Complexity in Linguistics

  • Jakub SzymanikEmail author
Part of the Studies in Linguistics and Philosophy book series (SLAP, volume 96)


The topic of language complexity has surfaced in many different contexts and can be measured in many different ways. In this chapter, I discuss notions relevant to the computational and descriptive complexity of language. I introduce the notion of ‘complexity class’ (e.g. P and NP), the corresponding logical distinctions (e.g. definability), and the Cobham-Edmonds thesis identifying the class of practically computable problems with P. Then, I survey how the complexity notions have been applied in the study of syntax and semantics of natural language. This discussion culminates in putting forward Ristad’s Thesis, claiming that our everyday language is semantically bounded by the properties expressible in the existential fragment of second-order logic (belongs to NP). Finally, I discuss, very common in formal semantics, restriction to finite interpretations. This chapter gives, therefore, an additional argument for studying the computational complexity of natural language expressions.


Computational complexity Tractability Chomsky’s hierarchy  Grammar Semantics Anaphora Ristad’s thesis Semantic bounds  Reasoning Finiteness 


  1. Barton, E. G., Berwick, R., & Ristad, E. S. (1987). Computational Complexity and Natural Language. The MIT Press: Bradford Books.Google Scholar
  2. Büchi, J. (1960). Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 6, 66–92.CrossRefGoogle Scholar
  3. Chomsky, N. (1957). Syntactic Structures (2nd ed.). Walter de Gruyter.Google Scholar
  4. Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press.Google Scholar
  5. Cobham, A. (1965). The intrinsic computational difficulty of functions. In Y. Bar-Hillel (Ed.), Proceedings of the 1964 Congress for Logic, Methodology, and the Philosophy of Science (pp. 24–30). Jerusalem: North-Holland Publishing.Google Scholar
  6. Cook, S. A. (1971). The complexity of theorem-proving procedures. In STOC ’71: Proceedings of the Third Annual ACM Symposium on Theory of Computing (pp. 151–158). New York: ACM Press.Google Scholar
  7. Culy, C. (1985). The complexity of the vocabulary of Bambara. Linguistics and Philosophy, 8(3), 345–351.CrossRefGoogle Scholar
  8. Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics, 17, 449–467.CrossRefGoogle Scholar
  9. Fagin, R. (1974). Generalized first-order spectra and polynomial time recognizable sets. In R. Karp (Ed.), Complexity of Computation, SIAM–AMS Proceedings (Vol. 7, pp. 43–73). American Mathematical Society.Google Scholar
  10. Garey, M. R., & Johnson, D. S. (1990). Computers and Intractability: A Guide to the Theory of NP-Completeness. New York, NY: W. H. Freeman.Google Scholar
  11. Isaac, A., Szymanik, J., & Verbrugge, R. (2014). Logic and complexity in cognitive science. In A. Baltag, & S. Smets (Eds.), Johan van Benthem on Logic and Information Dynamics. Outstanding Contributions to Logic (Vol. 5, pp. 787–824). Springer.Google Scholar
  12. Kracht, M. (2003). The Mathematics of Language. Studies in Generative Grammar (Vol. 63). Walter de Gruyter.Google Scholar
  13. Krynicki, M., & Mostowski, M. (1999). Ambigous quantifiers. In E. Orłowska (Ed.), Logic at Work (pp. 548–565). Heidelberg: Springer.Google Scholar
  14. Kugel, P. (1986). Thinking may be more than computing. Cognition, 22(2), 137–198.CrossRefGoogle Scholar
  15. Manaster-Ramer, A. (1987). Dutch as a formal language. Linguistics and Philosophy, 10(2), 221–246.CrossRefGoogle Scholar
  16. McNaughton, R., & Papert, S. A. (1971). Counter-Free Automata. M.I.T. Research Monograph no. 65. The MIT Press.Google Scholar
  17. Moss, L., & Tiede, H. J. (2006). Applications of modal logic in linguistics. In P. Blackburn, J. van Benthem, & F. Wolter (Eds.), Handbook of Modal Logic. Studies in Logic and Practical Reasoning (pp. 1031–1077). Elsevier.Google Scholar
  18. Mostowski, M., & Szymanik, J. (2012). Semantic bounds for everyday language. Semiotica, 188(1–4), 363–372.Google Scholar
  19. Pratt-Hartmann, I. (2004). Fragments of language. Journal of Logic, Language and Information, 13(2), 207–223.CrossRefGoogle Scholar
  20. Pratt-Hartmann, I. (2008). Computational complexity in natural language. In A. Clark, C. Fox, & S. Lappin (Eds.), Computational Linguistics and Natural Language Processing Handbook. Blackwell.Google Scholar
  21. Pratt-Hartmann, I., & Moss, L. S. (2009). Logics for the relational syllogistics. The Review of Symbolic Logic, 2(04), 647–683.CrossRefGoogle Scholar
  22. Pullum, G. K., & Gazdar, G. (1982). Natural languages and context-free languages. Linguistics and Philosophy, 4(4), 471–504.CrossRefGoogle Scholar
  23. Ristad, E. S. (1993). The Language Complexity Game. Artificial Intelligence. The MIT Press.Google Scholar
  24. Rogers, J. (1983). A Descriptive Approach to Language-Theoretic Complexity. Studies in Logic, Language, and Information. Stanford: CSLI Publications.Google Scholar
  25. van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science: A Multidisciplinary Journal, 32(6), 939–984.Google Scholar
  26. Shieber, S. M. (1985). Evidence against the context-freeness of natural language. Linguistics and Philosophy, 8(3), 333–343.CrossRefGoogle Scholar
  27. Thorne, C. (2012). Studying the distribution of fragments of English using deep semantic annotation. In H. Bunt (Ed.), Proceedings of the ISA8 Workshop, SIGSEM.Google Scholar
  28. Westerståhl, D. (1984). Some results on quantifiers. Notre Dame Journal of Formal Logic, 25, 152–169.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations