Skip to main content

In Vitro Neural Recording by Microelectrode Arrays

Part of the Microsystems and Nanosystems book series (MICRONANO)

Abstract

Neural interface SeeAlsoSeeAlsoIn vitro neural recording by microelectrode arrays plays an important role in monitoring and modulating brain activity. In order to study the neural information processing in vitro, microelectrode array (MEA) platform is used with cell culture or brain slice. To measure neural signals simultaneously from multiple cells for long-term period, extracellular neural recording technique is preferred and subcellular-scale microelectrodes , dense array, and flexible substrates are ideal. In this chapter, we will introduce the state-of-the-art in vitro neural recording technology based on microfabricated electrodes or transistors. MEAs with metal-type microelectrodes are passive types, and MEAs with active electronic components (field-effect transistors or integrated circuits) are active types. The motivation, operation principles, fabrication processes and materials, and current trends are reviewed.

Keywords

  • Microelectrode array (MEA)
  • Neural interface
  • Neural recording
  • Action potentials
  • Extracellular recording

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-28694-5_14
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-28694-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2

References

  1. R.R. Harrison, The Design of integrated circuits to observe brain activity. Proc. IEEE 96, 1203–1216 (2008)

    Google Scholar 

  2. P. Fromherz, Electrical interfacing of nerve cells and semiconductor chips. Chem. Phys. Chem. 3, 276 (2002)

    Google Scholar 

  3. P. Livi, F. Heer, U. Frey, D.J. Bakkum, A. Hierlemann, Compact voltage and current stimulation buffer for high-density microelectrode arrays. IEEE Trans. Biomed. Circ. Syst. 4, 372–378 (2010)

    Google Scholar 

  4. K. Mathieson, S. Kachiguine, C. Adams, W. Cunningham, D. Gunning, V. O’Shea et al., Large-area microelectrode arrays for recording of neural signals. IEEE Trans. Nucl. Sci. 51, 2027–2031 (2004)

    CrossRef  Google Scholar 

  5. J.T. Robinson, M. Jorgolli, A.K. Shalek, M.H. Yoon, R.S. Gertner, H. Park, Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012)

    CrossRef  Google Scholar 

  6. Z.L.C. Lin, C. Xie, Y. Osakada, Y. Cui, B.X. Cui, Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014)

    Google Scholar 

  7. A. Blau, A. Murr, S. Wolff, E. Sernagor, P. Medini, G. Iurilli et al., Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 32, 1778–1786 (2011)

    CrossRef  Google Scholar 

  8. M. David-Pur, L. Bareket-Keren, G. Beit-Yaakov, D. Raz-Prag, Y. Hanein, All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomed. Microdevices. 16, 43–53 (2014)

    Google Scholar 

  9. A. Mondal, B. Baker, I.R. Harvey, A.P. Moreno, PerFlexMEA: a thin microporous microelectrode array for in vitro cardiac electrophysiological studies on hetero-cellular bilayers with controlled gap junction communication. Lab Chip 15, 2037–2048 (2015)

    CrossRef  Google Scholar 

  10. S.A. Boppart, B.C. Wheeler, C.S. Wallace, A flexible perforated microelectrode array for extended neural recordings. IEEE Trans. Biomed. Eng. 39, 37–42 (1992)

    CrossRef  Google Scholar 

  11. M. Ballini, J. Muller, P. Livi, Y. Chen, U. Frey, A. Stettler, et al., A 1024-Channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro. IEEE J. Solid-State Circ. 49, 2705–2719 (2014)

    Google Scholar 

  12. P. Bergveld, J. Wiersma, H. Meertens, Extracellular potential recordings by means of a field effect transistor without gate metal, called OSFET. IEEE Trans. Biomed. Eng. BME-23, 136–144 (1976)

    Google Scholar 

  13. P. Fromherz, A. Offenhausser, T. Vetter, J. Weis, A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252, 1290–1293 (1991)

    CrossRef  Google Scholar 

  14. L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom, M. Koudelka-Hep et al., Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9, 2644–2651 (2009)

    CrossRef  Google Scholar 

  15. U. Frey, U. Egert, F. Heer, S. Hafizovic, A. Hierlemann, Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens. Bioelectron. 24, 2191–2198 (2009)

    CrossRef  Google Scholar 

  16. D.J. Bakkum, U. Frey, M. Radivojevic, T.L. Russell, J. Muller, M. Fiscella et al., Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites. Nat. Commun. 4, 2181 (2013)

    CrossRef  Google Scholar 

  17. A. Hierlemann, U. Frey, S. Hafizovic, F. Heer, Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-Based microelectrode arrays. Proc. IEEE 99, 252–284 (2011)

    Google Scholar 

  18. B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl et al., A 128 × 128 CMOS biosensor array for extracellular recording of neural activity. IEEE J. Solid-State Circ. 38, 2306–2317 (2003)

    CrossRef  Google Scholar 

  19. I.L. Jones, T.L. Russell, K. Farrow, M. Fiscella, F. Franke, J. Müller, et al., A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array. Front. Neurosci. 9, (2015)

    Google Scholar 

  20. A. Offenhäusser, J. Rühe, W. Knoll, Neuronal cells cultured on modified microelectronic device surfaces. J. Vac. Sci. Technol., A 13, 2606–2612 (1995)

    CrossRef  Google Scholar 

  21. A. Cohen, M.E. Spira, S. Yitshaik, G. Borghs, O. Shwartzglass, J. Shappir, Depletion type floating gate p-channel MOS transistor for recording action potentials generated by cultured neurons. Biosens. Bioelectron. 19, 1703–1709 (2004)

    Google Scholar 

  22. S. Meyburg, M. Goryll, J. Moers, S. Ingebrandt, S. Böcker-Meffert, H. Lüth, et al., N-Channel field-effect transistors with floating gates for extracellular recordings. Biosens. Bioelectron. 21, 1037–1044 (2006)

    Google Scholar 

  23. F.N. Hooge, 1/F noise sources. IEEE Trans. Electron. Devices 41, 1926–1935 (1994)

    CrossRef  Google Scholar 

  24. B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, C.M. Lieber, Three-Dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010)

    Google Scholar 

  25. F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, et al., Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006)

    Google Scholar 

  26. Q. Qing, S.K. Pal, B. Tian, X. Duan, B.P. Timko, T. Cohen-Karni, et al., Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Nat. Acad. Sci. 107, 1882–1887 (2010)

    Google Scholar 

  27. R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie, X. Duan, et al., Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12, 3329–3333 (2012)

    Google Scholar 

  28. P.B. Kruskal, Z. Jiang, T. Gao, C.M. Lieber, Beyond the patch clamp: nanotechnologies for intracellular recording. Neuron 86, 21–24 (2015)

    Google Scholar 

  29. M. De Vittorio, L. Martiradonna, J.A. Assad, Nanotechnology and Neuroscience: Nano-Electronic, Photonic, and Mechanical Neuronal Interfacing (Springer, New York, 2014)

    CrossRef  Google Scholar 

  30. V. Benfenati, S. Toffanin, S. Bonetti, G. Turatti, A. Pistone, M. Chiappalone, et al., A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12, 672–680 (2013)

    Google Scholar 

  31. D. Ghezzi, M.R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, et al., A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photon. 7, 400–406 (2013)

    Google Scholar 

  32. G. Lanzani, Materials for bioelectronics: Organic electronics meets biology. Nat. Mater. 13, 775–776 (2014)

    Google Scholar 

  33. V. Benfenati, N. Martino, M.R. Antognazza, A. Pistone, S. Toffanin, S. Ferroni et al., Photostimulation of whole-cell conductance in primary rat neocortical astrocytes mediated by organic semiconducting thin films. Adv. Healthc. Mater. 3, 392–399 (2014)

    CrossRef  Google Scholar 

  34. M.E.J. Obien, K. Deligkaris, T. Bullmann, D.J. Bakkum, U. Frey, Revealing neuronal function through microelectrode array recordings. Syst. Biol. 8, 423 (2015)

    Google Scholar 

  35. C.M. Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic et al., An implantable 455-Active-Electrode 52-Channel CMOS neural probe. IEEE J. Solid-State Circ. 49, 248–261 (2014)

    CrossRef  Google Scholar 

  36. W.M. Reichert, Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment (CRC Press, Boca Raton, 2008)

    Google Scholar 

  37. A. Denisov, E. Yeatman, Ultrasonic versus Inductive Power Delivery for miniature biomedical implants, in 2010 International Conference on Body Sensor Networks (BSN), 2010, pp. 84–89

    Google Scholar 

  38. K. Gosalia, J. Weiland, M. Humayun, G. Lazzi, Thermal elevation in the human eye and head due to the operation of a retinal prosthesis. IEEE Trans. Biomed. Eng. 51, 1469–1477 (2004)

    Google Scholar 

  39. J.N. Burghartz, W. Appel, C. Harendt, H. Rempp, H. Richter, M. Zimmermann, Ultra-thin chip technology and applications, a new paradigm in silicon technology. Solid-State Electron. 54, 818–829 (2010)

    Google Scholar 

  40. K. Kashyap, L.-C. Zheng, D.-Y. Lai, M. T. Hou, J.A. Yeh, Rollable Silicon IC wafers achieved by backside nanotexturing. IEEE Electron Device Lett. 36, 829–831 (2015)

    Google Scholar 

  41. A.L.X. Jiang, L.C. Ming, J.C.Y. Gao, T.K. Hwee, silicon wafer backside thinning with mechanical and chemical method for better mechanical property (2006), pp. 1–4

    Google Scholar 

  42. W.S. Wong, A. Salleo, Flexible Electronics: Materials and Applications (Springer, New York, 2009)

    CrossRef  Google Scholar 

  43. P. Ihalainen, A. Määttänen, N. Sandler, Printing technologies for biomolecule and cell-based applications. Int. J. Pharm

    Google Scholar 

  44. U. Meyer, Fundamentals of Tissue Engineering and Regenerative Medicine (Springer, Berlin, 2009)

    CrossRef  Google Scholar 

  45. J.W. Lee, D. Kim, S. Yoo, H. Lee, G.-H. Lee, Y. Nam, Emerging neural stimulation technologies for bladder dysfunctions. Int. Neurourol. J. 19, 3–11 (2015)

    Google Scholar 

  46. D.-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010)

    Google Scholar 

  47. U. Frey, J. Sedivy, F. Heer, R. Pedron, M. Ballini, J. Mueller et al., Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circ. 45, 467–482 (2010)

    CrossRef  Google Scholar 

  48. A. Hai, J. Shappir, M.E. Spira, In-cell recordings by extracellular microelectrodes. Nat. Methods 7, 200–202 (2010)

    CrossRef  Google Scholar 

  49. J.H. Kim, G. Kang, Y. Nam, Y.K. Choi, Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Nanotechnology, 21, 85303, (2010)

    Google Scholar 

  50. E. Seker, Y. Berdichevsky, M.R. Begley, M.L. Reed, K.J. Staley, M.L. Yarmush, The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies. Nanotechnology 21, 125504 (2010)

    Google Scholar 

  51. D. Bruggemann, B. Wolfrum, V. Maybeck, Y. Mourzina, M. Jansen, A. Offenhausser, Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology 22, 265104 (2011)

    Google Scholar 

  52. Y. Takayama, H. Moriguchi, K. Kotani, T. Suzuki, K. Mabuchi, Y. Jimbo, Network-wide integration of stem cell-derived neurons and mouse cortical neurons using microfabricated co-culture devices. Biosystems 107, 1–8 (2012)

    CrossRef  Google Scholar 

  53. C. Xie, Z. Lin, L. Hanson, Y. Cui, B. Cui, Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012)

    CrossRef  Google Scholar 

  54. R. Kim, N. Hong, Y. Nam, Gold nanograin microelectrodes for neuroelectronic interfaces. Biotechnol. J. 8, 206–214 (2013)

    CrossRef  Google Scholar 

  55. I. Suzuki, M. Fukuda, K. Shirakawa, H. Jiko, M. Gotoh, Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens. Bioelectron. 49, 270–275 (2013)

    CrossRef  Google Scholar 

  56. Y. Furukawa, A. Shimada, K. Kato, H. Iwata, K. Torimitsu, Monitoring neural stem cell differentiation using PEDOT–PSS based MEA. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830, 4329–4333 (2013)

    Google Scholar 

  57. M. Sessolo, D. Khodagholy, J. Rivnay, F. Maddalena, M. Gleyzes, E. Steidl et al., Easy-to-fabricate conducting polymer microelectrode arrays. Adv. Mater. 25, 2135–2139 (2013)

    CrossRef  Google Scholar 

  58. Z.C. Lin, C. Xie, Y. Osakada, Y. Cui, B. Cui, Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014)

    Google Scholar 

  59. A. Czeschik, A. Offenhäusser, B. Wolfrum, Fabrication of MEA-based nanocavity sensor arrays for extracellular recording of action potentials. Physica Status Solidi (A) (2014)

    Google Scholar 

  60. V. Maybeck, R. Edgington, A. Bongrain, J.O. Welch, E. Scorsone, P. Bergonzo et al., Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv. Healthc Mater. 3, 283–289 (2014)

    CrossRef  Google Scholar 

  61. R. Samba, T. Herrmann, G. Zeck, PEDOT–CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities. J. Neural Eng. 12, 016014 (2015)

    CrossRef  Google Scholar 

  62. R. Kim, Y. Nam, Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive. J. Neural Eng. 12, 026010 (2015)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoonkey Nam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kang, H., Nam, Y. (2016). In Vitro Neural Recording by Microelectrode Arrays. In: Rogers, J., Ghaffari, R., Kim, DH. (eds) Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28694-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28694-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28692-1

  • Online ISBN: 978-3-319-28694-5

  • eBook Packages: EngineeringEngineering (R0)