Skip to main content

Myocardial Infarction Detection from Left Ventricular Shapes Using a Random Forest

Part of the Lecture Notes in Computer Science book series (LNIP,volume 9534)

Abstract

Understanding myocardial remodelling, and developing tools for its accurate quantification, is fundamental for improving the diagnosis and treatment of myocardial infarction patients. Conventional clinical metrics, such as blood pool volume or ejection fraction, are not always distinctive. Here we describe a method for the classification of myocardial infarction from 3D diastolic and systolic left ventricle shapes, represented by point sets. Classification features included global geometric, shape and thickness descriptors, and a random forest was used for classification. Results from cross validation show an accuracy of 92.5 % (leave-one-out) and 91.5 % (5-fold), improving the 87 % obtained with ejection fraction thresholds. These results suggest that refined remodelling metrics provide information beyond standard clinical descriptors.

Keywords

The original version of this chapter was revised.

An erratum to this chapter can be found at 10.1007/978-3-319-28712-6_24.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-28712-6_24

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. van Assen, H.C., Danilouchkine, M.G., Frangi, A.F., Ordas, S., Westenberg, J.J., Reiber, J.H., Lelieveldt, B.P.: SPASM: a 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Med. Image Anal. 10(2), 286–303 (2006). http://www.ncbi.nlm.nih.gov/pubmed/16439182

    Article  Google Scholar 

  2. Bild, D.E., Bluemke, D.A., Burke, G.L., Detrano, R., Diez Roux, A.V., Folsom, A.R., Greenland, P., Jacobs Jr., D.R., Kronmal, R., Liu, K., Nelson, J.C., OLeary, D., Saad, M.F., Shea, S., Szklo, M., Tracy, R.P.: Multi-ethnic study of atherosclerosis: objectives and design. Am. J. Epidemiol. 156(9), 871–881 (2002). http://aje.oxfordjournals.org/content/156/9/871.abstract

    Article  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). http://link.springer.com/article/10.1023/A:1010933404324

    Article  MathSciNet  MATH  Google Scholar 

  4. Cootes, T.F., Cooper, D.H., Taylor, C.J., Graham, J.: Trainable method of parametric shape description. Image Vis. Comput. 10(5), 289–294 (1992). http://www.sciencedirect.com/science/article/pii/0262885692900444

    Article  Google Scholar 

  5. Fonseca, C.G., Backhaus, M., Bluemke, D.A., Britten, R.D., Chung, J.D., Cowan, B.R., Dinov, I.D., Finn, J.P., Hunter, P.J., Kadish, A.H., Lee, D.C., Lima, J.A.C., MedranoGracia, P., Shivkumar, K., Suinesiaputra, A., Tao, W., Young, A.A.: The Cardiac Atlas Project - an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011). http://bioinformatics.oxfordjournals.org/content/27/16/2288.abstract

    Article  Google Scholar 

  6. Kadish, A.H., Bello, D., Finn, P., Bonow, R.O., Schaechter, A., Subacius, H., Albert, C., Daubert, J.P., Fonseca, C., Goldberger, J.J.: Rationale and design for the defibrillators to reduce risk by magnetic resonance imaging evaluation (determine) trial. J. Cardiovasc. Electrophysiol. 20(9), 982–987 (2009). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128996/

    Article  Google Scholar 

  7. Lewandowski, A.J., Augustine, D., Lamata, P., Davis, E.F., Lazdam, M., Francis, J., McCormick, K., Wilkinson, A., Singhal, A., Lucas, A., Smith, N., Neubauer, S., Leeson, P.: The preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry and function. Circulation 127(2), 197–206 (2012). http://dx.doi.org/10.1161/circulationaha.112.126920

    Article  Google Scholar 

  8. Lorenz, C., Berg, J.V.: A comprehensive shape model of the heart. Med. Image Anal. 10(4), 657–670 (2006)

    Article  Google Scholar 

  9. Lötjönen, J., Kivistö, S., Koikkalainen, J., Smutek, D., Lauerma, K.: Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images. Med. Image Anal. 8(3), 371–386 (2004)

    Article  Google Scholar 

  10. Medrano-Gracia, P., Cowan, B.R., Bluemke, D.A., Finn, J.P., Kadish, A.H., Lee, D.C., Lima, J.A.C., Suinesiaputra, A., Young, A.A.: Atlas-based analysis of cardiac shape and function correction of regional shape bias due to imaging protocol for population studies. J. Cardiovasc. Magn. Reson (official journal of the Society for Cardiovascular Magnetic Resonance) 15, 80 (2013). ISBN:1097-6647

    Article  Google Scholar 

  11. Millán, R.D., Dempere-Marco, L., Pozo, J.M., Cebral, J.R., Frangi, F.: Morphological characterization of intracranial aneurysms using 3-D moment invariants. IEEE Trans. Med. Imaging 26(9), 1270–1282 (2007)

    Article  Google Scholar 

  12. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 4th edn. Kitware Inc., Clifton Park (2006)

    Google Scholar 

  13. Sutton, M.G.S.J., Sharpe, N.: Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101(25), 2981–2988 (2000). http://circ.ahajournals.org/content/101/25/2981.short

    Article  Google Scholar 

  14. Wadell, H.: Sphericity and roundness of rock particles. J. Geol. 41(3), 310–331 (1933)

    Article  Google Scholar 

  15. Young, A.A., Frangi, A.F.: Computational cardiac atlases: from patient to population and back. Exp. Physiol. 94(5), 578–596 (2009). http://www.ncbi.nlm.nih.gov/pubmed/19098087

    Article  Google Scholar 

  16. Young, A.A., Cowan, B.R., Thrupp, S.F., Hedley, W.J., DellItalia, L.J.: Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology 216(2), 597–602 (2000). http://pubs.rsna.org/doi/abs/10.1148/radiology.216.2.r00au14597

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Medical Research Council (MRC) and Engineering and Physical Sciences Research Council (EPSRC) [grant number EP/L016052/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Allen, J., Zacur, E., Dall’Armellina, E., Lamata, P., Grau, V. (2016). Myocardial Infarction Detection from Left Ventricular Shapes Using a Random Forest. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2015. Lecture Notes in Computer Science(), vol 9534. Springer, Cham. https://doi.org/10.1007/978-3-319-28712-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28712-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28711-9

  • Online ISBN: 978-3-319-28712-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics