Skip to main content

Traversed Graph Representation for Sparse Encoding of Macro-Reentrant Tachycardia

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9534))

Included in the following conference series:

  • 848 Accesses

Abstract

Macro-reentrant atrial and ventricular tachycardias originate from additional circuits in which the activation of the cardiac chambers follows a high-frequency rotating pattern. The macro-reentrant circuit can be interrupted by targeted radiofrequency energy delivery with a linear lesion transecting the pathway. The choice of the optimal ablation site is determined by the operator’s experience, thus limiting the procedure success, increasing its duration and also unnecessarily extending the ablated tissue area in the case of incorrect ablation target estimation. In this paper, an algorithm for automatic intraoperative detection of the tachycardia reentry path is proposed by modelling the propagation as a graph traverse problem. Moreover, the optimal ablation point where the path should be transected is computed. Finally, the proposed method is applied to sparse electroanatomical data to demonstrate its use when undersampled mapping occurs. Thirteen electroanatomical maps of right ventricle and right and left atrium tachycardias from patients treated for congenital heart disease were analysed retrospectively in this study, with prediction accuracy tested against the recorded ablation sites and arrhythmia termination points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Relan, J., Chinchapatnam, P., Sermesant, M., et al.: Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. Interface Focus 1(3), 396–407 (2011)

    Article  Google Scholar 

  2. Prakosa, A., Sermesant, M., Allain, P., et al.: Cardiac electrophysiological activation pattern estimation from images using a patient-specific database of synthetic image sequences. TBME 61(2), 235–245 (2014)

    Google Scholar 

  3. Mitchell, C., Schaeffer, D.: A two-current model for the dynamics of cardiac membrane. Bull. Mat. Biol. 65, 767–793 (2003)

    Article  MATH  Google Scholar 

  4. Zettinig, O., et al.: Fast data-driven calibration of a cardiac electrophysiology model from images and ECG. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 1–8. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Zhu, H., Sun, Y., Rajagopal, G., Mondry, A., Dhar, P.: Facilitating arrhythmia simulation: the method of quantitative cellular automata modeling and parallel running. Biomed. Eng. Online 3, 29 (2004). doi:10.1186/1475-925X-3-29

    Article  Google Scholar 

  6. Cárdenes, R., Sebastian, R., Soto-Iglesias, D., Andreu, D., Fernández-Armenta, J., Bijnens, B., Berruezo, A., Camara, O.: Estimation of electrical pathways finding minimal cost paths from electro-anatomical mapping of the left ventricle. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2013. LNCS, vol. 8330, pp. 220–227. Springer, Heidelberg (2014)

    Google Scholar 

  7. Cignoni, P., Corsini, M., Ranzuglia, G.: MeshLab: an open-source 3D mesh processing system. ERCIM News 73, 45–46 (2008)

    Google Scholar 

  8. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  9. Seiffert, C., Khoshgoftaar, T., Van Hulse, J., Napolitano, A.: RUSBoost: a hybrid approach to alleviating class imbalance. Trans. Syst. Man Cybern., Part A 40(1), 185–197 (2010)

    Article  Google Scholar 

  10. Constantinescu, M., Lee, S.-L., Ernst, S., Yang, G.-Z.: Multi-source motion decoupling ablation catheter guidance for electrophysiology procedures. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2014. LNCS, vol. 8896, pp. 213–220. Springer, Heidelberg (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Constantinescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Constantinescu, M., Lee, SL., Ernst, S., Yang, GZ. (2016). Traversed Graph Representation for Sparse Encoding of Macro-Reentrant Tachycardia. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2015. Lecture Notes in Computer Science(), vol 9534. Springer, Cham. https://doi.org/10.1007/978-3-319-28712-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28712-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28711-9

  • Online ISBN: 978-3-319-28712-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics