Complexity of Polyadic Quantifiers

  • Jakub SzymanikEmail author
Part of the Studies in Linguistics and Philosophy book series (SLAP, volume 96)


In this chapter, rather mathematical in nature, I provide a top-down computational perspective on polyadic quantification in natural language, that is, starting with a general computational model of Turing machines I investigate complexity differences between various polyadic constructions. I propose a classification of natural language polyadic quantifiers with respect to their computational complexity, especially focusing on the border between tractable and intractable constructions. First, I prove that iteration, cumulation, and resumption do not carry us outside polynomial computability. Other polyadic construction, like branching and Ramseyification, can lead to NP-complete natural language constructions. In the last section of this chapter-motivated by the search for noncontroversial intractable semantic constructions-I investigate the computational complexity duality between Ramsey quantifiers: some are in P while others are NP-complete. Ramsey quantifiers are a natural object of study not only for logic and computer science, but also, as I will show in the next chapter, for formal semantics of natural language.


Descriptive computational complexity Second-order logic  Model-checking Polyadic quantifiers Branching (Henkin) quantifiers Ramsey quantifiers Boundness NP-intermediate Computational dichotomy 


  1. Blass, A., & Gurevich, Y. (1986). Henkin quantifiers and complete problems. Annals of Pure and Applied Logic, 32, 1–16.CrossRefGoogle Scholar
  2. Ebbinghaus, H.-D., & Flum, J. (2005). Finite Model Theory. Springer Monographs in Mathematics. Berlin: Springer.Google Scholar
  3. Fagin, R. (1974). Generalized first-order spectra and polynomial time recognizable sets. In R. Karp (Ed.), Complexity of Computation. SIAM–AMS Proceedings (Vol. 7, pp. 43–73). American Mathematical Society.Google Scholar
  4. Garey, M. R., & Johnson, D. S. (1990). Computers and Intractability. A Guide to the Theory of NP-Completeness. New York, NY: W. H. Freeman.Google Scholar
  5. Gottlob, G., Leone, N., & Veith, H. (1999). Succinctness as a source of complexity in logical formalisms. Annals of Pure and Applied Logic, 97, 231–260.CrossRefGoogle Scholar
  6. Grädel, E., Kolaitis, P. G., Libkin, L., Marx, M., Spencer, J., & Vardi, M. Y., et al. (2007). Finite Model Theory and Its Applications. In An EATCS Series: Texts in Theoretical Computer Science. Berlin: Springer.Google Scholar
  7. Graham, R. L., Rothschild, B. L., & Spencer, J. H. (1990). Ramsey Theory. New York: John Wiley & Sons.Google Scholar
  8. de Haan, R., & Szymanik, J. (2015). A dichotomy result for Ramsey quantifiers. In V. de Paiva, R. de Queiroz, L. Moss, D. Leivant, & A.G. de Oliveira (Eds.), Proceedings of the 22nd Workshop on Logic, Language, Information and Computation.Google Scholar
  9. de Haan, R., & Szymanik, J. (2016). Characterizing polynomial Ramsey quantifiers. eprint arXiv:1601.02258.
  10. Hella, L., Väänänen, J., & Westerståhl, D. (1997). Definability of polyadic lifts of generalized quantifiers. Journal of Logic, Language and Information, 6(3), 305–335.CrossRefGoogle Scholar
  11. Henkin, L. (1961). Some remarks on infinitely long formulas. In Infinistic Methods (pp. 167–183). Oxford: Pergamon Press.Google Scholar
  12. Hintikka, J. (1973). Quantifiers vs. quantification theory. Dialectica, 27, 329–358.CrossRefGoogle Scholar
  13. Hintikka, J. (1996). Principles of Mathematics Revisited. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Hintikka, J., & Sandu, G. (1997). Game-theoretical semantics. In J. van Benthem & A. ter Meulen (Eds.), Handbook of Logic and Language (pp. 361–410). Amsterdam: Elsevier.CrossRefGoogle Scholar
  15. Immerman, N. (1998). Descriptive Complexity. Texts in Computer Science. New York, NY: Springer.Google Scholar
  16. Impagliazzo, R., & Paturi, R. (2001). On the complexity of k-SAT. Journal of Computer and System Sciences, 62(2), 367–375.CrossRefGoogle Scholar
  17. Krynicki, M., & Mostowski, M. (1995). Henkin quantifiers. In M. Krynicki, M. Mostowski, & L. Szczerba (Eds.), Quantifiers: Logics, Models and Computation (pp. 193–263). Kluwer Academic Publishers.Google Scholar
  18. Ladner, R. E. (1975). On the structure of polynomial time reducibility. Journal of the ACM (JACM), 22(1), 155–171.CrossRefGoogle Scholar
  19. Libkin, L. (2004). Elements of Finite Model Theory. In An EATCS Series: Texts in Theoretical Computer Science. Berlin: Springer.Google Scholar
  20. Lindström, P. (1966). First order predicate logic with generalized quantifiers. Theoria, 32, 186–195.Google Scholar
  21. Lokshtanov, D., Marx, D., & Saurabh, S. (2011). Lower bounds based on the exponential time hypothesis. Bulletin of the EATCS, 105, 41–72.Google Scholar
  22. Luosto, K. (1999). Ramsey theory is needed for solving definability problems of generalized quantifiers. In Revised Lectures from the 9th European Summer School on Logic, Language, and Information: Generalized Quantifiers and Computation (Vol. 1754, pp. 121–134). Springer.Google Scholar
  23. Makowsky, J., & Pnueli, Y. (1995). Computable quantifiers and logics over finite structures. In M. Krynicki, M. Mostowski, & L. Szczerban (Eds.), Quantifiers: Logics, Models and Computation (pp. 313–357). Kluwer Academic Publishers.Google Scholar
  24. Mostowski, M., & Szymanik, J. (2007). Computational complexity of some Ramsey quantifiers in finite models. The Bulletin of Symbolic Logic, 13, 281–282.Google Scholar
  25. Mostowski, M., & Wojtyniak, D. (2004). Computational complexity of the semantics of some natural language constructions. Annals of Pure and Applied Logic, 127(1–3), 219–227.CrossRefGoogle Scholar
  26. Ramsey, F. (1929). On a problem of formal logic. Proceedings of the London Mathematical Society, 30, 338–384.Google Scholar
  27. Sevenster, M. (2006). Branches of Imperfect Information: Logic, Games, and Computation. Ph.D. thesis, University of Amsterdam.Google Scholar
  28. Sher, G. (1990). Ways of branching quantifiers. Linguistics and Philosophy, 13, 393–442.CrossRefGoogle Scholar
  29. Szymanik, J. (2010). Computational complexity of polyadic lifts of generalized quantifiers in natural language. Linguistics and Philosophy, 33, 215–250.CrossRefGoogle Scholar
  30. Väänänen, J. (1997a). Generalized quantifiers: An introduction. In G. Goos, J. Hartmanis, & J. van Leeuwen (Eds.), ESSLLI: European Summer School in Logic, Language, and Information, ESSLLI Workshop. Lecture Notes in Computer Science (Vol. 1754, pp. 1–17). Springer.Google Scholar
  31. Väänänen, J. (1997b). Unary quantifiers on finite models. Journal of Logic, Language and Information, 6(3), 275–304.CrossRefGoogle Scholar
  32. Väänänen, J. (2007). Dependence Logic–A New Approach to Independence Friendly Logic. Mathematical Society Student Texts. Cambridge: Cambridge University Press.Google Scholar
  33. Vardi, M. Y. (1982). The complexity of relational query languages, In STOC’82: Proceedings of the 14th Annual ACM Symposium on Theory of Computing (pp. 137–146). New York, NY: ACM Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations