Subramanian, J. Foord, D. Steinmueller, Y. Coffinier, R. Boukherroub, S. Szunerits, Diamond nanowires decorated with metallic nanoparticles: a novel electrical interface for the immobilization of histidinylated biomolecules. Electrochim. Acta 110, 4–8 (2013). doi: 10.1016/j.electacta.2012.11.010 CrossRefGoogle Scholar
  37. 37.
    P. Subramanian, A. Motorina, W.S. Yeap, K. Haenen, Y. Coffinier, V. Zaitsev, J. Niedziolka-Jonsson, R. Boukherroub, S. Szunerits, Impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles. Analyst 139, 1726–1731 (2014). doi: 10.1039/c3an02045b CrossRefGoogle Scholar
  38. 38.
    S. Szunerits, Y. Coffinier, R. Boukherroub, Diamond nanowires: a recent success story for biosensing. In: Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors (Springer, Heidelberg, 2015) (in print)Google Scholar
  39. 39.
    Y.C. Chen, J. Shiea, J. Sunner, Thin-layer chromatography–mass spectrometry using activated carbon, surface-assisted laser desorption/ionization. J. Chromatogr. A 826, 77–86 (1998). doi: 10.1016/S0021-9673(98)00726-2 CrossRefGoogle Scholar
  40. 40.
    H.J. Kim, J.K. Lee, S.J. Park, H.W. Ro, D.Y. Yoo, D.Y. Yoon, Observation of low molecular weight poly(methylsilsesquioxane)s by graphite plate laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 72, 5673–5678 (2000). doi: 10.1021/ac0003899 CrossRefGoogle Scholar
  41. 41.
    K.H. Park, H.J. Kim, Analysis of fatty acid by graphite plate laser desorption/ionization time of flight mass spectrometry. Rapid Commun. Mass Spectrom. 15, 1494–1499 (2001). doi: 10.1002/rcm.387 CrossRefGoogle Scholar
  42. 42.
    J. Kim, K. Paek, W. Kang, Visible surface-assisted laser desorption/ ionization mass spectrometry of small macromolecules deposited on the graphite plate. Bull. Korean Chem. Soc. 23, 315–319 (2002). doi: 10.1002/pmic.200401023 CrossRefGoogle Scholar
  43. 43.
    Y.C. Chen, J.Y. Wu, Analysis of small organics on planar silica surfaces using surface-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 20, 1899–1903 (2001). doi: 10.1002/rcm.451 CrossRefGoogle Scholar
  44. 44.
    C. Black, C. Poile, J. Langley, J. Herniman, The use of pencil lead as a matrix and calibrant for matrix-assisted laser desorption/ionisation. Rapid Commun. Mass Spectrom. 20, 1053–1060 (2006). doi: 10.1002/rcm.2408 CrossRefGoogle Scholar
  45. 45.
    S. Cha, E.S. Yeung, Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebosides directly from rat brain tissue. Anal. Chem. 79, 2373–2385 (2007). doi: 10.1021/ac062251h CrossRefGoogle Scholar
  46. 46.
    S. Cha, H. Zhang, H.I. Ilarsaln, Z.S. Wurtele, L. Brachova, B.J. Nikolau, E.S. Yeung, Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry. Plant. J. 55, 348–360 (2008). doi: 10.1111/j.1365-313X.2008.03507 CrossRefGoogle Scholar
  47. 47.
    H. Zhang, S. Cha, E.S. Yeung, Colloidal graphite-assisted laser desorption/ionization MS and MS n of small molecules. 2. Direct profiling and MS imaging of small metabolites from fruits. Anal. Chem. 79, 6575–6584 (2007). doi: 10.1021/ac0706170 CrossRefGoogle Scholar
  48. 48.
    H. Kawasaki, T. Takahashi, F. Fujimori, O. Okumura, W. Watanabe, M. Matsumura, T. Takemine, T. Nakano, R. Arakawa, Functionalized pyrolytic highly oriented graphite polymer film for surface-assisted laser desorption/ ionization mass spectrometry in environmental analysis. Rapid Commun. Mass Spectrom. 23, 3323–3332 (2009). doi: 10.1002/rcm.4254 CrossRefGoogle Scholar
  49. 49.
    M. Najam-ul-haq, M. Rainer, T. Schwarzenauer, C.W. Huck, G.K. Bonn, Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling. Anal. Chim. Acta 561, 32–39 (2006). doi: 10.1016/j.aca.2006.01.012 CrossRefGoogle Scholar
  50. 50.
    W.Y. Chen, L.S. Wang, H.T. Chiu, Y.C. Chen, C.Y. Lee, Carbon nanotubes as affinity probes for peptides and proteins in MALDI MS analysis. J. Am. Soc. Mass Spectrom. 15, 629–635 (2004). doi: 10.1016/j.jasms.2004.08.001 CrossRefGoogle Scholar
  51. 51.
    L.-S. Wang, C.-Y. Lee, H.-T. Chiu, New nanotube synthesis strategy—application of sodium nanotubes formed inside anodic aluminium oxide as a reactive template. Chem. Commun. 15, 1964–1965 (2003). doi: 10.1039/B305610D CrossRefGoogle Scholar
  52. 52.
    C.-T. Chen, Y.-C. Chen, Desorption/ionization mass spectrometry on nanocrystalline titania sol–gel-deposited films. Rapid Commun. Mass Spectrom. 18, 1956–1964 (2004). doi: 10.1002/rcm.1572 CrossRefGoogle Scholar
  53. 53.
    C. Pan, S. Xu, H. Zou, Z. Guo, Y. Zhang, B. Guo, Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 263–270 (2005). doi: 10.1016/j.jasms.2004.11.005 CrossRefGoogle Scholar
  54. 54.
    J. Zhang, H.Y. Wang, Y.L. Guo, Amino acids analysis by MALDI mass spectrometry using carbon nanotube as matrix. Chin. J. Chem. 23, 185–189 (2005)CrossRefGoogle Scholar
  55. 55.
    E. Nakamura, H. Isobe, Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 36, 807–815 (2003). doi: 10.1021/ar030027y CrossRefGoogle Scholar
  56. 56.
    F.G. Hopwood, L. Michalak, D.S. Alderdice, K.J. Fisher, G.D. Willet, C60-assisted laser desorption/ionization mass spectrometry in the analysis of phospho tungstic acid. Rapid Commun. Mass Spectrom. 8, 881–885 (1994). doi: 10.1002/rcm.1290081105 CrossRefGoogle Scholar
  57. 57.
    Y.H. Lee, J.W. Shin, S. Ryu, S.W. Lee, C.H. Lee, K. Lee, Enrichment of N-terminal sulfonated peptides by water-soluble fullerene derivative and its applications to highly efficient proteomics. Anal. Chim. Acta 556, 140–144 (2006). doi: 10.1016/j.aca.2005.06.060 Google Scholar
  58. 58.
    R.M. Vallant, Z. Szabo, L. Trojer, M. Najam-ul-Haq, M. Rainer, C.W. Huck, R. Bakry, G.K. Bonn, A new analytical approach for the determination of low mass serum constituents employing fullerene derivatives for selective enrichment. J. Proteome Res. 6, 44–53 (2007). doi: 10.1021/pr060347m CrossRefGoogle Scholar
  59. 59.
    X. Chen, L. Hu, X. Su, L. Kong, M. Ye, H. Zou, Separation and detection of compounds in Honeysuckle by integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. J. Pharm. Biomed. Anal. 40, 559–570 (2006). doi: 10.1016/j.jpba.2005.07.043 CrossRefGoogle Scholar
  60. 60.
    X. Chen, L. Kong, X. Su, C. Pan, M. Ye, H. Zou, Integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography atmospheric pressure chemical ionization mass spectrometer and matrix assisted laser desorption/ionization time-of-flight mass spectrometry for isolation and identification of compounds in Psoralea corylifolia. J. Chromatogr. A 1089, 87–100 (2005). doi: 10.1016/j.chroma.2005.06.067 CrossRefGoogle Scholar
  61. 61.
    L. Hu, S. Xu, C. Pan, C. Yuan, H. Zou, G. Jiang, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a matrix of carbon nanotubes for the analysis of low-mass compounds in environmental samples. Environ. Sci. Technol. 39, 8442–8447 (2005). doi: 10.1021/es0508572 CrossRefGoogle Scholar
  62. 62.
    M. Rainer, M.N. Quershi, G.K. Bonn, Matrix-free and material-enhanced laser desorption/ionization mass spectrometry for the analysis of low molecular weight compounds. Anal. Bioanal. Chem. 400, 2281–2288 (2011). doi: 10.1007/s00216-010-4138-1 CrossRefGoogle Scholar
  63. 63.
    X.L. Kong, L.C.L. Huang, C.M. Hsu, W.H. Chen, C.C. Han, H.C. Chang, High affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal. Chem. 77, 259–265 (2005). doi: 10.1021/ac048971a CrossRefGoogle Scholar
  64. 64.
    M. Najam-ul-Haq, M. Rainer, C.W. Huck, G. Stecher, I. Feuerstein, D. Steinmueller, G.K. Bonn, Chemically modified nano crystalline diamond layer as material enhanced laser desorption ionisation (MELDI) surface in protein profiling. Curr. Nanosci. 2, 1–7 (2006). doi: 10.2174/157341306775473836 Google Scholar
  65. 65.
    X.L. Kong, L.C.L. Huang, S.C.V. Liau, C.C. Han, H.C. Chang, Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides. Anal. Chem. 77, 4273–4277 (2005). doi: 10.1021/ac050213c CrossRefGoogle Scholar
  66. 66.
    L. Sage, Femtomolar sensitivity with matrix-free LDI MS. Anal. Chem. 80, 5515–5523 (2008). doi: 10.1021/ac801668w CrossRefGoogle Scholar
  67. 67.
    W. Winkler, W. Balika, P. Hausberger, H. Kraushaar, G. Allmaier, Diamond-like diamond coated polymer-based target in microscope slide format for MALDI mass spectrometry. J. Mass Spectrom. 45, 566–569 (2010). doi: 10.1002/jms.1744 CrossRefGoogle Scholar
  68. 68.
    B.V. Derjaguin, D.V. Fedoseev, V.M. Lukyanovich, B.V. Spitzin, V.A. Ryabov, A.V. Lavrentyev, Filamentary diamond crystals. J. Cryst. Growth 2, 380–384 (1968). doi: 10.1016/0022-0248(68)90033-X CrossRefGoogle Scholar
  69. 69.
    N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I.N. Lin, M. Chu, A. Stamboulis, Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. ACS Nano 3, 1032–1038 (2009). doi: 10.1021/nn900167p CrossRefGoogle Scholar
  70. 70.
    C.-H. Hsu, J. Xu, Diamond nanowire—a challenge from extremes. Nanoscale 4, 5293 (2012). doi: 10.1039/c2nr31260c CrossRefGoogle Scholar
  71. 71.
    B.J.M. Hausmann, M. Khan, Y. Zhang, T.M. Bainec, K. Martinick, M. McCutcheon, P. Hemmer, M. Loncar, Fabrication of diamond nanowires for quantum information processing applications. Diamond Relat. Mater. 19, 621–629 (2010). doi: 10.1016/j.diamond.2010.01.011 CrossRefGoogle Scholar
  72. 72.
    H. Masuda, M. Watanaba, K. Yasui, D. Tryk, T. Rao, A. Fujishima, Fabrication of a nanostructured diamond honeycomb film. Adv. Mater. 12, 444–447 (2000). doi: 10.1002/(SICI)1521-4095(200003)12:63.3.CO;2-B CrossRefGoogle Scholar
  73. 73.
    T.M. Babinec, B.J.M. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer, M. Loncar, A diamond nanowire single-photon source. Nat. Nanotechnol. 5, 195–199 (2010). doi: 10.1038/nnano.2010.6 CrossRefGoogle Scholar
  74. 74.
    H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, N. Rao, A. Fujishima, Synthesis of well-aligned diamond nanocylinders. Adv. Mater. 13, 247 (2001). doi: 10.1002/1521-4095(200102)13:4<247:AID-ADMA247>3.0.CO;2-H CrossRefGoogle Scholar
  75. 75.
    Y. Coffinier, E. Galopin, S. Szunerits, R. Boukherroub, Preparation of superhydrophobic and oleophobic diamond nanograss array. J. Mater. Chem. 20, 10671–10675 (2010). doi: 10.1039/C0JM01296C CrossRefGoogle Scholar
  76. 76.
    Y. Ando, Y. Nishibayashi, A. Sawaben, ‘Nano-rods’ of single crystalline diamond. Diamond Relat. Mater. 13, 633 (2004). doi: 10.1016/j.diamond.2003.10.066 CrossRefGoogle Scholar
  77. 77.
    S. Okuyama, S.I. Matsushita, A. Fujishima, Periodic submicrocylinder diamond surfaces using two-dimensional fine particle arrays. Langmuir 18, 8282–8287 (2002). doi: 10.1021/la011107i CrossRefGoogle Scholar
  78. 78.
    Y.S. Zou, T. Yang, W.J. Zhang, Y.M. Chong, B. He, I. Bello, S.T. Lee, Fabrication of diamond nanopillar and their arrays. Appl. Phys. Lett. 92, 053105 (2008). doi: 10.1063/1.2841822 CrossRefGoogle Scholar
  79. 79.
    N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned nanowires from boron-doped diamond. Nano Lett. 8, 3572–3576 (2008). doi: 10.1021/nl801136h CrossRefGoogle Scholar
  80. 80.
    W. Smirnov, A. Kriele, N. Yang, C.F. Nebel, Aligned diamond nano-wires: fabrication and characterisation for advanced applications in bio and electrochemistry. Diamond Relat. Mater. 18, 186–189 (2009). doi: 10.1016/j.diamond.2009.09.001 CrossRefGoogle Scholar
  81. 81.
    M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.-Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. 3624 (2009). doi: 10.1039/B903284C
  82. 82.
    S. Szunerits, Y. Coffinier, E. Galopin, J. Brenner, R. Boukherroub, Preparation of boron-doped diamond nanowires and their application for sensitive electrochemical detection of tryptophan. Electrochem. Commun. 12, 438–441 (2010). doi: 10.1016/j.elecom.2010.01.014 CrossRefGoogle Scholar
  83. 83.
    E.-S. Baik, Y.-J. Baik, D. Jeaon, Aligned diamond nanowhiskers. J. Mater. Res. 15, 923 (2000). doi: 10.1557/JMR.2000.0131 CrossRefGoogle Scholar
  84. 84.
    S.F. Ren, L. Zhang, Z.H. Cheng, Y.L. Guo, Immobilized carbon nanotubes as matrix for MALDI-TOF-MS analysis: applications to neutral small carbohydrates. J. Am. Soc. Mass Spectrom. 16, 333–339 (2005). doi: 10.1016/j.jasms.2004.11.017 CrossRefGoogle Scholar
  85. 85.
    S. Szunerits, C.E. Nebel, R.J. Hamers, Surface functionalization and biological applications of CVD diamond. MRS Bull. 309(6), 517–524 (2014). doi: 10.1557/mrs.2014.99 CrossRefGoogle Scholar
  86. 86.
    F. Lapierre, G. Piret, H. Drobecq, O. Melnyk, Y. Coffinier, V. Thomy, R. Boukherroub, High sensitive matrix-free mass spectrometry analysis of peptides using silicon nanowires-based digital microfluidic device. Lab Chip 11, 1620–1628 (2011). doi: 10.1039/c0lc00716a CrossRefGoogle Scholar
  87. 87.
    M. Jönsson-Niedziolka, F. Lapierre, Y. Coffinier, S.J. Parry, F. Zoueshtiagh, T. Foat, V. Thomy, R. Boukherroub, EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces. Lab Chip 11, 490–496 (2011). doi: 10.1039/c0lc00203h CrossRefGoogle Scholar
  88. 88.
    F. Lapierre, M. Harnois, Y. Coffinier, R. Boukherroub, V. Thomy, Split and flow: reconfigurable capillary connection for digital microfluidic systems. Lab Chip 14, 3589–3593 (2014). doi: 10.1039/c4lc00650j CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yannick Coffinier
    • 1
  • Rabah Boukherroub
    • 1
  • Sabine Szunerits
    • 1
    Email author
  1. 1.Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN, UMR 8520)Villeneuve d’AscqFrance

Personalised recommendations