Advertisement

Sensor Skins: An Overview

  • Jennifer Case
  • Michelle Yuen
  • Mohammed Mohammed
  • Rebecca KramerEmail author
Part of the Microsystems and Nanosystems book series (MICRONANO)

Abstract

Sensor skins can be broadly defined as distributed sensors over a surface to provide proprioceptive, tactile, and environmental feedback. This chapter focuses on sensors and sensor networks that can achieve strains on the same order as elastomers and human skin, which makes these sensors compatible with emerging wearable technologies. A combination of material choices, processing limitations, and design must be considered in order to achieve multimodal, biocompatible sensor skins capable of operating on objects and bodies with complex geometries and dynamic functionalities. This chapter overviews the commonly used materials, fabrication techniques, structures and designs of stretchable sensor skins, and also highlights the current challenges and future opportunities of such sensors.

Keywords

Sensor skins Wearables Soft robotics Stretchable sensors Pressure sensors Liquid metals Sensor fabrication Flexible materials Ionic liquids Conductive ink Conductive composites Microchannels 

References

  1. 1.
    C.M.A. Ashruf, Thin flexible pressure sensors. Sens. Rev. 22(4), 322–327 (2002)CrossRefGoogle Scholar
  2. 2.
    C. Pang, C. Lee, K.Y. Suh, Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 130(3), 1429–1441 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15(6), 3164–3185 (2015)CrossRefGoogle Scholar
  4. 4.
    Patrick J. Codd, Arabagi Veaceslav, Andrew H. Gosline, Pierre E. Dupont, Novel pressure-sensing skin for detecting impending tissue damage during neuroendoscopy. J. Neurosurg.: Pediatr. 13(1), 114–121 (2013)Google Scholar
  5. 5.
    A.T. Asbeck, S.M.M. De Rossi, K.G. Holt, C.J. Walsh, A biologically inspired soft exosuit for walking assistance. Int. J. Robot. Res. 0278364914562476 (2015)Google Scholar
  6. 6.
    J.-B. Chossat, Y. Tao, V. Duchaine, Y.L. Park, Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing, in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2568–2573, May 2015Google Scholar
  7. 7.
    K.C. Galloway, P. Polygerinos, C.J. Walsh, R.J. Wood, Mechanically programmable bend radius for fiber-reinforced soft actuators, in 2013 16th International Conference on Advanced Robotics (ICAR), pp. 1–6, Nov 2013Google Scholar
  8. 8.
    M. Wehner, B. Quinlivan, P.M. Aubin, E. Martinez-Villalpando, M. Baumann, L. Stirling, K. Holt, R. Wood, C. Walsh, A lightweight soft exosuit for gait assistance, in 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3362–3369, May 2013Google Scholar
  9. 9.
    D.H. Kim, Y.S. Kim, J. Wu, Z. Liu, J. Song, H.S. Kim, Y.Y. Huang, K.C. Hwang, J.A. Rogers, Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv. Mater. 21(36), 3703–3707 (2009)CrossRefGoogle Scholar
  10. 10.
    J.C. McDonald, G.M. Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35(7), 491–499 (2002)CrossRefGoogle Scholar
  11. 11.
    S. Zhu, J.-H. So, R.L. Mays, S. Desai, W.R. Barnes, B. Pourdeyhimi, M.D. Dickey, Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Fun. Mat. 32(18), 2308–2314 (2013)Google Scholar
  12. 12.
    L. Mullins, Effect of stretching on the properties of rubber. Rubber Chem. Technol. 21(2), 281–300 (1948)CrossRefGoogle Scholar
  13. 13.
    W.N. Findley, F.A. Davis, Creep and Relaxation of Nonlinear Viscoelastic Materials. Courier Corporation (2013)Google Scholar
  14. 14.
    N.G. McCrum, C.P. Buckley, C.B. Bucknall, Principles of Polymer Engineering. Oxford University Press (1997)Google Scholar
  15. 15.
    A. Bratov, J. Muñoz, C. Dominguez, J. Bartroli, Photocurable polymers applied as encapsulating materials for ISFET production. Sens. Actuators, B: Chem. 25(13), 823–825 (1995)Google Scholar
  16. 16.
    R.K. Kramer, C. Majidi, R. Sahai, R.J. Wood. Soft curvature sensors for joint angle proprioception, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1919–1926, 2011Google Scholar
  17. 17.
    R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides, Multigait soft robot. Proc. Natl. Acad. Sci. 108(51), 20400–20403 (2011)CrossRefGoogle Scholar
  18. 18.
    J.C. Case, E.L. White, R.K. Kramer, Soft material characterization for robotic applications. Soft Robot. 2(2), 80–87 (2015)CrossRefGoogle Scholar
  19. 19.
    M.A. Eddings, M.A. Johnson, B.K. Gale, Determining the optimal PDMSPDMS bonding technique for microfluidic devices. J. Micromech. Microeng. 18(6), 067001 (2008)CrossRefGoogle Scholar
  20. 20.
    D.H. Kim, Z. Liu, Y.S. Kim, J. Wu, J. Song, H.S. Kim, Y. Huang, K.C. Hwang, Y. Zhang, J.A. Rogers, Optimized structural designs for stretchable silicon integrated circuits. Small 5(24), 2841–2847 (2009)CrossRefGoogle Scholar
  21. 21.
    D.Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311(5758), 208–212 (2006)CrossRefGoogle Scholar
  22. 22.
    D.H. Kim, J.A. Rogers, Stretchable electronics: materials strategies and devices. Adv. Mater. 20(24), 4887–4892 (2008)CrossRefGoogle Scholar
  23. 23.
    J.A. Fan, W.H. Yeo, Y. Su, Y. Hattori, W. Lee, S.Y. Jung, Y. Zhang, Z. Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R.J. Larsen, Y. Huang, J.A. Rogers, Fractal design concepts for stretchable electronics. Nat. Commun. 5 (2014)Google Scholar
  24. 24.
    G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)CrossRefGoogle Scholar
  25. 25.
    C. Majidi, R. Kramer, R.J. Wood, A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater. Struct. 20(10), 105017 (2011)CrossRefGoogle Scholar
  26. 26.
    Y.L. Park, B.R. Chen, R.J. Wood, Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sens. J. 12(8), 2711–2718 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Anderson, Y. Menguc, R.J. Wood, D. Newman, Development of the polipo pressure sensing system for dynamic space-suited motion. IEEE Sens. J. 15(11), 6229–6237 (2015)CrossRefGoogle Scholar
  28. 28.
    J.W. Boley, E.L. White, G.T.-C. Chiu, R.K. Kramer, Direct writing of gallium-indium alloy for stretchable electronics. Adv. Funct. Mater. 24(23), 3501–3507 (2014)CrossRefGoogle Scholar
  29. 29.
    J.B. Chossat, H.S. Shin, Y.L. Park, V. Duchaine, Soft tactile skin using an embedded ionic liquid and tomographic imaging. J. Mech. Rob. 7(2), 021008 (2015)CrossRefGoogle Scholar
  30. 30.
    A.P. Gerratt, H.O. Michaud, S.P. Lacour, Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 25(15), 2287–2295 (2015)CrossRefGoogle Scholar
  31. 31.
    F.L. Hammond, R.K. Kramer, Q. Wan, R.D. Howe, R.J. Wood, Soft tactile sensor arrays for micromanipulation, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 25–32, Oct 2012Google Scholar
  32. 32.
    R.K. Kramer, C.Majidi, R.J. Wood, Wearable tactile keypad with stretchable artificial skin, in 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1103–1107 (2011)Google Scholar
  33. 33.
    R. Matsuzaki, K. Tabayashi, Highly stretchable, global, and distributed local strain sensing line using GaInSn electrodes for wearable electronics. Adv. Funct. Mater. 25(25), 3806–3813 (2015)CrossRefGoogle Scholar
  34. 34.
    J.T.B. Overvelde, Y. Mengüç, P. Polygerinos, Y. Wang, Z. Wang, C.J. Walsh, R.J. Wood, K. Bertoldi, Mechanical and electrical numerical analysis of soft liquid-embedded deformation sensors analysis. Extreme Mech. Lett. 1, 42–46 (2014)Google Scholar
  35. 35.
    J. Choi, S. Kim, J. Lee, B. Choi, Improved capacitive pressure sensors based on liquid alloy and silicone elastomer. IEEE Sens. J. 15(8), 4180–4181 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Baek, D.J. Won, J.G. Kim, J. Kim, Development and analysis of a capacitive touch sensor using a liquid metal droplet. J. Micromech. Microeng. 25(9), 095015 (2015)CrossRefGoogle Scholar
  37. 37.
    D. Ruben, P. Wong, J.D. Posner, V.J. Santos, Flexible microfluidic normal force sensor skin for tactile feedback. Sens. Actuators, A 179, 62–69 (2012)CrossRefGoogle Scholar
  38. 38.
    K. Noda, E. Iwase, K. Matsumoto, I. Shimoyama, Stretchable liquid tactile sensor for robot-joints, in 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4212–4217, May 2010Google Scholar
  39. 39.
    J.-B. Chossat, Y.-L. Park, R.J. Wood, V. Duchaine, A soft strain sensor based on ionic and metal liquids. IEEE Sens. J. 13(9), 3405–3414 (2013)CrossRefGoogle Scholar
  40. 40.
    C.R. Merritt, H.T. Nagle, E. Grant, Textile-based capacitive sensors for respiration monitoring. IEEE Sens. J. 9(1), 71–78 (2009)CrossRefGoogle Scholar
  41. 41.
    M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014)CrossRefGoogle Scholar
  42. 42.
    C. Mattmann, F. Clemens, G. Trster, Sensor for measuring strain in textile. Sensors 8(6), 3719–3732 (2008)CrossRefGoogle Scholar
  43. 43.
    L.M. Castano, A.B. Flatau, Smart fabric sensors and e-textile technologies: a review. Smart Mater. Struct. 23(5), 053001 (2014)CrossRefGoogle Scholar
  44. 44.
    L. Capineri, Resistive sensors with smart textiles for wearable technology: from fabrication processes to integration with electronics. Procedia Eng. 87, 724–727 (2014)CrossRefGoogle Scholar
  45. 45.
    R. Xu, K.I. Jang, Y. Ma, H.N. Jung, Y. Yang, M. Cho, Y. Zhang, Y. Huang, J.A. Rogers, Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates. Extreme Mech. Lett. (2014)Google Scholar
  46. 46.
    L. Hu, M. Pasta, F.L. Mantia, L.F. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett. 10(2), 708–714 (2010)CrossRefGoogle Scholar
  47. 47.
    C. Cochrane, V. Koncar, M. Lewandowski, C. Dufour, Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors 7(4), 473–492 (2007)CrossRefGoogle Scholar
  48. 48.
    R.L. Crabb, F.C. Treble, Thin silicon solar cells for large flexible arrays. Nature 213(5082), 1223–1224 (1967)CrossRefGoogle Scholar
  49. 49.
    K.A. Ray, Flexible solar cell arrays for increased space power. IEEE Trans. Aerosp. Electron. Syst. AES-3(1), 107–115 (1967)CrossRefGoogle Scholar
  50. 50.
    K. Jain, M. Klosner, M. Zemel, S. Raghunandan, Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production. Proc. IEEE 93(8), 1500–1510 (2005)CrossRefGoogle Scholar
  51. 51.
    D.H. Kim, J. Song, W.M. Choi, H.S. Kim, R.H. Kim, Z. Liu, Z. Liu, Y.Y. Huang, K.C. Hwang, Y.W. Zhang, J.A. Rogers, Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. PNAS 105(48), 18675–18680 (2008)CrossRefGoogle Scholar
  52. 52.
    G.H. Gelinck, H.E.A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H. van der Putten, T.C.T. Geuns, M. Beenhakkers, J.B. Giesbers, B.H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J. E. van Rens, D.M. de Leeuw, Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3(2), 106–110 (2004)Google Scholar
  53. 53.
    J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Nat. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001) (ArticleType: research-article/Full publication date: Apr. 24, 2001/Copyright 2001 National Academy of Sciences)Google Scholar
  54. 54.
    C. Wang, G.G. Wallace, Flexible electrodes and electrolytes for energy storage. Electrochimica Acta (2015)Google Scholar
  55. 55.
    S.D. Perera, B. Patel, N. Nijem, K. Roodenko, O. Seitz, J.P. Ferraris, Y.J. Chabal, K.J. Balkus, Vanadium oxide nanowire carbon nanotube binder-free flexible electrodes for supercapacitors. Adv. Energy Mater. 1(5), 936–945 (2011)CrossRefGoogle Scholar
  56. 56.
    S.I. Park, Y. Xiong, R.H. Kim, P. Elvikis, M. Meitl, D.H. Kim, J. Wu, J. Yoon, C.J. Yu, Z. Liu, Y. Huang, K.C. Hwang, P. Ferreira, X. Li, K. Choquette, J.A. Rogers, Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325(5943), 977–981 (2009)CrossRefGoogle Scholar
  57. 57.
    P. Salonen, M. Keskilammi, J. Rantanen, L. Sydanheimo, A novel Bluetooth antenna on flexible substrate for smart clothing, in 2001 IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 789–794, 2001Google Scholar
  58. 58.
    C. Cibin, P. Leuchtmann, M. Gimersky, R. Vahldieck, S. Moscibroda, A flexible wearable antenna, in IEEE Antennas and Propagation Society International Symposium, 2004, vol. 4, pp. 3589–3592, June 2004Google Scholar
  59. 59.
    J.C.G. Matthews, G. Pettitt, Development of flexible, wearable antennas, in 3rd European Conference on Antennas and Propagation, 2009. EuCAP 2009, pp. 273–277, March 2009Google Scholar
  60. 60.
    A.J. Baca, J.H. Ahn, Y. Sun, M.A. Meitl, E. Menard, H.S. Kim, W.M. Choi, D.H. Kim, Y. Huang, J.A. Rogers, Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 47(30), 5524–5542 (2008)Google Scholar
  61. 61.
    J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)CrossRefGoogle Scholar
  62. 62.
    H.C. Ko, G. Shin, S. Wang, M.P. Stoykovich, J.W. Lee, D.H. Kim, J.S. Ha, Y. Huang, K.C. Hwang, J.A. Rogers, Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5(23), 2703–2709 (2009)Google Scholar
  63. 63.
    D.H. Kim, J. Xiao, J. Song, Y. Huang, J.A. Rogers, Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22(19), 2108–2124 (2010)CrossRefGoogle Scholar
  64. 64.
    D.H. Kim, N. Lu, Y. Huang, J.A. Rogers, Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull. 37(03), 226–235 (2012)CrossRefGoogle Scholar
  65. 65.
    P.J. Hung, K. Jeong, G.L. Liu, L.P. Lee, Microfabricated suspensions for electrical connections on the tunable elastomer membrane. Appl. Phys. Lett. 85(24), 6051–6053 (2004)CrossRefGoogle Scholar
  66. 66.
    S.P. Lacour, J. Jones, S. Wagner, T. Li, Z. Suo. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93(8), 1459–1467 (2005)Google Scholar
  67. 67.
    D.H. Kim, J.H. Ahn, W.M. Choi, H.S. Kim, T.H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320(5875), 507–511 (2008)Google Scholar
  68. 68.
    S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J.A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y. Huang, U. Paik, J.A. Rogers, Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013)CrossRefGoogle Scholar
  69. 69.
    D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers. Epidermal electronics. Science 333(6044), 838–843 (2011)Google Scholar
  70. 70.
    J. Kim, A. Banks, H. Cheng, Z. Xie, S. Xu, K.I. Jang, J.W. Lee, Z. Liu, P. Gutruf, X. Huang, P. Wei, F. Liu, K. Li, M. Dalal, R. Ghaffari, X. Feng, Y. Huang, S. Gupta, U. Paik, J.A. Rogers, Epidermal electronics with advanced capabilities in near-field communication. Small 11(8), 906–912 (2015)Google Scholar
  71. 71.
    X. Hu, P. Krull, de B. Graff, K. Dowling, J.A. Rogers, W.J. Arora, Stretchable inorganic-semiconductor electronic systems. Adv. Mater. 23(26), 2933–2936 (2011)Google Scholar
  72. 72.
    D.S. Gray, J. Tien, C.S. Chen, High-conductivity elastomeric electronics. Adv. Mater. 16(5), 393–397 (2004)CrossRefGoogle Scholar
  73. 73.
    Y.Y. Hsu, B. Dimcic, M. Gonzalez, F. Bossuyt, J. Vanfleteren, de I. Wolf, Reliability assessment of stretchable interconnects, in 2010 5th International Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), pp. 1–4, Oct 2010Google Scholar
  74. 74.
    F. Bossuyt, J. Guenther, T. Lher, M. Seckel, T. Sterken, J. de Vries, Cyclic endurance reliability of stretchable electronic substrates. Microelectron. Reliab. 51(3), 628–635 (2011)CrossRefGoogle Scholar
  75. 75.
    S.P. Lacour, D. Chan, S. Wagner, T. Li, Z. Suo, Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 88(20), 204103–204103-3 (2006)Google Scholar
  76. 76.
    N.B. Morley, J. Burris, L.C. Cadwallader, M.D. Nornberg, GaInSn usage in the research laboratory. Rev. Sci. Instrum. 79(5), 056107 (2008)CrossRefGoogle Scholar
  77. 77.
    M.D. Dickey, R.C. Chiechi, R.J. Larsen, E.A. Weiss, D.A. Weitz, G.M. Whitesides, Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18(7), 1097–1104 (2008)CrossRefGoogle Scholar
  78. 78.
    C. Ladd, J.H. So, J. Muth, M.D. Dickey, 3d Printing of free standing liquid metal microstructures. Adv. Mater. 25(36), 5081–5085 (2013)CrossRefGoogle Scholar
  79. 79.
    Y.L. Park, C. Majidi, R. Kramer, P. Brard, R.J. Wood, Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20(12), 125029 (2010)Google Scholar
  80. 80.
    M.D. Dickey, Emerging applications of liquid metals featuring surface oxides. ACS Appl. Mater. Interfaces (2014)Google Scholar
  81. 81.
    A. Tabatabai, A. Fassler, C. Usiak, C. Majidi, Liquid-phase gallium indium alloy electronics with microcontact printing. Langmuir 29(20), 6194–6200 (2013)CrossRefGoogle Scholar
  82. 82.
    J. Wissman, T. Lu, C. Majidi, Soft-matter electronics with stencil lithography, in 2013 IEEE Sensors, pp. 1–4, 2013Google Scholar
  83. 83.
    Q. Zhang, Y. Gao, J. Liu, Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl. Phys. A 1–7 (2013)Google Scholar
  84. 84.
    D. Kim, D.W. Lee, W. Choi, Jeong-Bong Lee, A super-lyophobic 3-D PDMS channel as a novel microfluidic platform to manipulate oxidized galinstan. J. Microelectromech. Syst. 22(6), 1267–1275 (2013)CrossRefGoogle Scholar
  85. 85.
    R.K. Kramer, J. William Boley, H.A. Stone, J.C. Weaver, R.J. Wood, Effect of microtextured surface topography on the wetting behavior of eutectic gallium indium alloys. Langmuir 30(2), 533–539 (2014)Google Scholar
  86. 86.
    G. Li, X. Wu, D.W. Lee, Selectively plated stretchable liquid metal wires for transparent electronics. Sens. Actuators B: Chem. 221, 1114–1119 (2015)CrossRefGoogle Scholar
  87. 87.
    J.W. Boley, E.L. White, R.K. Kramer, Mechanically sintered gallium indium nanoparticles. Adv. Mater. 27(14), 2355–2360 (2015)CrossRefGoogle Scholar
  88. 88.
    T. Lu, L. Finkenauer, J. Wissman, C. Majidi, Rapid prototyping for soft-matter electronics. Adv. Funct. Mater. (2014)Google Scholar
  89. 89.
    D.M. Vogt, Y.L. Park, R.J. Wood, Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels. IEEE Sens. J. 13(10), 4056–4064 (2013)CrossRefGoogle Scholar
  90. 90.
    J.H. So, J. Thelen, A. Qusba, G.J. Hayes, G. Lazzi, M.D. Dickey, Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 19(22), 3632–3637 (2009)Google Scholar
  91. 91.
    M. Kubo, X. Li, C. Kim, M. Hashimoto, B.J. Wiley, D. Ham, G.M .Whitesides, Stretchable microfluidic radiofrequency antennas. Adv. Mater. 22(25), 2749–2752 (2010)Google Scholar
  92. 92.
    Z. Wu, Microfluidic stretchable radio frequency devices, in Proceedings of the IEEE, 2015Google Scholar
  93. 93.
    E. Palleau, S. Reece, S.C. Desai, M.E. Smith, M.D. Dickey, Self-healing stretchable wires for reconfigurable circuit wiring and 3d microfluidics. Adv. Mater. 25(11), 1589–1592 (2013)Google Scholar
  94. 94.
    J.H. So, H.J. Koo, M.D. Dickey, O.D. Velev, Ionic current rectification in soft-matter diodes with liquid-metal electrodes. Adv. Funct. Mater. 22(3), 625–631 (2012)CrossRefGoogle Scholar
  95. 95.
    W.-Y. Tseng, J.S. Fisher, J.L. Prieto, K. Rinaldi, G. Alapati, A.P. Lee, A slow-adapting microfluidic-based tactile sensor. J. Micromech. Microeng. 19(8), 085002 (2009)CrossRefGoogle Scholar
  96. 96.
    N. Wettels, V.J. Santos, R.S. Johansson, G.E. Loeb, Biomimetic tactile sensor array. Adv. Robot. 22(8), 829–849 (2008)CrossRefGoogle Scholar
  97. 97.
    Y.N. Cheung, Y. Zhu, C.H. Cheng, C. Chao, W.W.F. Leung, A novel fluidic strain sensor for large strain measurement. Sens. Actuators, A 147(2), 401–408 (2008)CrossRefGoogle Scholar
  98. 98.
    G. Cummins, M.P.Y. Desmulliez, Inkjet printing of conductive materials: a review. Circuit World 38(4), 193–213 (2012)CrossRefGoogle Scholar
  99. 99.
    Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou, C.P. Wong, Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink. ACS Appl. Mater. Interfaces 6(1), 560–567 (2014)CrossRefGoogle Scholar
  100. 100.
    S. Merilampi, T. Laine-Ma, P. Ruuskanen, The characterization of electrically conductive silver ink patterns on flexible substrates. Microelectron. Reliab. 49(7), 782–790 (2009)CrossRefGoogle Scholar
  101. 101.
    S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, S.H. Ko, Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano 7(6), 5024–5031 (2013)CrossRefGoogle Scholar
  102. 102.
    M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, S. Magdassi, Conductive inks with a built-in mechanism that enables sintering at room temperature. ACS Nano 5(4), 3354–3359 (2011)Google Scholar
  103. 103.
    A. Kamyshny, M. Ben-Moshe, S. Aviezer, S. Magdassi, Ink-jet printing of metallic nanoparticles and microemulsions. Macromol. Rapid Commun. 26(4), 281–288 (2005)CrossRefGoogle Scholar
  104. 104.
    F. Loffredo, A. De Girolamo Del Mauro, G. Burrasca, V. La Ferrara, L. Quercia, E. Massera, G. Di Francia, D. Della Sala, Ink-jet printing technique in polymer/carbon black sensing device fabrication. Sens. Actuators B: Chem. 143(1), 421–429 (2009)Google Scholar
  105. 105.
    S.M. Bidoki, D.M. Lewis, M. Clark, A. Vakorov, P.A. Millner, D. McGorman, Ink-jet fabrication of electronic components. J. Micromech. Microeng. 17(5), 967 (2007)CrossRefGoogle Scholar
  106. 106.
    T.H. Kang, C. Merritt, B. Karaguzel, J. Wilson, P.D. Franzon, B. Pourdeyhimi, E. Grant, T. Nagle, Sensors on textile substrates for home-based healthcare monitoring, in Proceedings of the 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare (D2H206), pp. 5–7, 2006Google Scholar
  107. 107.
    Y.L. Tai, Z.G. Yang, Fabrication of paper-based conductive patterns for flexible electronics by direct-writing. J. Mater. Chem. 21(16), 5938 (2011)CrossRefGoogle Scholar
  108. 108.
    H.T. Wang, O.A. Nafday, J.R. Haaheim, E. Tevaarwerk, N.A. Amro, R.G. Sanedrin, C.Y. Chang, F. Ren, S.J. Pearton, Toward conductive traces: dip pen nanolithography of silver nanoparticle-based inks. Appl. Phys. Lett. 93(14), 143105 (2008)CrossRefGoogle Scholar
  109. 109.
    A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, J.A. Lewis, Pen-on-paper flexible electronics. Adv. Mater. 23(30), 3426–3430 (2011)Google Scholar
  110. 110.
    L.Y. Xu, G.Y. Yang, H.Y. Jing, J. Wei, Y.D. Han, Aggraphene hybrid conductive ink for writing electronics. Nanotechnology 25(5), 055201 (2014)CrossRefGoogle Scholar
  111. 111.
    S. Khan, L. Lorenzelli, R.S. Dahiya, Screen printed flexible pressure sensors skin, in 2014 25th Annual SEMI on Advanced Semiconductor Manufacturing Conference (ASMC), pp. 219–224, May 2014Google Scholar
  112. 112.
    K.Y. Chun, Y. Oh, J. Rho, J.H. Ahn, Y.J. Kim, H.R. Choi, S. Baik, Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5(12), 853–857 (2010)Google Scholar
  113. 113.
    M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M.B. Shim, S. Jeon, D.Y. Chung, J. Bae, J. Park, U. Jeong, K. Kim, Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7(12), 803–809 (2012)CrossRefGoogle Scholar
  114. 114.
    Y.J. Yang, M.Y. Cheng, W.Y. Chang, L.C. Tsao, S.A. Yang, W.P. Shih, F.Y. Chang, S.H. Chang, K.C. Fan, An integrated flexible temperature and tactile sensing array using PI-copper films. Sens. Actuators, A 143(1), 143–153 (2008)CrossRefGoogle Scholar
  115. 115.
    R. Verdejo, M.M. Bernal, L.J. Romasanta, M.A. Lopez-Manchado, Graphene filled polymer nanocomposites. J. Mater. Chem. 21(10), 3301–3310 (2011)CrossRefGoogle Scholar
  116. 116.
    M. Chen, T. Tao, L. Zhang, W. Gao, C. Li, Highly conductive and stretchable polymer composites based on graphene/MWCNT network. Chem. Commun. 49(16), 1612 (2013)CrossRefGoogle Scholar
  117. 117.
    M. Knite, V. Teteris, A. Kiploka, J. Kaupuzs, Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens. Actuators, A 110(13), 142–149 (2004)CrossRefGoogle Scholar
  118. 118.
    D.J. Lipomi, M. Vosgueritchian, B.C.K. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nano 6(12), 788–792 (2011)Google Scholar
  119. 119.
    S. Jung, J.H. Kim, J. Kim, S. Choi, J. Lee, I. Park, T. Hyeon, D.H. Kim, Reverse-micelle-induced porous pressure-sensitive rubber for wearable human machine interfaces. Adv. Mater. 26(28), 4825–4830 (2014)Google Scholar
  120. 120.
    A. Fassler, C. Majidi, Liquid-phase metal inclusions for a conductive polymer composite. Adv. Mater. 27(11), 1928–1932 (2015)CrossRefGoogle Scholar
  121. 121.
    Y. Lin, C. Cooper, M. Wang, J.J. Adams, J. Genzer, M.D. Dickey, Handwritten, soft circuit boards and antennas using liquid metal nanoparticles. Small (2015)Google Scholar
  122. 122.
    S.G. Kandlikar, W.J. Grande, Evolution of microchannel flow passages thermohydraulic performance and fabrication technology. Heat Transfer Eng. 24(1), 3–17 (2003)CrossRefGoogle Scholar
  123. 123.
    Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)CrossRefGoogle Scholar
  124. 124.
    L. Geppert, Semiconductor lithography for the next millennium. IEEE Spectr. 33(4), 33–38 (1996)CrossRefGoogle Scholar
  125. 125.
    S. Okazaki, Resolution limits of optical lithography. J. Vac. Sci. Technol., B 9(6), 2829–2833 (1991)CrossRefGoogle Scholar
  126. 126.
    E.A. Waddell, Laser ablation as a fabrication technique for microfluidic devices, in Microfluidic Techniques, ed. by S.D. Minteer, Number 321 in Methods In Molecular Biology (Humana Press, Totowa, 2006), pp. 27–38. doi: 10.1385/1-59259-997-4:27
  127. 127.
    H.J. Kim, T. Maleki, P. Wei, B. Ziaie, A biaxial stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. J. Microelectromech. Syst. 18(1), 138–146 (2009)Google Scholar
  128. 128.
    H.J. Kim, C. Son, B. Ziaie, A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl. Phys. Lett. 92(1), 011904–011904-3 (2008)Google Scholar
  129. 129.
    T. Li, Z. Huang, Z. Suo, S.P. Lacour, S. Wagner, Stretchability of thin metal films on elastomer substrates. Appl. Phys. Lett. 85(16), 3435–3437 (2004)Google Scholar
  130. 130.
    Y. Arafat, I. Dutta, R. Panat, Super-stretchable metallic interconnects on polymer with a linear strain of up to 100 %. Appl. Phys. Lett. 107(8), 081906 (2015)CrossRefGoogle Scholar
  131. 131.
    T. Lu, J. Wissman, F.N.U. Ruthika, C. Majidi, Soft anisotropic conductors as electric vias for Ga-based liquid metal circuits. ACS Appl. Mater. Interfaces (2015)Google Scholar
  132. 132.
    Y.L. Zheng, X.R. Ding, C.C.Y. Poon, B.P.L. Lo, H. Zhang, X.L. Zhou, G.Z. Yang, N. Zhao, Y.T. Zhang, Unobtrusive sensing and wearable devices for health informatics. IEEE Trans. Biomed. Eng. 61(5), 1538–1554 (2014)Google Scholar
  133. 133.
    N. Lu, D.H. Kim, Flexible and stretchable electronics paving the way for soft robotics. Soft Rob. 1(1), 53–62 (2014)CrossRefGoogle Scholar
  134. 134.
    H.K. Lee, S.I. Chang, E. Yoon, A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment. J. Microelectromech. Syst. 15(6), 1681–1686 (2006)CrossRefGoogle Scholar
  135. 135.
    I.M. Koo, K. Jung, J.C. Koo, J.D. Nam, Y.K. Lee, H.R. Choi, Development of soft-actuator-based wearable tactile display. IEEE Trans. Rob. 24(3), 549–558 (2008)Google Scholar
  136. 136.
    J. Engel, J. Chen, C. Liu, Development of polyimide flexible tactile sensor skin. J. Micromech. Microeng. 13(3), 359 (2003)CrossRefGoogle Scholar
  137. 137.
    J.K. Paik, R.K. Kramer, R.J. Wood, Stretchable circuits and sensors for robotic origami, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 414–420, 2011Google Scholar
  138. 138.
    M. Yuen, A. Cherian, J.C. Case, J. Seipel, R.K. Kramer, Conformable actuation and sensing with robotic fabric, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 580–586. IEEE, 2014Google Scholar
  139. 139.
    Y.L. Park, B.R. Chen, C. Majidi, R.J. Wood, R. Nagpal, E. Goldfield, Active modular elastomer sleeve for soft wearable assistance robots, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1595–1602, 2012Google Scholar
  140. 140.
    Y.L. Park, R.J. Wood, Smart pneumatic artificial muscle actuator with embedded microfluidic sensing, in 2013 IEEE Sensors, pp. 1–4, 2013Google Scholar
  141. 141.
    G. Berselli (ed.), Smart Actuation and Sensing Systems—Recent Advances and Future Challenges (InTech, Rijeka, 2012)Google Scholar
  142. 142.
    P. Polygerinos, K.C. Galloway, E. Savage, M. Herman, K. O’Donnell, C.J. Walsh, Soft robotic glove for hand rehabilitation and task specific training, in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2913–2919, May 2015Google Scholar
  143. 143.
    A.T. Asbeck, K. Schmidt, I. Galiana, D. Wagner, C.J. Walsh, Multi-joint soft exosuit for gait assistance, in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 6197–6204, May 2015Google Scholar
  144. 144.
    A. Asbeck, S. De Rossi, I. Galiana, Y. Ding, C. Walsh, Stronger, smarter, softer: next-generation wearable robots. IEEE Robot. Autom. Mag. 21(4), 22–33 (2014)CrossRefGoogle Scholar
  145. 145.
    Y. Menguc, Y.L. Park, E. Martinez-Villalpando, P. Aubin, M. Zisook, L. Stirling, R.J. Wood, C.J. Walsh, Soft wearable motion sensing suit for lower limb biomechanics measurements, in 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 5309–5316, May 2013Google Scholar
  146. 146.
    N. Lu, C. Lu, S. Yang, J. Rogers, Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22(19), 4044–4050 (2012)CrossRefGoogle Scholar
  147. 147.
    F. Gemperle, N. Ota, D. Siewiorek. Design of a wearable tactile display, in Proceedings of the Fifth International Symposium on Wearable Computers, 2001, pp. 5–12, 2001Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jennifer Case
    • 1
  • Michelle Yuen
    • 1
  • Mohammed Mohammed
    • 1
  • Rebecca Kramer
    • 1
    Email author
  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations