Cognitive Processing of Quantifiers

  • Jakub SzymanikEmail author
Part of the Studies in Linguistics and Philosophy book series (SLAP, volume 96)


In this chapter, I set out to study the cognitive task of sentence verification. In particular, I investigate the cognitive capacity to recognize the truth-value of sentences with simple quantifiers (like ‘some’, ‘an even number of’, ‘more than 7’, ‘less than half’). As the exact strategies people use to verify quantifier sentences are mostly uncertain, I study optimal (computationally minimal) algorithms that can handle the tasks, i.e., semantic automata. I overview a number of cognitive science experiments on the processing of natural language quantifiers, which establish the psychological generality of the semantic automata model. The experiments include, behavioral measures of reaction times, accuracy, and working memory involvement, neurocognitive studies, experiments with schizophrenic patients, and linguistic analysis of quantifier distributions in corpora. The empirical data shows that the computational distinctions described in the previous chapter are reflected in human quantifier processing. However, there are many cognitive findings for the explanation of which we need a more fine-grained semantic theory, combining computational, logical, and linguistic insights with cognitive modeling.


Verification task Computational explanation Processing time  Accuracy Probabilistic semantic automata Working memory Schizophrenia Power laws Monotonicity Approximate number system 


  1. Anderson, J. (1990). The Adaptive Character of Thought. Studies in Cognition. Lawrence Erlbaum.Google Scholar
  2. Anderson, J. R. (2007). How can the Human Mind Occur in the Physical Universe? New York: Oxford University Press.Google Scholar
  3. Baddeley, A. (1986). Working Memory. Oxford: Oxford University Press.Google Scholar
  4. Baddeley, A. (2003). Working memory and language: An overview. Journal of Communication Disorders, 36, 189–208.CrossRefGoogle Scholar
  5. Baddeley, A., & Hitch, G. (1974). Working memory. In G. Bower (Ed.), The Psychology of Learning and Motivation (pp. 47–90). New York: Academic Press.Google Scholar
  6. Bagner, D. M., Melinder, M. R., & Barch, D. M. (2003). Language comprehension and working memory deficits in patients with schizophrenia. Schizophrenia Research, 60(2), 299–309.Google Scholar
  7. Baroni, M. (2009). Distributions in Text. In A. Lüdeling & M. Kytö (Eds.), Corpus Linguistics: An International Handbook (Vol. 2, pp. 803–821). Mouton de Gruyter.Google Scholar
  8. Baroni, M., Bernardini, S., Ferraresi, A., & Zanchetta, E. (2009). The WaCky Wide Web: A collection of very large linguistically processed web-crawled corpora. Language Resources and Evaluation, 43(3), 209–226.Google Scholar
  9. Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy, 4, 159–219.CrossRefGoogle Scholar
  10. van Benthem, J. (1986). Essays in Logical Semantics. Reidel.Google Scholar
  11. van Benthem, J. (1987). Towards a computational semantics. In P. Gärdenfors (Ed.), Generalized Quantifiers (pp. 31–71). Reidel Publishing Company.Google Scholar
  12. Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. O’Reilly.Google Scholar
  13. Brébion, G., Amador, X., Smith, M. J., & Gorman, J. M. (1998). Memory impairment and schizophrenia: The role of processing speed. Schizophrenia Research, 30(1), 31–39.CrossRefGoogle Scholar
  14. Chuderski, A., & Nęcka, E. (2012). The contribution of working memory to fluid reasoning: Capacity, control, or both? Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(6), 1689.Google Scholar
  15. Clark, H. H. (1976). Semantics and Comprehension. Mouton.Google Scholar
  16. Clark, R. (2010). On the learnability of quantifiers. In J. van Benthem & A. ter Meulen (Eds.), Handbook of Logic and Language (2nd ed., pp. 909–922). Elsevier.Google Scholar
  17. Clark, H., & Chase, W. (1972). On the process of comparing sentences against pictures. Cognitive Psychology, 3(3), 472–517.CrossRefGoogle Scholar
  18. Clark, R., & Grossman, M. (2007). Number sense and quantifier interpretation. Topoi, 26(1), 51–62.CrossRefGoogle Scholar
  19. Conway, A., & Engle, R. (1996). Individual differences in working memory capacity—more evidence for a general capacity theory. Memory, 6, 122–125.Google Scholar
  20. Cummins, C., & Katsos, N. (2010). Comparative and superlative quantifiers: Pragmatic effects of comparison type. Journal of Semantics, 27(3), 271–305.CrossRefGoogle Scholar
  21. Daneman, M., & Carpenter, P. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466.CrossRefGoogle Scholar
  22. Daneman, M., & Green, I. (1986). Individual differences in comprehending and producing words in context. Journal of Memory and Language, 25, 1–18.CrossRefGoogle Scholar
  23. Daneman, M., & Merikle, P. (1996). Working memory and language comprehension: A meta-analysis. Psychonomic Bulletin and Review, 3, 422–433.CrossRefGoogle Scholar
  24. Dehaene, S. (1999). The Number Sense: How the Mind Creates Mathematics. USA: Oxford University Press.Google Scholar
  25. Dotlačil, J., Szymanik, J., & Zajenkowski, M. (2014). Probabilistic semantic automata in the verification of quantified statements. In P. Bello, M. McShane, M. Guarini & B. Scassellati (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society (pp. 1778–1783).Google Scholar
  26. Duff, S., & Logie, R. (2001). Processing and storage in working memory span. The Quarterly Journal of Experimental Psychology, 54, 31–48.CrossRefGoogle Scholar
  27. Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (pp. 102–134). Cambridge University Press.Google Scholar
  28. Fan, J., McCandliss, B., Sommer, T., Raz, A., & Posner, M. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347.CrossRefGoogle Scholar
  29. Francis, W. N., & Kucera, H. (1979). Brown Corpus Manual. Technical report, Department of Linguistics, Brown University, Providence, Rhode Island, US.
  30. Frixione, M. (2001). Tractable competence. Minds and Machines, 11(3), 379–397.CrossRefGoogle Scholar
  31. Geurts, B., Katsos, N., Cummins, C., Moons, J., & Noordman, L. (2010). Scalar quantifiers: Logic, acquisition, and processing. Language and Cognitive Processes, 25(1), 244–253.CrossRefGoogle Scholar
  32. Gierasimczuk, N. (2007). The problem of learning the semantics of quantifiers. In B. Ten Cate & H. Zeevat (Eds.), Logic, Language, and Computation, 6th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2005. Volume 4363 of Lecture Notes in Computer Science (pp. 117–126). Batumi: Springer.Google Scholar
  33. Gierasimczuk, N. (2009). Identification through inductive verification. Application to monotone quantifiers. In P. Bosch, D. Gabelaia & J. Lang (Eds.), Logic, Language, and Computation, 7th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2007. Volume 5422 of Lecture Notes on Artificial Intelligence (pp. 193–205). Tbilisi, Georgia: Springer.Google Scholar
  34. Hackl, M. (2009). On the grammar and processing of proportional quantifiers: Most versus more than half. Natural Language Semantics, 17(1), 63–98.CrossRefGoogle Scholar
  35. Just, M., & Carpenter, P. (1971). Comprehension of negation with quantification. Journal of Verbal Learning and Verbal Behavior, 10(3), 244–253.CrossRefGoogle Scholar
  36. Just, M., & Carpenter, P. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99, 122–149.CrossRefGoogle Scholar
  37. Just, M., Carpenter, P., & Woolley, J. (1982). Paradigms and processes in reading comprehension. Journal of Experimental Psychology: General, 111(2), 228.Google Scholar
  38. Kaup, B., Ludtke, J., & Zwaan, R. A. (2005). Effects of negation, truth value, and delay on picture recognition after reading affirmative and negative sentences. In B. Bara, L. Barsalou & M. Bucciarelli (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society (pp. 1114–1119).Google Scholar
  39. King, J., & Just, M. (1991). Individual differences in syntactic processing: The role of working memory. Journal of Memory and Language, 30, 580–602.CrossRefGoogle Scholar
  40. Koster-Moeller, J., Varvoutis, J., & Hackl, M. (2008). Verification procedures for modified numeral quantifiers. In N. Abner & J. Bishop (Eds.), Proceedings of the 27th West Coast Conference on Formal Linguistics (Vol. 1986, pp. 310–317). Somerville: Cascadilla Proceedings Project.Google Scholar
  41. Ladusaw, W. (1979). Polarity Sensitivity as Inherent Scope Relations. PhD thesis, University of Texas.Google Scholar
  42. Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: A meta-analysis. Journal of Abnormal Psychology, 114(4), 599.CrossRefGoogle Scholar
  43. Lidz, J., Pietroski, P., Halberda, J., & Hunter, T. (2011). Interface transparency and the psychosemantics of most. Natural Language Semantics, 19(3), 227–256.CrossRefGoogle Scholar
  44. Marr, D. (1983). Vision: A Computational Investigation into the Human Representation and Processing Visual Information. San Francisco: W. H. Freeman.Google Scholar
  45. McMillan, C. T., Clark, R., Moore, P., Devita, C., & Grossman, M. (2005). Neural basis for generalized quantifier comprehension. Neuropsychologia, 43, 1729–1737.CrossRefGoogle Scholar
  46. McMillan, C. T., Clark, R., Moore, P., & Grossman, M. (2006). Quantifiers comprehension in corticobasal degeneration. Brain and Cognition, 65, 250–260.CrossRefGoogle Scholar
  47. Miestamo, M., Sinnemäki, K., & Karlsson, F. (Eds.). (2008). Language Complexity: Typology, Contact, Change. Studies in Language Companion Series. John Benjamins Publishing Company.Google Scholar
  48. Miller, G. A., & Chomsky, N. (1963). Finitary models of language users. Handbook of Mathematical Psychology, 2, 419–491.Google Scholar
  49. Moxey, L., & Sanford, A. (1993). Communicating Quantities. A Psychological Perspective. Lawrence Erlbaum Associates Publishers.Google Scholar
  50. Moxey, L. M., Sanford, A. J., & Dawydiak, E. J. (2001). Denials as controllers of negative quantifier focus. Journal of Memory and Language, 44(3), 427–442.CrossRefGoogle Scholar
  51. Peters, S., & Westerståhl, D. (2006). Quantifiers in Language and Logic. Oxford: Clarendon Press.Google Scholar
  52. Piantadosi, S. T. (2011). Learning and the Language of Thought. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  53. Piantadosi, S. T., Tily, H., & Gibson, E. (2011). Word lengths are optimized for efficient communication. Proceedings of the National Academy of Sciences, 108(9), 3526–3529.Google Scholar
  54. Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306, 499–503.CrossRefGoogle Scholar
  55. Pietroski, P., Lidz, J., Hunter, T., & Halberda, J. (2009). The meaning of ‘most’: Semantics, numerosity, and psychology. Mind and Language, 24(5), 554–585.Google Scholar
  56. Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In K. Hornik, F. Leisch & A. Zeileis (Eds.), Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003) (pp. 20–22). Technische Universität Wien.Google Scholar
  57. Rabin, M. O. (1963). Probabilistic automata. Information and Control, 6(3), 230–245.CrossRefGoogle Scholar
  58. Raven, J. (2000). The Raven’s progressive matrices: Change and stability over culture and time. Cognitive Psychology, 41(1), 1–48.CrossRefGoogle Scholar
  59. Sanford, A. J., Moxey, L. M., & Paterson, K. (1994). Psychological studies of quantifiers. Journal of Semantics, 11(3), 153–170.Google Scholar
  60. Seidman, L. J., Yurgelun-Todd, D., Kremen, W. S., Woods, B. T., Goldstein, J. M., Faraone, S. V., et al. (1994). Relationship of prefrontal and temporal lobe MRI measures to neuropsychological performance in chronic schizophrenia. Biological Psychiatry, 35(4), 235–246.Google Scholar
  61. Simon, H. A. (1957). The Models of Man: Social and Rational. Wiley.Google Scholar
  62. Steinert-Threlkeld, S. (2014b). A note on the psychosemantics of most, manuscript.Google Scholar
  63. Sternberg, R. J. (2008). Cognitive Psychology (5th ed.). Wadsworth Publishing.Google Scholar
  64. Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652–654.CrossRefGoogle Scholar
  65. Szymanik, J. (2007). A comment on a neuroimaging study of natural language quantifier comprehension. Neuropsychologia, 45(9), 2158–2160.CrossRefGoogle Scholar
  66. Szymanik, J. (2009). Quantifiers in TIME and SPACE. Computational Complexity of Generalized Quantifiers in Natural Language. PhD thesis. University of Amsterdam, Amsterdam.Google Scholar
  67. Szymanik, J., & Zajenkowski, M. (2010a). Comprehension of simple quantifiers. Empirical evaluation of a computational model. Cognitive Science: A Multidisciplinary Journal, 34(3), 521–532.Google Scholar
  68. Szymanik, J., & Zajenkowski, M. (2010b). Quantifiers and working memory. In M. Aloni & K. Schulz (Eds.), Amsterdam Colloquium 2009. Lecture Notes In Artificial Intelligence 6042 (pp. 456–464). Springer.Google Scholar
  69. Szymanik, J., & Zajenkowski, M. (2013). Monotonicity has only a relative effect on the complexity of quantifier verification. In M. Aloni, M. Franke & F. Roelofsen (Eds.), Proceedings of the 19th Amsterdam Colloquium (pp. 219–225). University of Chicago Press.Google Scholar
  70. Szymanik, J., & Zajenkowski, M. (2011). Contribution of working memory in parity and proportional judgments. Belgian Journal of Linguistics, 25(1), 176–194.Google Scholar
  71. Thorne, C. (2012). Studying the distribution of fragments of English using deep semantic annotation. In H. Bunt (Ed.), Proceedings of the ISA8 Workshop. SIGSEM.Google Scholar
  72. Thorne, C., & Szymanik, J. (2015). Semantic complexity of quantifiers and their distribution in corpora. In Proceedings of the International Conference on Computational Semantics.Google Scholar
  73. Tomaszewicz, B. (2013). Linguistic and visual cognition: Verifying proportional and superlative most in Bulgarian and Polish. Journal of Logic, Language and Information, 22(3), 335–356.Google Scholar
  74. Troiani, V., Peelle, J., Clark, R., & Grossman, M. (2009). Is it logical to count on quantifiers? Dissociable neural networks underlying numerical and logical quantifiers. Neuropsychologia, 47(1), 104–111.CrossRefGoogle Scholar
  75. Velligan, D. I., Mahurin, R. K., Diamond, P. L., Hazleton, B. C., Eckert, S. L., & Miller, A. L. (1997). The functional significance of symptomatology and cognitive function in schizophrenia. Schizophrenia Research, 25(1), 21–31.Google Scholar
  76. Zajenkowski, M., Styła, R., & Szymanik, J. (2011). A computational approach to quantifiers as an explanation for some language impairments in schizophrenia. Journal of Communication Disorders, 44(6), 595–600.CrossRefGoogle Scholar
  77. Zajenkowski, M., & Szymanik, J. (2013). Most intelligent people are accurate and some fast people are intelligent: Intelligence, working memory, and semantic processing of quantifiers from a computational perspective. Intelligence, 41(5), 456–466.CrossRefGoogle Scholar
  78. Zajenkowski, M., Szymanik, J., & Garraffa, M. (2013). Working memory mechanism in proportional quantifier verification. Journal of Psycholinguistic Research, 1–15.Google Scholar
  79. Zipf, G. (1949). Human Behaviour and the Principle of Least-Effort. Cambridge: Addison-Wesley.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations