Nanodiamonds: From Synthesis and Purification to Deposition Techniques, Hybrids Fabrication and Applications

  • J. C. ArnaultEmail author
Part of the Carbon Nanostructures book series (CARBON)


The present chapter summarizes the recent advances in the production and the purification methods of nanodiamonds. The different strategies for seeding and patterning of surfaces are detailed. First reports of hybrids based on nanodiamonds are included like core shell particles or decoration with carbon dots or metallic atoms. Finally, an overview of applications for composites and nanomedicine is provided.


Nanodiamonds Purification Hybrids Seeding Surfaces Applications 



J.C. Arnault would like to thank his co-workers involved in surface modifications of nanodiamonds at CEA LIST, especially H.A. Girard, C. Gesset and T. Petit. He also acknowledges his collaborators from other laboratories for fruitful interactions.


  1. 1.
    L. Yang, P.W. May, L. Yin, J.A. Smith, K.N. Rosser, Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid. Diam. Relat. Mater. 16, 725–729 (2007). doi: 10.1016/j.diamond.2006.11.010 CrossRefGoogle Scholar
  2. 2.
    D. Adams, A.C. Chenus, G. Ledoux, C. Dujardin, C. Reynaud, O. Sublemontier, K. Masenelli-Varlot, O. Guillois, Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater. 18, 177–180 (2009). doi: 10.1016/j.diamond.2008.10.035 CrossRefGoogle Scholar
  3. 3.
    M.V. Baidakova, Y.A. Kukushkina, A.A. Sitnikova, M.A. Yagovkina, D.A. Kinlenko, V.V. Sokolov, M.S. Shestakov, A.Y. Vul’, B. Zousman, O. Levinson, Structure of nanodiamonds prepared by laser synthesis. Phys. Solid State 55, 1747–1753 (2013). doi: 10.1134/S1063783413080027 CrossRefGoogle Scholar
  4. 4.
    K.V. Volkov, V.V. Danilenko, V.I. Elin, Synthesis of diamond from the carbon in the detonation products of explosives. Combustion Explosion and Shock waves 26, 366–368 (1990). doi: 10.1007/BF00751383 CrossRefGoogle Scholar
  5. 5.
    V.Y. Dolmatov, M.V. Veretennikova, V.A. Marchukov, V.G. Sushchev, Currently available methods of industrial nanodiamond synthesis. Phys. Solid State 46, 611–615 (2004). doi: 10.1134/1.1711434 CrossRefGoogle Scholar
  6. 6.
    S.S. Batsanov, A.N. Osavchuk, S.P. Naumov, A.E. Efimov, B.G. Mendis, D.C. Apperley, A.S. Batsanov, Synthesis and properties of hydrogen-free detonation diamond. Propellants Explos. Pyrotech. 35, 1–8 (2010). doi: 10.1002/prep.201400039 Google Scholar
  7. 7.
    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nature Nanotech. 7, 11–23 (2012). doi: 10.1038/NNANO.2011.209 CrossRefGoogle Scholar
  8. 8.
    A.L. Vereshchagin, E.A. Petrov, G.V. Sakovich et al., U.S. Patent No. 591.655, 1999Google Scholar
  9. 9.
    V.Y. Dolmatov, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ. Chem. Rev. 76, 339–360 (2007). WOS:000247118100004Google Scholar
  10. 10.
    V. Pichot, M. Comet, B. Risse, D. Spitzer, Detonation of nanosized explosive: new mechanistic model for nanodiamond formation. Diam. Relat. Mater. 54, 59–63 (2015). doi: 10.1016/j.diamond.2014.09.013 Google Scholar
  11. 11.
    F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Man-made diamond. Nature 176, 51 (1955). doi: 10.1038/176051a0 CrossRefGoogle Scholar
  12. 12.
    H.P. Bovenkerk, F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Preparation of diamond. Nature 184, 1094 (1959). doi: 10.1038/1841094a0 CrossRefGoogle Scholar
  13. 13.
    R.C. Burns, J.O. Hansen, R.A. Spits, M. Sibanda, C.M. Welbourn, D.L. Welch, Growth of high purity large diamond crystals. Diam. Relat. Mater. 8, 1433 (1999). doi: 10.1016/S0925-9635(99)00042-4 CrossRefGoogle Scholar
  14. 14.
    H. Kanda, M. Akaishi, S. Yamaoka, Synthesis of diamond with the highest nitrogen concentration. Diam. Relat. Mater. 8, 1441 (1999). doi: 10.1016/S0925-9635(99)00022-9 CrossRefGoogle Scholar
  15. 15.
    A. Dobrinets, V.G. Vins, A.M. Zaitev, HPHT-Treated Diamonds, Springer series in Material Science, vol 181 (Springer, Berlin, 2013). doi: 10.1007/978-3-642-37490-6_1 Google Scholar
  16. 16.
    V.S. Bormashov, S.A. Tarelkin, S.G. Buga, M.S. Kuznetsov, S.A. Terentiev, A.N. Semenova, V.D. Blank, Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method. Diam. Relat. Mater. 35, 19–23 (2013). doi: 10.1016/j.diamond.2013.02.011 CrossRefGoogle Scholar
  17. 17.
    J.C. Angus, H.A. Will, W.S. Stanko, Growth of diamond seed crystals by vapor deposition. J. Appl. Phys. 39, 2915 (1968). doi: 10.1063/1.1656693 CrossRefGoogle Scholar
  18. 18.
    J.C. Angus, C.C. Hayman, Low pressure metastable growth of diamond and diamond like phases. Science 241, 913–921 (1988). doi: 10.1126/science.241.4868.913 CrossRefGoogle Scholar
  19. 19.
    R.J. Nemanich, J.A. Carlisle, A. Hirata, K. Haenen, CVD diamond—research, applications and challenges. MRS Bull. 39, 490–494 (2014). doi: 10.1557/mrs.2014.97 CrossRefGoogle Scholar
  20. 20.
    J.C. Arnault, H.A. Girard, Diamond nucleation and seeding techniques: two complementary strategies for growth of ultra-thin diamond films, in Nanodiamonds, Royal Society Chemistry, ed. by O.A Williams (2014), pp. 221–252. ISBN 978-1-84973-639-8Google Scholar
  21. 21.
    N. Fujimori, T. Imai, A. Doi, Characterization of conductive diamond films. Vacuum 36, 99–102 (1986). doi: 10.1016/0042-207X(86)90279-4 CrossRefGoogle Scholar
  22. 22.
    Y. Takano, M. Nagao, T. Takenouchi, H. Umezawa, I. Sakaguchi, M. Tachiki, H. Kawarada, Superconductivity in polycrystalline diamond thin films. Diam. Relat. Mater. 14, 1936–1938 (2005). doi: 10.1016/j.diamond.2005.08.014 CrossRefGoogle Scholar
  23. 23.
    S. Koizumi, M. Kamo, Y. Sato, H. Ozaki, T. Inuzuka, Growth and characterization of phosphorous doped 111 homoepitaxial diamond thin films. Appl. Phys. Lett. 71, 1065–1067 (1997). doi: 10.1063/1.119729 CrossRefGoogle Scholar
  24. 24.
    K. Tsugawa, M. Ishihara, J. Kim, M. Hasegawa, Y. Koga, Large-area and low-temperature nanodiamond coating by microwave plasma chemical vapor deposition. New Diamond Front. Carbon Technol. 16, 337–346 (2006). WOS:000246559400005Google Scholar
  25. 25.
    K. Tsugawa, M. Ishihara, J. Kim, Y. Koga, M. Hasegawa, Nanocrystalline diamond film growth on plastic substrates at temperatures below 100 °C from low-temperature plasma. 82, 125460 (2010). doi: 10.1103/PhysRevB.82.125460
  26. 26.
    J.P. Boudou, P.A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel, E. Gaffet, High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009). doi: 10.1088/0957-4484/20/23/235602 CrossRefGoogle Scholar
  27. 27.
    R. Mahfouz, D.L. Floyd, W. Peng, J.T. Choy, M. Loncar, O.M. Bakr, Size-controlled fluorescent nanodiamonds: a facile method of fabrication and color-center counting. Nanoscale 5, 11776–11782 (2013). doi: 10.1039/c3nr03320a CrossRefGoogle Scholar
  28. 28.
    W. Peng, R. Mahfouz, J. Pan, Y. Hou, P.M. Beaujuge, O.M. Bakr, Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation. Nanoscale 5, 5017–5026 (2013). doi: 10.1039/c3nr00990d CrossRefGoogle Scholar
  29. 29.
    A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl. Mater. Interfaces 2, 3289–3294 (2010). doi: 10.1021/am100720n CrossRefGoogle Scholar
  30. 30.
    M. Ozawa, M. Inakuma, M. Takahashi, F. Kataoka, A. Krueger, E. Osawa, Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007). doi: 10.1002/adma.200601452 CrossRefGoogle Scholar
  31. 31.
    Y. Liang, M. Ozawa, A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3, 2288–2296 (2009). doi: 10.1021/nn900339s CrossRefGoogle Scholar
  32. 32.
    E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, C. Becher, Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films. Appl. Phys. Lett. 98, 243107 (2011). doi: 10.1063/1.3599608 CrossRefGoogle Scholar
  33. 33.
    S. Heyer, W. Janssen, S. Turner, Y.G. Lu, W.S. Yeap, J. Verbeeck, K. Haenen, A. Krueger, Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles. ACS Nano 8, 5757 (2014). doi: 10.1021/nn500573x CrossRefGoogle Scholar
  34. 34.
    F.A. Raal, A spectrographic study of the minor element content of diamond. Am. Mineral. 42, 354–361 (1957). WOS:A1957XF01500004Google Scholar
  35. 35.
    V.Y. Dolmatov, Detonation synthesis ultradispersed diamonds: properties and applications. Russ. Chem. Rev. 70, 607–626 (2001). Accession Number: WOS:000184202800004Google Scholar
  36. 36.
    H. Sakurai, N. Ebihara, E. Osawa, M. Takahashi, M. Fujinami, K. Oguma, Adsorption characteristics of a nanodiamond for oxoacid anions and their application to the selective preconcentration of tungstate in water samples. Anal. Sci. 22, 357–362 (2006). doi: 10.2116/analsci.22.357 CrossRefGoogle Scholar
  37. 37.
    B.V. Spitsyn, J.L. Davidson, M.N. Gradoboev, T.B. Galushko, N.V. Serebryakova, T.A. Karpukhina, I.I. Kulakova, N.N. Melnik, Inroad to modification of detonation nanodiamond. Diam. Relat. Mater. 15, 296–299 (2006). doi: 10.1016/j.diamond.2005.07.033 CrossRefGoogle Scholar
  38. 38.
    A.P. Koscheev, Thermodesorption mass spectrometry in the light of solution of the problem of certification and unification of the surface properties of detonation nanodiamonds. Russ. J. Gen. Chem. 79, 2033–2044 (2009). doi: 10.1134/S1070363209090357 CrossRefGoogle Scholar
  39. 39.
    S. Merchel, U. Ott, S. Herrmann, B. Spettel, T. Faestermann, K. Knie, G. Korschinek, G. Rugel, A. Wallner, Presolar nanodiamonds: faster, cleaner, and limits on platinum-HL. Geochim. Cosmochim. Acta 67, 4949–4960 (2003). doi: 10.1016/S0016-7037(03)00421-6 CrossRefGoogle Scholar
  40. 40.
    D.P. Mitev, A.T. Townsend, B. Paull, P.N. Nesterenko, Screening of elemental impurities in commercial detonation nanodiamond using sector field inductively coupled plasma-mass spectrometry. J. Mater. Sci. 49, 3573–3591 (2014). doi: 10.1007/s10853-014-8036-3 CrossRefGoogle Scholar
  41. 41.
    D.S. Volkov, M.A. Proskurnin, M.V. Korobov, Elemental analysis of nanodiamonds by inductively-coupled plasma atomic emission spectroscopy. Carbon 74, 1–13 (2014). doi: 10.1016/j.carbon.2014.02.072 CrossRefGoogle Scholar
  42. 42.
    I. Rehor, P. Cigler, Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis. Diam. Relat. Mater. 46, 21–24 (2014). doi: 10.1016/j.diamond.2014.04.002 CrossRefGoogle Scholar
  43. 43.
    J. Havlik, V. Petrakova, I. Rehor, V. Petrak, M. Gulka, J. Stursa, J. Kucka, J. Ralis, T. Rendler, S.Y. Lee, R. Reuter, J. Wrachtrup, M. Ledvina, M. Nesladek, P. Cigler, Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5, 3208–3211 (2013). doi: 10.1039/c2nr32778c CrossRefGoogle Scholar
  44. 44.
    O.A. Shenderova, I.I. Vlasov, S. Turner, G. Van Tendeloo, S.B. Orlinskii, A.A. Shiryaev, A.A. Khomich, S.N. Sulyanov, F. Jelezko, J. Wrachtrup, Nitrogen Control in Nanodiamond Produced by Detonation Shock-Wave-Assisted Synthesis. J. Phys. Chem. C 115, 14014–14024 (2011). doi: 10.1021/jp202057q CrossRefGoogle Scholar
  45. 45.
    A.E. Aleksenskii, V.Y. Osipov, A.T. Dideikin, A.Y. Vul’, G.J. Adrianssens, V.V. Afanas’ev, Ultradisperse diamond cluster aggregation studied by atomic force microscopy. Tech. Phys. Lett. 26, 819–821 (2000). doi: 10.1134/1.1315505 CrossRefGoogle Scholar
  46. 46.
    T. Petit, J.C. Arnault, H.A. Girard, M. Sennour, P. Bergonzo, Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy. Phys. Rev. B 84, 233407 (2011). doi: 10.1103/PhysRevB.84.233407 CrossRefGoogle Scholar
  47. 47.
    M.V. Baidakova, in Methods of Characterization and Models of Nanodiamond Particles in Detonation Nanodiamonds: Science and Applications, ed. by A.Y. Vul’, O.A. Shenderova (Pan Stanfford Publishing Pte Ltd.). ISBN 978-981-4411-27-1Google Scholar
  48. 48.
    S. Turner, O.I. Lebedev, O. Shenderova, I.I. Vlasov, J. Verbeeck, G. Van Tendeloo, Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Adv. Funct. Mater. 19, 2116–2124 (2009). doi: 10.1002/adfm.200801872 CrossRefGoogle Scholar
  49. 49.
    A.S. Barnard, M.C. Per, Size and shape dependent deprotonation potential and proton affinity of nanodiamond. Nanotechnology 25, 445702 (2014). doi: 10.1088/0957-4484/25/44/445702 CrossRefGoogle Scholar
  50. 50.
    L. Lai, A.S. Barnard, Tuning the electron transfer properties of entire nanodiamond ensembles. J. Phys. Chem. C 118, 30209–30215 (2014). doi: 10.1021/jp509355g CrossRefGoogle Scholar
  51. 51.
    L.Y. Chang, E. Osawa, A.S. Barnard, Conformation of the electrostatic self-assembly of nanodiamonds. Nanoscale 3, 958–962 (2011). doi: 10.1039/c0nr00883d CrossRefGoogle Scholar
  52. 52.
    Z. Chu, S. Zhang, B. Zhang, C. Zhang, C.Y. Fang, I. Rehor, P. Cigler, H.C. Chang, G. Lin, R. Liu, Q. Li, Unambiguous observation of shape effects on cellular fate of nanoparticles. Scientific Reports 4, 4495 (2014). doi: 10.1038/srep04495 Google Scholar
  53. 53.
    A. Barnard, Modeling polydispersive ensembles of diamond nanoparticles. Nanotechnology 24, 085703 (2013). doi: 10.1088/0957-4484/24/8/085703 CrossRefGoogle Scholar
  54. 54.
    V.Y. Dolmatov, G.S. Yurev, V. Myllymaki, K.M. Korolev, Why detonation nanodiamonds are small. J. Superhard Mater. 35, 77–82 (2013). doi: 10.3103/S1063457613020020 CrossRefGoogle Scholar
  55. 55.
    I.I. Vlasov, O. Shenderova, S. Turner, O.I. Lebedev, A.A. Basov, I. Sildos, M. Rähn, A.A. Shiryaev, G. Van Tendeloo, Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small 6, 687–694 (2010). doi: 10.1002/smll.200901587 CrossRefGoogle Scholar
  56. 56.
    S. Turner, O. Shenderova, F. Da Pieve, Y.G. Lu, E. Yücelen, J. Verbeeck, D. Lamoen, G. Van Tendeloo, Aberration-corrected microscopy and spectroscopy analysis of pristine, nitrogen containing detonation nanodiamond Phys. Status Solidi A 210, 1976–1984 (2013). doi: 10.1002/pssa.201300315 CrossRefGoogle Scholar
  57. 57.
    A.M. Panich, N.A. Sergeev, A.I. Shames, V.Y. Osipov, J.P. Boudou, S.D. Goren, Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds. J. Phys. Condens. Matter 27(7), 072203 (2015). doi: 10.1088/0953-8984/27/7/072203 Google Scholar
  58. 58.
    H.A. Girard, T. Petit, S. Perruchas, J.C. Arnault, P. Bergonzo, Surface properties of hydrogenated nanodiamonds: a chemical investigation. Phys. Chem. Chem. Phys. 13, 11511–11516 (2011). doi: 10.1039/c1cp20424f CrossRefGoogle Scholar
  59. 59.
    M. Mermoux, A. Crisci, T. Petit, H.A. Girard, J.C. Arnault, Surface modifications of detonation nanodiamonds probed by multiwavelength Raman spectroscopy. J. Phys. Chem. C 118, 23415–23425 (2014). doi: 10.1021/jp507377z CrossRefGoogle Scholar
  60. 60.
    O. Shenderova, A. Koscheev, N. Zaripov, I. Petrov, Y. Skryabin, P. Detkov, T. Turner, G. Van Tendeloo, Surface chemistry and properties of ozone-purified detonation nanodiamonds. J. Phys. Chem. C 115, 9827–9837 (2011). doi: 10.1021/jp1102466 CrossRefGoogle Scholar
  61. 61.
    S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006). doi: 10.1021/ja063303n CrossRefGoogle Scholar
  62. 62.
    A. Wolcott, T. Schiros, M.E. Trusheim, E.H. Chen, D. Nordlund, R.E. Diaz, O. Gaathon, D. Englund, J.S. Owen, Surface structure of aerobically oxidized diamond nanocrystals. J. Phys. Chem. C 118, 26695–26702 (2014). doi: 10.1021/jp506992c CrossRefGoogle Scholar
  63. 63.
    I. Petrov, O. Shenderova, V. Grishko, V. Grichko, T. Tyler, G. Cunningham, G. McGuire, Detonation nanodiamonds simultaneously purified and modified by gas treatment. Diam. Relat. Mater. 16, 2098–2103 (2007). doi: 10.1016/j.diamond.2007.05.013 CrossRefGoogle Scholar
  64. 64.
    V.G. Sushchev, V.Y. Dolmatov, V.A. Marchukov, M.V. Veretennikova, Fundamentals of chemical purification of detonation nanodiamond soot using nitric acid. J. Superhard Mater. 30, 297–304 (2008). doi: 10.3103/S1063457608050031 CrossRefGoogle Scholar
  65. 65.
    V. Pichot, M. Comet, E. Fousson, C. Baras, A. Senger, F. Le Normand, D. Spitzer, An efficient purification method for detonation nanodiamonds. Diam. Relat. Mater. 17, 13–22 (2008). doi: 10.1016/j.diamond.2007.09.011 CrossRefGoogle Scholar
  66. 66.
    L. Schmidlin, V. Pichot, M. Comet, S. Josset, P. Rabu, D. Spitzer, Identification, quantification and modification of detonation nanodiamond functional groups. Diam. Relat. Mater. 22, 113–117 (2012). doi: 10.1016/j.diamond.2011.12.009 CrossRefGoogle Scholar
  67. 67.
    D.P. Mitev, A.T. Townsend, B. Paull, P.N. Nesterenko, Microwave-assisted purification of detonation nanodiamond. Diam. Relat. Mater. 48, 37–46 (2014). doi: 10.1016/j.diamond.2014.06.007 CrossRefGoogle Scholar
  68. 68.
    V.Y. Dolmatov, A. Vehanen, V. Myllymaki, K.A. Rudometkin, A.N. Panova, K.M. Korolev, T.A. Shpadkovskaya, Deep purification of detonation nanodiamond material. J. Superhard Mater. 35, 408–414 (2013). doi: 10.3103/S1063457613060099 CrossRefGoogle Scholar
  69. 69.
    A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Y. Vul’, E. Osawa, Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43, 1722–1730 (2005). doi: 10.1016/j.carbon.2005.02.020 Google Scholar
  70. 70.
    M. Ozawa, M. Inakuma, M. Takahashi, F. Kataoka, A. Krueger, E. Osawa, Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007). doi: 10.1002/adma.200601452 CrossRefGoogle Scholar
  71. 71.
    Y. Liang, M. Ozawa, A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3, 2288–2296 (2009). doi: 10.1021/nn900339s CrossRefGoogle Scholar
  72. 72.
    X.Y. Xu, Y.W. Zhu, B.C. Wang, Z.M. Yu, S.Z. Xie, Mechanochemical dispersion of nanodiamond aggregates in aqueous media. J. Mater. Sci. Technol. 21, 109–112 (2005). WOS:000226775000026Google Scholar
  73. 73.
    Y.Y. Xu, Z.M. Yu, Y.M. Zhu, B.C. Wang, Effect of sodium oleate adsorption on the colloidal stability and zeta potential of detonation synthesized diamond particles in aqueous solutions. Diamond Relat. Mater. 14, 206–212 (2005). doi: 10.1016/j.diamond.2004.11.004 CrossRefGoogle Scholar
  74. 74.
    X.Y. Zhang, S.Q. Wang, M.Y. Liu, J.F. Hui, B. Yang, L. Tao, Y. Wei, Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications. Toxicol. Res. 2, 335–342 (2013). doi: 10.1039/c3tx50021g CrossRefGoogle Scholar
  75. 75.
    A.E. Aleksenskiy, E.D. Eydelman, A.Y. Vul’, Deagglomeration of detonation nanodiamonds. Nanosci. Nanotechnol. Lett. 3, 68–74 (2011). doi: 10.1166/nnl.2011.1122 CrossRefGoogle Scholar
  76. 76.
    Y. Sun, P. Olsen, T. Waag, A. Krueger, D. Steinmüler-Nethl, A.C. Albertsson, A. Finne-Wistrand, Disaggregation and anionic activation of nanodiamonds mediated by sodium hydride—a new route to functional aliphatic polyester-based nanodiamond materials. Part. Part. Syst. Charact. 32, 35–42 (2015). doi: 10.1002/ppsc.201400098 CrossRefGoogle Scholar
  77. 77.
    J.C. Arnault, Surface modifications of nanodiamonds and current issues for their biomedical applications, in Novel Aspects of Diamond, Topics in Applied Physics, vol 121, ed. by N. Yang (2014). doi: 10.1007/978-3-319-09834-0_4 Google Scholar
  78. 78.
    H.A. Girard, J.C. Arnault, S. Perruchas, S. Saada, T. Gacoin, J.P. Boilot, P. Bergonzo, Hydrogenation of nanodiamonds using MPCVD: a new route toward organic functionalization. Diam. Relat. Mater. 19, 1117–1123 (2010). doi: 10.1016/j.diamond.2010.03.019 CrossRefGoogle Scholar
  79. 79.
    H.A. Girard, A. El Kharbachi, S. Garcia-Argote, T. Petit, P. Bergonzo, B. Rousseau, J.C. Arnault, Tritium labeling of detonation nanodiamonds. Chem. Comm. 50, 2916–2918 (2014). doi: 10.1039/c3cc49653h CrossRefGoogle Scholar
  80. 80.
    T. Petit, H.A. Girard, A. Trouve, I. Batonneau-Genner, P. Bergonzo, J.C. Arnault, Surface transfer doping can mediate both colloidal stability and self-assembly of nanodiamonds. Nanoscale 5, 8958–8962 (2013). doi: 10.1039/c3nr02492j CrossRefGoogle Scholar
  81. 81.
    T. Petit, J.C. Arnault, H.A. Girard, M. Sennour, T.Y. Kang, C.L. Cheng, P. Bergonzo, Oxygen hole doping of nanodiamond. Nanoscale 4, 6792–6799 (2012). doi: 10.1039/c2nr31655b CrossRefGoogle Scholar
  82. 82.
    K.I. Sotowa, T. Amamoto, A. Sobana, K. Kusakabe, T. Imato, Effect of treatment temperature on the amination of chlorinated diamond. Diam. Relat. Mater. 13, 145–150 (2004). doi: 10.1016/j.diamond.2003.10.029 CrossRefGoogle Scholar
  83. 83.
    C.L. Huang, H.C. Chang, Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20, 5879–5884 (2004). doi: 10.1021/la0495736 CrossRefGoogle Scholar
  84. 84.
    W.S. Yeap, S. Chen, K.P. Loh, Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. Langmuir 25, 185–191 (2009). doi: 10.1021/la8029787 CrossRefGoogle Scholar
  85. 85.
    J.R. Bertrand, C. Pioche-Durieu, J. Ayala, T. Petit, H.A. Girard, C. Malvy, E. Le Cam, F. Treussart, J.C. Arnault, Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. Biomaterials 45, 93–98 (2015). doi: 10.1016/j.biomaterials.2014.12.007 CrossRefGoogle Scholar
  86. 86.
    A. Bolker, C. Saguy, R. Kalish, Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques. Nanotechnology 25, 385702 (2014). doi: 10.1088/0957-4484/25/38/385702 CrossRefGoogle Scholar
  87. 87.
    T. Kondo, I. Neitzel, V.N. Mochalin, J. Urai, M. Yuasa, Y. Gogotsi, Electrical conductivity of thermally hydrogenated nanodiamond powders. J. Appl. Phys. 113, 214307 (2013). doi: 10.1063/1.4809549 CrossRefGoogle Scholar
  88. 88.
    T. Petit, H.A. Girard, M. Combis-Schlumberger, R. Grall, J. Delic, S. Morel-Altmeyer, P. Bergonzo, S. Chevillard, J.C. Arnault, Nanodiamond as a multimodal platform for drug delivery and radiosensitization of tumor cells. in Proceedings of the 13th IEEE International Conference on Nanotechnology, Beijing, China, 5–8 Aug 2013Google Scholar
  89. 89.
    R. Grall, H. Girard, L. Saad, T. Petit, C. Gesset, M. Combis-Schlumberger, V. Paget, J. Delic, J.C. Arnault, S. Chevillard, Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials 61, 290–298 (2015). Google Scholar
  90. 90.
    J.C. Arnault, T. Petit, H.A. Girard, C. Gesset, M. Combis-Schlumberger, M. Sennour, A. Koscheev, A.A. Khomich, I. Vlasov, O. Shenderova, Surface graphitization of ozone treated detonation nanodiamonds. Phys. Status Solidi A 211, 2739–2743 (2014). doi: 10.1002/pssa.201431397 CrossRefGoogle Scholar
  91. 91.
    T. Petit, M. Pflüger, D. Tolksdorf, J. Xiao, E.F. Aziz, Valence holes observed in nanodiamonds dispersed in water. Nanoscale 7, 2987–2991 (2015). doi: 10.1039/C4NR06639A CrossRefGoogle Scholar
  92. 92.
    Y. Diao, L. Shaw, Z. Bao, S.C.B. Mannsfeld, Morphology control strategies for solution processed organic semiconductor thin films. Energy Environ. Sci. 7, 2145–2159 (2014). doi: 10.1039/c4ee00688g CrossRefGoogle Scholar
  93. 93.
    O.A. Williams, Nanocrystalline diamond. Diam. Relat. Mater. 20, 621–640 (2011). doi: 10.1016/j.diamond.2011.02.015 CrossRefGoogle Scholar
  94. 94.
    J.C. Arnault, S. Saada, O.A. Williams, K. Haenen, P. Bergonzo, M. Nesladek, R. Polini, E. Osawa, Diamond nanoseeding on silicon: stability under H2 MPCVD exposures and early stages of growth. Diam. Relat. Mater. 17, 1143–1149 (2008). doi: 10.1016/j.diamond.2008.01.008 CrossRefGoogle Scholar
  95. 95.
    J.C. Arnault, S. Saada, O.A. Williams, K. Haenen, P. Bergonzo, M. Nesladek, R. Polini, E. Osawa, Surface characterisation of silicon substrates seeded with diamond nanoparticles under UHV annealing. Phys. Stat. Sol. (A) 205, 2108–2113 (2008). doi: 10.1002/pssa.200879728 CrossRefGoogle Scholar
  96. 96.
    S. Zeppilli, J.C. Arnault, C. Gesset, P. Bergonzo, R. Polini, Thermal stability and surface modifications of detonation diamond nanoparticles studied with X-ray photoelectron spectroscopy. Diam. Relat. Mater. 19, 846–853 (2010). doi: 10.1016/j.diamond.2010.02.005 CrossRefGoogle Scholar
  97. 97.
    M. Daenen, O.A. Williams, J. D’Haen, K. Haenen, M. Nesladek, Seeding, growth and characterization of nanocrystalline diamond films on various substrates. Phys. Sta. Sol A 203, 3005–3010 (2006). doi: 10.1002/pssa.200671122 CrossRefGoogle Scholar
  98. 98.
    X. Liu, T. Yu, Q. Wei, Z. Yu, X. Xu, Enhanced diamond nucleation on copper substrates by employing an electrostatic self-assembly seeding process with modified nanodiamond particles. Colloids Surf. A Physicochem. Eng. Aspects 412, 82–89 (2012). doi: 10.1007/s00339-014-8355-x Google Scholar
  99. 99.
    J. Hees, N. Heidrich, W. Pletschen, R.E. Sah, M. Wolfer, O.A. Williams, V. Lebedev, C.E. Nebel, O. Ambacher, Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films. Nanotechnology 24, 025601 (7 pp) (2013). doi: 10.1088/0957-4484/24/2/025601 Google Scholar
  100. 100.
    V.V. Chernov, A.L. Vikharev, A.M. Gorbachev, A.V. Kozlov, A.Y. Vul’, A.E. Aleksenskii, The nucleation and growth of nanocrystalline diamond films in millimeter-wave CVD reactor. Fullerenes Nanotubes Carbon Nanostruct. 20, 600–605 (2012). doi: 10.1080/1536383X.2012.656550 Google Scholar
  101. 101.
    M. Tsigourakos, T. Hantschel, S.D. Janssens, K. Haenen, W. Vandervorst, Spin-seeding approach for diamond growth on large area silicon-wafer substratesphys. Stat. Sol. A 209, 1659–1663 (2012). doi: 10.1002/pssa.201200137 Google Scholar
  102. 102.
    M. Bonnauron, S. Saada, C. Mer, C. Gesset, O.A. Williams, L. Rousseau, E. Scorsone, P. Mailley, M. Nesladek, J.-C. Arnault, P. Bergonzo, Transparent diamond-on-glass micro-electrode arrays for ex-vivo neuronal study. Phys. Stat. Sol. A 205, 2126–2129 (2008). doi: 10.1002/pssa.200879733 Google Scholar
  103. 103.
    H.A. Girard, E. Scorsone, S. Saada, C. Gesset, J.C. Arnault, S. Perruchas, L. Rousseau, S. David, V. Pichot, D. Spitzer, P. Bergonzo, Electrostatic grafting of diamond nanoparticles towards 3D diamond nanostructures. Diam. Relat. Mater. 23, 83–87 (2012). doi: 10.1016/j.diamond.2012.01.021 CrossRefGoogle Scholar
  104. 104.
    R. Bogdanowicz, M. Śmietana, M. Gnyba, Ł. Gołunski, J. Ryl, M. Gardas, Optical and structural properties of polycrystalline CVD diamond films grown on fused silica optical fibres pre-treated by high-power sonication seeding. Appl. Phys. A 116, 1927–1937 (2014). doi: 10.1007/s00339-014-8355-x Google Scholar
  105. 105.
    S. Ruffinatto, H.A. Girard, F. Becher, J.C. Arnault, D. Tromson, P. Bergonzo, Diamond porous conductive membranes: a new material toward analytical chemistry. Diam. Relat. Mater. (2015). doi: 10.1016/diamond.2015.03.008
  106. 106.
    M. Tsigkourakos, T. Hantschel, S.D. Janssens, K. Haenen, W. Vandervorst, Spin-seeding approach for diamond growth on large area silicon-wafer substrates. Phys. Stat. sol a 209, 1659–1663 (2012). doi: 10.1002/pssa.201200137 CrossRefGoogle Scholar
  107. 107.
    N.A. Feoktistov, V.I. Sakharov, I.T. Serenkov, V.A. Tolmachev, I.V. Korkin, A.E. Aleksenskii, A.Y. Vul’, V.G. Golubev, Aerosol Deposition of Detonation Nanodiamonds Used as Nucleation Centers for the Growth of Nanocrystalline Diamond Films and Isolated Particles. Tech. Phys. 56, 718–724 (2011). doi: 10.1134/S1063784211050112 Google Scholar
  108. 108.
    O.A. Williams, O. Douheret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi, Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445, 255–258 (2007). doi: 10.1016/j.cplett.2007.07.091 CrossRefGoogle Scholar
  109. 109.
    O. Shenderova, S. Hens, G. McGuire, Seeding slurries based on detonation nanodiamond in DMSO. Diam. Relat. Mater. 19, 260–267 (2010). doi: 10.1016/j.diamond.2009.10.008 CrossRefGoogle Scholar
  110. 110.
    S.C. Hens, G. Cunningham, T. Tyler, S. Moseenkov, V. Kuznetsov, O. Shenderova, Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam. Relat. Mater. 17, 1858–1866 (2008). doi: 10.1016/j.diamond.2008.03.020 CrossRefGoogle Scholar
  111. 111.
    A. Kromka, O. Babchenko, H. Kozak, K. Hruska, B. Rezek, M. Ledinsky, J. Potmesil, M. Michalka, M. Vanecek, Seeding of polymer substrates for nanocrystalline diamond film growth. Diam. Relat. Mater. 18, 734–739 (2009). doi: 10.1016/j.diamond.2009.01.023 CrossRefGoogle Scholar
  112. 112.
    W. Zhang, K. Patel, A. Schexnider, S. Banu, A.D. Radadia, Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization. ACS Nano 8, 1419–1428 (2014). doi: 10.1021/nn405240g CrossRefGoogle Scholar
  113. 113.
    H. Schwertfeger, A. Fokin, P.R. Schreiner, Diamonds are a chemist’s best friend: diamondoid chemistry beyond adamantane. Angew. Chem. Int. Ed. 47, 1022–1036 (2008). doi: 10.1002/anie.200701684 CrossRefGoogle Scholar
  114. 114.
    Y.C. Chen, L. Chang, Chemical vapor deposition of diamond on an adamantane-coated sapphire substrate. RSC Adv. 4, 18945–18950 (2014). doi: 10.1039/c4ra01042f CrossRefGoogle Scholar
  115. 115.
    J. Hees, A. Kriele, O.A. Williams, Electrostatic self-assembly of diamond nanoparticles. Chem. Phys. Lett. 509, 12–15 (2011). doi: 10.1016/j.cplett.2011.04.083 CrossRefGoogle Scholar
  116. 116.
    X.Z. Liu, T. Yu, Q.P. Wei, Z.M. Yu, X.Y. Xu, Enhanced diamond nucleation on copper substrates by employing an electrostatic self-assembly seeding process with modified nanodiamond particles. Colloids Surf. A 412, 82–89 (2012). doi: 10.1016/j.colsurfa.2012.07.020 CrossRefGoogle Scholar
  117. 117.
    I. Zhitomirsky, Cathodic electrophoretic deposition of diamond particles. Mater. Lett. 37, 72–78 (1998). doi: 10.1016/S0167-577X(98)00074-3 CrossRefGoogle Scholar
  118. 118.
    A.N. Alimova, N.N. Chubun, P.I. Belobrov, P.Y. Detkov, V.V. Zhirnov, Electrophoresis of nanodiamond powder for cold cathode fabrication. J. Vac. Sci. Technol., B 17, 715–718 (1999). doi: 10.1116/1.590625 CrossRefGoogle Scholar
  119. 119.
    Y.H. Wang, Q.Z. Chen, J. Cho, A.R. Boccaccini, Electrophoretic co-deposition of diamond/borosilicate glass composite coatings. Surf. Coat. Technology 201, 7645–7651 (2007). doi: 10.1016/j.surfcoat.2007.02.037 CrossRefGoogle Scholar
  120. 120.
    L. Schmidlin, V. Pichot, S. Josset, R. Pawlak, T. Glatzel, S. Kawai, E. Meyer, D. Spitzer, Two-dimensional nanodiamond monolayers deposited by combined ultracentrifugation and electrophoresis techniques. Appl. Phys. Lett. 101, 253111 (2012). doi: 10.1063/1.4772983]Google Scholar
  121. 121.
    P. Pobedinskas, G. Degutis, W. Dexters, W. Janssen, S.D. Janssens, B. Conings, B. Ruttens, J. D’Haen, H.-G. Boyen, A. Hardy, M.K. Van Bael, K. Haenen, Appl. Phys. Lett. 102, 201609 (2013). doi: 10.1063/1.4807591] CrossRefGoogle Scholar
  122. 122.
    V. Pichot, K. Bonnot, N. Piazzon, M. Schaefer, M. Comet, D. Spitzer, Deposition of detonation nanodiamonds by Langmuir-Blodgett technique. Diam. Relat. Mater. 19, 479–483 (2010). doi: 10.1016/j.diamond.2009.10.031 CrossRefGoogle Scholar
  123. 123.
    E. Scorsone, S. Saada, J.C. Arnault, P. Bergonzo, Enhanced control of diamond nanoparticle seeding using a polymer matrix. J. Appl. Phys. 106, 14908 (2009). doi: 10.1063/1.3153118 CrossRefGoogle Scholar
  124. 124.
    A. Mamedov, J. Ostrander, F. Aliev, N.A. Kotov, Stratified assemblies of magnetite nanoparticles and montmorillonite prepared by the layer-by-layer assembly. Langmuir 16, 3941–3949 (2000). doi: 10.1021/la990957j CrossRefGoogle Scholar
  125. 125.
    W. Xue, T. Cui, Characterization of layer-by-layer self-assembled carbon nanotube multilayer thin films. Nanotechnology 18, 145709 (2007). doi: 10.1088/0957-4484/18/14/145709 CrossRefGoogle Scholar
  126. 126.
    H.A. Girard, S. Perruchas, C. Gesset, M. Chaigneau, L. Vieille, J.C. Arnault, P. Bergonzo, J.P. Boilot, T. Gacoin, Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films. ACS Appl. Mater. Interfaces 1, 2738–2746 (2009). doi: 10.1021/am900458g CrossRefGoogle Scholar
  127. 127.
    J.H. Kim, S.K. Lee, O.M. Kwon, S.I. Hong, D.S. Lim, Thickness controlled and smooth polycrystalline CVD diamond film deposition on SiO2 with electrostatic self assembly seeding process. Diam. Relat. Mater. 18, 1218–1222 (2009). doi: 10.1016/j.diamond.2009.04.012 CrossRefGoogle Scholar
  128. 128.
    S.K. Lee, J.H. Kim, M.G. Jeong, M.J. Song, D.S. Lim, Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles. Nanotechnology 21, 505302 (2010). doi: 10.1088/0957-4484/21/50/505302 CrossRefGoogle Scholar
  129. 129.
    E. Chevallier, E. Scorsone, H.A. Girard, V. Pichot, D. Spitzer, P. Bergonzo, Metalloporphyrin-functionalised diamond nano-particles as sensitive layer for nitroaromatic vapours detection at room-temperature. Sens. Actuators B 151, 191–197 (2010). doi: 10.1016/j.snb.2010.09.022 CrossRefGoogle Scholar
  130. 130.
    H.A. Girard, E. Scorsone, S. Saada, C. Gesset, J.C. Arnault, S. Perruchas, L. Rousseau, S. David, V. Pichot, D. Spitzer, P. Bergonzo, Electrostatic grafting of diamond nanoparticles towards 3D diamond nanostructures. Diam. Relat. Mater. 23, 83–87 (2012). doi: 10.1016/j.diamond.2012.01.021 CrossRefGoogle Scholar
  131. 131.
    G. Saini, D.S. Jensen, L.A. Wiest, M.A. Vail, A. Dadson, M.L. Lee, V. Shutthanandan, M.R. Linford, Core-shell diamond as a support for solid-phase extraction and high-performance liquid chromatography. Anal. Chem. 82, 4448–4456 (2010). doi: 10.1021/ac1002068 CrossRefGoogle Scholar
  132. 132.
    A.V. Sumant, O. Auciello, M. Liao, O.A. Williams, MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films. MRS Bull. 39, 511–516 (2014). doi: 10.1557/mrs.2014.98 CrossRefGoogle Scholar
  133. 133.
    T.M. Babinec, B.J.M. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer, M. Loncar, A diamond nanowire single-photon source. Nat. Nanotechnol. 5, 195–199 (2010). doi: 10.1038/NNANO.2010.6 CrossRefGoogle Scholar
  134. 134.
    X. Checoury, D. Néel, P. Boucaud, C. Gesset, H. Girard, S. Saada, P. Bergonzo, Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities. Appl. Phys. Lett. 101, 171115 (2012). doi: 10.1063/1.4764548 Google Scholar
  135. 135.
    A. Bongrain, E. Scorsone, L. Rousseau, G. Lissorgues, P. Bergonzo, Realisation and characterisation of mass-based diamond micro-transducers working in dynamic mode. Sens. Actuators B 154, 142–149 (2011). doi: 10.1016/j.snb.2009.12.067 CrossRefGoogle Scholar
  136. 136.
    O. Babchenko, E. Verveniotis, K. Hruska, M. Ledinsky, A. Kromka, B. Rezek, Direct growth of sub-micron diamond structures. Vacuum 86, 693–695 (2012). doi: 10.1016/j.vacuum.2011.08.011 CrossRefGoogle Scholar
  137. 137.
    O. Shimoni, J. Cervenka, T.J. Karle, K. Fox, B.C. Gibson, S. Tomljenovic-Hanic, A.D. Greentree, S. Prawer, Development of a templated approach to fabricate diamond patterns on various substrates. ACS Appl. Mater. Interfaces 6, 8894–8902 (2014). doi: 10.1021/am5016556 Google Scholar
  138. 138.
    S.G. Rao, A. Karim, J. Schartz, N. Antler, T. Schenkel, I. Siddiqi, Directed assembly of nanodiamond nitrogen-vacancy centers on a chemically modified patterned surface. ACS Appl. Mater. Interfaces 6, 12893–12900 (2014). doi: 10.1021/am5027665 CrossRefGoogle Scholar
  139. 139.
    H. Zhuang, B. Song, T. Staedler, X. Jiang, Microcontact printing of monodiamond nanoparticles: an effective route to patterned diamond structure fabrication. Langmuir 27, 11981–11989 (2011)CrossRefGoogle Scholar
  140. 140.
    T. Vandenryt, L. Grieten, S.D. Janssens, B. Van Grinsven, K. Haenen, B. Ruttens, J. D’Haens, P. Wagner, R. Thoelen, W. De Ceuninck, Rapid fabrication of micron-sized CVD-diamond structures by microfluidic contact printing. Phys. Stat. Sol. A 211, 1448–1454 (2014). doi: 10.1002/pssa.201330665 Google Scholar
  141. 141.
    Y.C. Chen, Y. Tzeng, A.J. Cheng, R. Dean, M. Park, B.M. Wilamowski, Inkjet printing of nanodiamond suspensions in ethylene glycol for CVD growth of patterned diamond structures and practical applications. Diam. Relat. Mater. 18, 146–150 (2009). doi: 10.1016/j.diamond.2008.10.004 CrossRefGoogle Scholar
  142. 142.
    S. Singh, V. Thomas, D. Martyshkin, V. Kozlovskaya, E. Kharlampieva, S.A. Catledge, Spatially controlled fabrication of a bright fluorescent nanodiamond-array with enhanced far-red Si-V luminescence. Nanotechnology 25, 045302 (2014). doi: 10.1088/0957-4484/25/4/045302 CrossRefGoogle Scholar
  143. 143.
    O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, H.D. Espinosa, Nanofountain-Probe-Based High-Resolution Patterning and Single-Cell Injection of Functionalized Nanodiamonds. Small 5, 1667–1674 (2009). doi: 10.1002/smll.200900361 CrossRefGoogle Scholar
  144. 144.
    A. Albrecht, G. Koplovitz, A. Retzker, F. Jelezko, S. Yochelis, D. Porath, Y. Nevo, O. Shoseyov, Y. Paltiel, M.B. Plenio, Self-assembling hybrid diamond–biological quantum devices. New J. Phys. 16, 093002 (2014). doi: 10.1088/1367-2630/16/9/093002 CrossRefGoogle Scholar
  145. 145.
    W.X. Wang, D. Pelah, T. Alergand, O. Shoseyov, A. Altmann, Characterization of SP1, a stress-responsive, boiling-soluble, homo-oligomeric protein from aspen. Plant Physiol. 130, 865–875 (2002). doi: 10.1104/pp.002436 CrossRefGoogle Scholar
  146. 146.
    V. Paget, J.A. Sergent, R. Grall, S. Altmeyer-Morel, H.A. Girard, T. Petit, G. Gesset, M. Mermoux, P. Bergonzo, J.C. Arnault, S. Chevillard, Nanodiamonds are neither cytotoxic nor genotoxic on kidney, intestine, lung and liver human cell lines. Nanotoxicology 8, 46–56 (2014). doi: 10.3109/17435390.2013.855828 CrossRefGoogle Scholar
  147. 147.
    J.I. Chao, E. Perevedentseva, P.H. Chung, K.K. Liu, C.Y. Cheng, C.C. Chang, C.L. Cheng, Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 93, 2199–2208 (2007). doi: 10.1529/biophysj.107.108134 CrossRefGoogle Scholar
  148. 148.
    J.M. Rosenholm, I.I. Vlasov, S.A. Burinov, T.A. Dolenko, O.A. Shenderova, Nanodiamond-Based composite structures for biomedical imaging and drug delivery. J. Nanosci. Nanotechnol. 15, 959–971 (2015). doi: 10.1166/jnn.2015.9742 CrossRefGoogle Scholar
  149. 149.
    R.G. Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012). doi: 10.1021/cr100449n CrossRefGoogle Scholar
  150. 150.
    P. Mélinon, S. Begin-Colin, J.L. Duvail, F. Gauffre, N. Herlin Boime, G. Ledoux, J. Plain, P. Reiss, F. Silly, B. Warot-Fonrose, Engineered inorganic core/shell nanoparticles. Phys. Rep. 543, 163–197 (2014). doi: 10.1016/j.physrep.2014.05.003 Google Scholar
  151. 151.
    W. Schärtl, Current directions in core-shell nanoparticle design. Nanoscale 2, 829–843 (2010). doi: 10.1039/c0nr00028k CrossRefGoogle Scholar
  152. 152.
    E. von Haartman, H. Jiang, A.A. Khomich, J. Zhang, S.A. Burikov, T.A. Dolenko, J. Ruokolainen, H. Gu, O.A. Shenderova, I.I. Vlasov, J.M. Rosenholm, Core–shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: fabrication. J. Mater. Chem. B 1, 2358–2366 (2013). doi: 10.1039/c3tb20308e CrossRefGoogle Scholar
  153. 153.
    N. Prabhakar, T. Nareoja, E. von Haartman, D.S. Karaman, H. Jiang, S. Koho, T.A. Dolenko, P.E. Hanninen, D.I. Vlasov, V.G. Ralchenko, S. Hosomi, I.I. Vlasov, C. Sahlgrenbci, J.M. Rosenholm, Core–shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application. Nanoscale 5, 3713–3722 (2013). doi: 10.1039/c3nr33926b CrossRefGoogle Scholar
  154. 154.
    I. Rehor, J. Slegerova, J. Kucka, V. Proks, V. Petrakova, M.P. Adam, F. Treussart, S. Turner, S. Bals, P. Sacha, M. Ledvina, A.M. Wen, N.F. Steinmetz, P. Cigler, Fluorescent nanodiamonds embedded in biocompatible translucent shells. Small 10, 1106–1115 (2014). doi: 10.1002/smll.201302336 CrossRefGoogle Scholar
  155. 155.
    S. Oldenburg, R. Averitt, S. Westcott, N. Halas, Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998). doi: 10.1016/S0009-2614(98)00277-2 CrossRefGoogle Scholar
  156. 156.
    L. Minati, C.L. Cheng, Y.C. Lin, J. Hees, G. Lewes-Malandrakis, C.E. Nebel, F. Benetti, C. Migliaresi, G. Speranza, Synthesis of novel nanodiamonds-gold core shell nanoparticles. Diam. Relat. Mater. 53, 23–28 (2015). doi: 10.1016/j.diamond.2015.01.004 CrossRefGoogle Scholar
  157. 157.
    T. Pham, J.B. Jackson, N.J. Halas, T.R. Lee, Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 18, 4915–4920 (2002). doi: 10.1021/la015561y CrossRefGoogle Scholar
  158. 158.
    W.L. Shi, Y. Sahoo, M.T. Swihart, P.N. Prasad, Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21, 1610–1617 (2005). doi: 10.1021/la047628y CrossRefGoogle Scholar
  159. 159.
    I. Rehor, K.L. Lee, K. Chen, M. Hajek, J. Havlik, J. Lokajova, M. Masat, J. Slegerova, S. Shukla, H. Heidari, S. Bals, N.F. Steinmetz, P. Cigler, Plasmonic nanodiamonds: targeted core-shell type nanoparticles for cancer cell thermoablation. Adv. Healthc. Mater. 4, 460–468 (2015). doi: 10.1002/adhm.201400421 CrossRefGoogle Scholar
  160. 160.
    B.E. Brinson, J.B. Lassiter, C.S. Lewin, R. Bardhan, N. Mirin, N.J. Halas, Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. Langmuir 24, 14166–14171 (2008). doi: 10.1021/la802049p CrossRefGoogle Scholar
  161. 161.
    S. Pankasem, J.K. Thomas, M.J. Snowden, B. Vincent, Photophysical studies of poly (N-isopropylacrylamide) microgel structures. Langmuir 10, 3023–3026 (1994). doi: 10.1021/la00021a027 CrossRefGoogle Scholar
  162. 162.
    T. Hoare, R. Pelton, Titrametric characterization of pH-induced phase transitions in functionalized microgels. Langmuir 22, 7342–7350 (2006). doi: 10.1021/la0608718 CrossRefGoogle Scholar
  163. 163.
    M. Shibayama, F. Ikkai, S. Inamoto, S. Nomura, C.C. Han, pH and salt concentration dependence of the microstructure of poly (N-isopropylacrylamide-co-acrylic acid) gels. J. Chem. Phys. 105, 4358–4366 (1996). doi: 10.1063/1.472252 CrossRefGoogle Scholar
  164. 164.
    H.A. Girard, P. Benayoun, C. Blin, A. Trouvé, C. Gesset, J.C. Arnault, P. Bergonzo, Encapsulated nanodiamonds in smart microgels toward self-assembled diamond nanoarrays. Diam. Relat. Mater. 33, 32–37 (2013). doi: 10.1016/j.diamond.2012.12.007 CrossRefGoogle Scholar
  165. 165.
    Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006). doi: 10.1021/ja062677d CrossRefGoogle Scholar
  166. 166.
    X. Zhang, S. Wang, C. Zhu, M. Liu, Y. Ji, L. Feng, L. Tao, Y. Wei, Carbon-dots derived from nanodiamond: Photoluminescence tunable nanoparticles for cell imaging. J. Colloid Interface Sci. 397, 39–44 (2013). doi: 10.1016/j.jcis.2013.01.063 CrossRefGoogle Scholar
  167. 167.
    O. Shenderova, S. Hens, I. Vlasov, S. Turner, Y.G. Lu, G. Van Tendeloo, A. Schrand, S.A. Burinov, T.A. Dolenko, Carbon dot decorated nanodiamonds. Part. Part. Syst. Charact. 31, 580–590 (2014). doi: 10.1002/ppsc.201300251 CrossRefGoogle Scholar
  168. 168.
    V.V. Avdeev, N.E. Sorokina, N.V. Maksimova, I.Y. Martnynov, A.V. Sezemin, Synthesis of ternary intercalation compounds in the graphite-HNO3-R (R = H2SO4, H3PO4, CH3COOH) systems. Inorg. Mater. 37, 366 (2001). doi: 10.1023/A:1017527827724 CrossRefGoogle Scholar
  169. 169.
    M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002). doi: 10.1080/00018730110113644 CrossRefGoogle Scholar
  170. 170.
    A.E. Aleksensky, M.V. Baidakova, M.A. Yagovkina, V.I. Siklitsky, A.Y. Vul’, H. Naramoto, V.I. Lavrentiev, Nanodiamonds intercalated with metals: structure and diamond-graphite phase transitions. Diam. Relat. Mater. 13, 2076–2080 (2004). doi: 10.1016/j.diamond.2004.05.008 CrossRefGoogle Scholar
  171. 171.
    A.I. Shames, A.M. Panich, VYu. Osipov, A.E. Aleksenskiy, A.Y. Vul’, T. Enoki, K. Takai, Structure and magnetic properties of detonation nanodiamond chemically modified by copper. J. Appl. Phys. 107, 014318 (2010). doi: 10.1063/1.3273486 CrossRefGoogle Scholar
  172. 172.
    A.M. Panich, A. Altman, A.I. Shames, VYu. Osipov, A.E. Aleksenskiy, A.Y. Vul’, Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions. J. Phys. D Appl. Phys. 44, 125303 (2011). doi: 10.1088/0022-3727/44/12/125303 CrossRefGoogle Scholar
  173. 173.
    A.I. Shames, VYu. Osipov, A.E. Aleksenskiy, E. Ōsawa, A.Y. Vul’, Locating inherent unpaired orbital spins in detonation nanodiamonds through the targeted surface decoration by paramagnetic probes. Diamond Relat. Mater. 20, 318–321 (2011). doi: 10.1016/j.diamond.2011.01.007 CrossRefGoogle Scholar
  174. 174.
    I.D. Gridnev, V.Y. Osipov, A.E. Aleksenskii, A.Y. Vul’, T. Enoki, Combined experimental and DFT study of the chemical binding of copper ions on the surface of nanodiamonds. Bull. Chem. Soc. Jpn. 87, 693–704 (2014). doi: 10.1246/bcsj.20130345 Google Scholar
  175. 175.
    A. Shakun, J. Vuorinen, M. Hoikkanen, M. Poikelispaa, A. Das, Hard nanodiamonds in soft rubbers: past, present and future—a review. Compos. Part A 64, 49–69 (2014). doi: 10.1016/j.compositesa.2014.04.014 Google Scholar
  176. 176.
    Q. Zhang, K. Naito, Y. Tanaka, Y. Kagawa, Grafting polyimides from nanodiamonds. Macromolecules 41, 536–538 (2008). doi: 10.1021/ma702268x CrossRefGoogle Scholar
  177. 177.
    I. Cha, K. Shirai, K. Fujiki, T. Yamauchi, N. Tsubokawa, Surface grafting of polymers onto nanodiamond by ligand-exchange reaction of ferrocene moieties of polymers with polycondensed aromatic rings of the surface. Diam. Relat. Mater. 20, 439–444 (2011). doi: 10.1016/j.diamond.2011.01.014 CrossRefGoogle Scholar
  178. 178.
    S. Morimune, M. Kotera, T. Nishino, K. Goto, K. Hata, Poly (vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44, 4415–4421 (2011). doi: 10.1021/ma200176r CrossRefGoogle Scholar
  179. 179.
    I. Neitzel, V. Mochalin, Y. Gogotsi, Advances in surface chemistry of nanodiamond and nanodiamond–polymer composites, in Ultrananocrystalline Diamond: Synthesis, Properties and Applications, 2nd edn, ed. by O.A. Shenderova, D.M. Gruen (William Andrew, 2012), pp. 421–457Google Scholar
  180. 180.
    M.R. Ayatollahi, E. Alishahi, R.S. Doagou, S. Shadlou, Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites. Compos Part B Eng. 43, 3425–3430 (2012). doi: 10.1016/j.compositesb.2012.01.022 CrossRefGoogle Scholar
  181. 181.
    K.D. Behler, A. Stravato, V. Mochalin, G. Korneva, G. Yushin, Y. Gogotsi, Nanodiamond-polymer composite fibers and coatings. ACS Nano 3, 363–369 (2009). doi: 10.1021/nn800445z CCC: $40.75
  182. 182.
    I. Neitzel, V.N. Mochalin, J. Niu, J. Cuadra, A. Kontsos, G.R. Palmese, Y. Gogotsi, Maximizing Young’s modulus of aminated nanodiamond–epoxy composites measured in compression. Polymer 53, 5965–5971 (2012). doi: 10.1016/j.polymer.2012.10.037 CrossRefGoogle Scholar
  183. 183.
    V.Y. Dolmatov, Applications of detonation nanodiamond, in Ultrananocrystalline Diamond, ed. by A. Shenderova Olga, M. Gruen Dieter (William Andrew Publishing, Norwich, 2006), pp. 477–527Google Scholar
  184. 184.
    A.P. Voznyakovskii, B.M. Ginzburg, D. Rashidov, D.G. Tochil’nikov, S. Tuichiev. Structure, mechanical, and tribological characteristics of polyurethane modified with nanodiamonds. Polym. Sci. Ser. A 52, 1044–1050 (2010). doi: 10.1134/S0965545X10100068 Google Scholar
  185. 185.
    E. Roumeli, E. Pavlidou, A. Avgeropoulos, G. Vourlias, D.N. Bikiaris, K. Chrissafis, factors controlling the enhanced mechanical and thermal properties of nanodiamond-reinforced cross-linked high density polyethylene. J. Phys. Chem. B 118, 11341–11352 (2014). doi: 10.1021/jp504531f CrossRefGoogle Scholar
  186. 186.
    H.B. Cho, S.T. Nguyen, T. Nakayama, H. Suematsu, T. Suzuki, W. Jiang, S. Tanaka, B.S. Kim, K. Niihara, Polyepoxide-based nanohybrid films with self-assembled linear assemblies of nanodiamonds. Acta Mater. 60, 7249–7257 (2012). doi: 10.1016/j.actamat.2012.09.039 CrossRefGoogle Scholar
  187. 187.
    Q. Zhang, V.N. Mochalin, I. Neitzel, K. Hazeli, J. Niu, A. Kontsos, J.G. Zhou, P.I. Lelkes, Y. Gogotsi, Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials 33, 5067–5075 (2012). doi: 10.1016/j.biomaterials.2012.03.063 Google Scholar
  188. 188.
    R. Liu, F. Zhao, X. Yu, K. Naito, H. Ding, X. Qu, Q. Zhang, Synthesis of biopolymer-grafted nanodiamond by ring-opening polymerization. Diam. Relat. Mater. 50, 26–32 (2014). doi: 10.1016/j.diamond.2014.08.011 CrossRefGoogle Scholar
  189. 189.
    C.N. Almeida B.C. Ramos, N.S. Da-Silva C. Pacheco-Soares, V.J. Trava-Airoldi, A.O. Lobo, F.R. Marciano, Morphological analysis and cell viability on diamond-like carbon films containing nanocrystalline diamond particles. Appl. Surf. Sci. 275, 258–263 (2013). doi: 10.1016/j.apsusc.2012.12.122 Google Scholar
  190. 190.
    J.J. Taha-Tijerina, T.N. Narayanan, C. Sekhar Tiwary, K. Lozano, M. Chipara, P.M. Ajayan, Nanodiamond-based thermal fluids. ACS Appl. Mater. Interfaces 6, 4778–4785 (2014). doi: 10.1021/am405575t Google Scholar
  191. 191.
    M.G. Ivanov, V.V. Kharlamov, V.V. Buznik, D.M. Ivanov, S.V. Pavlyshko, A.K. Tsvetnikov, Tribological properties of the grease containing polytetrafluoroethylene and ultrafine diamond. Friction Wear 25, 99–103 (2004). INSPEC:8537707Google Scholar
  192. 192.
    V.Y. Dolmatov, Detonation nanodiamonds in oils and lubricants. J. Superhard Mater. 32, 14–20 (2010). doi: 10.3103/S1063457610010028 CrossRefGoogle Scholar
  193. 193.
    V.I. Zhornik, V.A. Kukareko, M.A. Belotserkovsky, Tribomechanical Modification of Friction Surface by Running-In in Lubricants with Nano-Sized Diamonds (Nova Science Publishers, 2011)Google Scholar
  194. 194.
    M. Ivanov, D. Ivanov, Nanodiamond nanoparticles as additives to lubricants (Chap. 8), in Ultrananocrystalline Diamond, 2nd edn, ed. by O. Shenderova, D. Gruen (Elsevier, 2012)Google Scholar
  195. 195.
    C.C. Chou, S.H. Lee, Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminum alloy. Wear 269, 757–762 (2010). doi: 10.1016/j.wear.2010.08.001 CrossRefGoogle Scholar
  196. 196.
    M. Ivanov, Z. Mahbooba, D. Ivanov, S. Smirnov, S. Pavlyshko, E. Osawa, D. Brenner, O. Shenderova, Nanodiamond-based oil lubricants on steel-steel and stainless steel-hard alloy high load contact: investigation of friction surfaces. Nanosystems Phys. Chem. Math. 5, 160–166 (2014)Google Scholar
  197. 197.
    O. Elomaa, T.J. Hakala, V. Myllymäki, J. Oksanen, H. Ronkainen, V.K. Singh, J. Koskinen, Diam. Relat. Mater. 34, 89–94 (2013). doi: 10.1016/j.diamond.2013.02.008 CrossRefGoogle Scholar
  198. 198.
    E. Perevedentseva, Y.C. Lin, M. Jani, C.L. Cheng, Biomedical applications of nanodiamonds in imaging and therapy. Nanomedicine 8, 2041–2060 (2013). doi: 10.2217/NNM.13.183 CrossRefGoogle Scholar
  199. 199.
    V.N. Mochalin, A. Pentecost, X.M. Li, I. Neitzel, M. Nelson, C. Wei, T. He, F. Guo, Y. Gogotsi, Adsorption of drugs on nanodiamond: toward development of a drug delivery platform mol. Pharmaceutics 10, 3728–3735 (2013). doi: 10.1021/mp400213z CrossRefGoogle Scholar
  200. 200.
    D. Passeri, F. Rinaldi, C. Ingallina, M. Carafa, M. Rossi, M.L. Terranova, C. Marianecci, Biomedical applications of nanodiamonds: an overview. J. Nanosci. Nanotechnol. 15, 972–988 (2015). doi: 10.1166/jnn.2015.9734 CrossRefGoogle Scholar
  201. 201.
    P. Metzler, C. von Wilmowsky, B. Stadlinger, W. Zemann, K.A. Schlegel, S. Rosiwal, S. Rupprecht, J. Cranio-Maxillofac. Surg. 41, 532–538 (2013). doi: 10.1016/j.jcms.2012.11.020 CrossRefGoogle Scholar
  202. 202.
    A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Funct. Mater. 22, 890–906 (2012). doi: 10.1002/adfm.201102670 CrossRefGoogle Scholar
  203. 203.
    E.K. Chow, X.Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, D. Ho, Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011). doi: 10.1126/scitranslmed.3001713 Google Scholar
  204. 204.
    A. Alhaddad, M.P. Adam, J. Botsoa, G. Dantelle, S. Perruchas, T. Gacoin, C. Mansuy, S. Lavielle, C. Malvy, F. Treussart, J.R. Bertrand, Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 7, 3087–3095 (2011). doi: 10.1002/smll.201101193 CrossRefGoogle Scholar
  205. 205.
    R.A. Shimkunas, E. Robinson, R. Lam, S. Lu, X.Y. Xu, X.Q. Zhang, H.J. Huang, E. Osawa, D. Ho, Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30, 5720–5728 (2009). doi: 10.1016/j.biomaterials.2009.07.004 CrossRefGoogle Scholar
  206. 206.
    C. Gaillard, H.A. Girard, C. Falck, V. Paget, V. Simic, N. Hugolin, P. Bergonzo, S. Chevillard, J.C. Arnault, Peptide nucleic acid–nanodiamonds: covalent and stable conjugates for DNA targeting. RSC Advances 4, 3566–3572 (2014). doi: 10.1039/c3ra45158e CrossRefGoogle Scholar
  207. 207.
    G. Reina, S. Orlanducci, C. Cairone, E. Tamburini, S. Lenti, I. Cianchetta, M. Rossi, M.L. Terranova, Rhodamine/nanodiamond as a system model for drug carrier. J. Nanosci. Nanotechnol. 15, 1022–1029 (2015). doi: 10.1166/jnn.2015.9736 CrossRefGoogle Scholar
  208. 208.
    B. Guan, F. Zou, J.F. Zhi, Nanodiamond as the pH responsive vehicle for an anticancer drug. Small 6, 1514–1519 (2010). doi: 10.1002/smll.200902305 CrossRefGoogle Scholar
  209. 209.
    A. Adnan, R. Lam, H. Chen, J. Lee, D. Schaffer, A. Barnard, G.C. Schatz, D. Ho, W.K. Liu, Atomistic simulation and measurement of pH dependent cancer therapeutic interactions with nanodiamond carrier. Mol. Pharm. 8, 368–374 (2011). doi: 10.1021/mp1002398 CrossRefGoogle Scholar
  210. 210.
    J. Yan, Y. Guo, A. Altawashi, B. Moosa, S. Lecommandoux, N.M. Khashab, Experimental and theoretical evaluation of nanodiamonds as pH triggered drug carriers. New J. Chem. 36, 1479–1484 (2012). doi: 10.1039/c2nj40226b CrossRefGoogle Scholar
  211. 211.
    V.N. Mochalin, A. Pentecost, X.M. Li, I. Neitzel, M. Nelson, C. Wei, T. He, F. Guo, Y. Gogotsi, Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol. Pharm. 10, 3728–3735 (2013). doi: 10.1021/mp400213z CrossRefGoogle Scholar
  212. 212.
    T.B. Toh, D.K. Lee, W. Hou, L.N. Abdullah, J. Nguyen, D. Ho, E. Kai-Hua, Chow, nanodiamond—mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol. Pharm. 11, 2683–2691 (2014). doi: 10.1021/mp5001108 CrossRefGoogle Scholar
  213. 213.
    A.D. Salaam, P.T.J. Hwang, A. Poonawalla, H.N. Green, H. Jun, D. Dean, Nanodiamonds enhance therapeutic efficacy of doxorubicin in treating metastatic hormone-refractory prostate cancer. Nanotechnology 25, 425103 (2014). doi: 10.1088/0957-4484/25/42/425103 CrossRefGoogle Scholar
  214. 214.
    L. Moore, E.K.H. Chow, E. Osawa, J.M. Bishop, D. Ho, Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv. Mater. 25, 3532–3541 (2013). doi: 10.1002/adma.201300343 CrossRefGoogle Scholar
  215. 215.
    I. Aharonovich, Diamond nanocrystals for photonics and sensing. Japan. J. Appl. Phys. 53, 05FA01 (2014). doi: 10.7567/JJAP.53.05FA01 Google Scholar
  216. 216.
    I.I. Vlasov, A.A. Shiryaev, T. Rendler, S. Steinert, S.Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A.V. Fisenko, L.F. Semjonova, J. Biskupek, U. Kaiser, O.I. Lebedev, I. Sildos, P.R. Hemmer, V.I. Konov, A. Gali, J. Wrachtrup, Molecular-sized fluorescent nanodiamonds. Nat. Nanotech. 9, 54–58 (2014). doi: 10.1038/NNANO.2013.255 CrossRefGoogle Scholar
  217. 217.
    V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009). doi: 10.1021/ja9004514 CrossRefGoogle Scholar
  218. 218.
    S. Vial, C. Mansuy, S. Sagan, T. Irinopoulou, F. Burlina, J.P. Boudou, G. Chassaing, S. Lavielle, Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells. Chem-BioChem. 9, 2113–2119 (2008). doi: 10.1002/cbic.200800247,  10.1039/c2nj40226b Google Scholar
  219. 219.
    Y.R. Chang, H.Y. Lee, K. Chen, C.C. Chang, D.S. Tsai, C.C. Fu, T.S. Lim, Y.K. Tzeng, C.Y. Fang, C.C. Han, H.C. Chang, W. Fann, Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotech. 3, 284–288 (2008). doi: 10.1038/nnano.2008.99 CrossRefGoogle Scholar
  220. 220.
    N. Mohan, C.S. Chen, H.H. Hsieh, Y.C. Wu, H.C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010). doi: 10.1021/nl1021909 CrossRefGoogle Scholar
  221. 221.
    L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Milvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg, Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotech. 6, 358–363 (2011). doi: 10.1038/nnano.2011.64 CrossRefGoogle Scholar
  222. 222.
    D.A. Simpson, A.J. Thompson, M. Kowarsky, N.F. Zeeshan, M.S.J. Barson, L.T. Hall, Y. Yan, S. Kaufmann, B.C. Johnson, T. Ohshima, F. Caruso, R.E. Scholten, R.B. Saint, M.J. Murray, L.C.L. Hollenberg, In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos. Biomedical Optics Express 5, 1250–1261 (2014). doi: 10.1364/BOE.5.001250 CrossRefGoogle Scholar
  223. 223.
    Y.Y. Hui, L.J. Su, O.Y. Chen, Y.T. Chen, T.M. Liu, H.C. Chang, Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. Sci. Rep. 4(5574), 1–7 (2014). doi: 10.1038/srep05574 Google Scholar
  224. 224.
    S.J. Hollister, W.L. Murphy, Scaffold Translation: Barriers Between Concept and Clinic. Tissue Eng. Part B Rev. 17, 459–474 (2011). doi: 10.1089/ten.teb.2011.0251 CrossRefGoogle Scholar
  225. 225.
    L. Moore, M. Gatica, H. Kim, E. Osawa, D. Ho, Multi-protein delivery by nanodiamonds promotes bone formation. J. Dent. Res. 92, 976–981 (2013). doi: 10.1177/0022034513504952 CrossRefGoogle Scholar
  226. 226.
    M. Monaco, M. Giugliano, Carbon-based smart nanomaterials in biomedicine and neuroengineering. Beilstein J. Nanotechnol. 5, 1849–1863 (2014). doi: 10.3762/bjnano.5.196 CrossRefGoogle Scholar
  227. 227.
    S. Suliman, Z. Xing, X. Wu, Y. Xue, T.O. Pedersen, Y. Sun, A.P. Døskeland, J. Nickel, T. Waag, H. Lygre, A. Finne-Wistrand, D. Steinmüller-Nethl, A. Krueger, K. Mustafa, Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. J. Controlled Release 197, 148–157 (2015). doi: 10.1016/j.jconrel.2014.11.003 CrossRefGoogle Scholar
  228. 228.
    H. Kato, J. Hees, R. Hoffmann, M. Wolfer, N. Yang, S. Yamasaki et al., Diamond foam electrodes for electrochemical applications. Electrochem. Commun. 33, 88–91 (2013). doi: 10.1016/j.elecom.2013.04.028 CrossRefGoogle Scholar
  229. 229.
    F. Gao, M.T. Wolfer, C.E. Nebel, Highly porous diamond foam as a thin-film micro-supercapacitor material. Carbon N. Y. 80, 833–840 (2014). doi: 10.1016/j.carbon.2014.09.007 CrossRefGoogle Scholar
  230. 230.
    K. Purtov, A. Petunin, E. Inzhevatkin, A. Burov, N. Ronzhin, A. Puzyr, V. Bondar, Biodistribution of different sized nanodiamonds in mice. J. Nanosci. Nanotechnol. 15, 1070–1075 (2015). doi: 10.1166/jnn.2015.9746 CrossRefGoogle Scholar
  231. 231.
    L. Moore, V. Grobarova, H. Shen, H.B. Man, J. Mıcova, M. Ledvina, J. Stursa, M. Nesladek, A. Fiserova, D. Ho, Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds. Nanoscale 6, 11712–11721 (2014). doi: 10.1039/c4nr02570a CrossRefGoogle Scholar
  232. 232.
    D. Zhu, L.H. Zhang, R.E. Ruther, R.J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12, 836–841 (2013). doi: 10.1038/NMAT3696 CrossRefGoogle Scholar
  233. 233.
    L.H. Zhang, D. Zhu, G.M. Nathansson, R.J. Hamers, Selective photoelectrochemical reduction of aqueous CO2 to CO by solvated electrons. Angew. Chem-Int Ed. 53, 9746 (2014). doi: 10.1002/anie.201404328 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.CEA, LIST, Diamond Sensors LaboratoryGif sur YvetteFrance

Personalised recommendations