R.R. Harrison, The Design of integrated circuits to observe brain activity. Proc. IEEE 96, 1203–1216 (2008)
Google Scholar
P. Fromherz, Electrical interfacing of nerve cells and semiconductor chips. Chem. Phys. Chem. 3, 276 (2002)
Google Scholar
P. Livi, F. Heer, U. Frey, D.J. Bakkum, A. Hierlemann, Compact voltage and current stimulation buffer for high-density microelectrode arrays. IEEE Trans. Biomed. Circ. Syst. 4, 372–378 (2010)
Google Scholar
K. Mathieson, S. Kachiguine, C. Adams, W. Cunningham, D. Gunning, V. O’Shea et al., Large-area microelectrode arrays for recording of neural signals. IEEE Trans. Nucl. Sci. 51, 2027–2031 (2004)
CrossRef
Google Scholar
J.T. Robinson, M. Jorgolli, A.K. Shalek, M.H. Yoon, R.S. Gertner, H. Park, Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012)
CrossRef
Google Scholar
Z.L.C. Lin, C. Xie, Y. Osakada, Y. Cui, B.X. Cui, Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014)
Google Scholar
A. Blau, A. Murr, S. Wolff, E. Sernagor, P. Medini, G. Iurilli et al., Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 32, 1778–1786 (2011)
CrossRef
Google Scholar
M. David-Pur, L. Bareket-Keren, G. Beit-Yaakov, D. Raz-Prag, Y. Hanein, All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomed. Microdevices. 16, 43–53 (2014)
Google Scholar
A. Mondal, B. Baker, I.R. Harvey, A.P. Moreno, PerFlexMEA: a thin microporous microelectrode array for in vitro cardiac electrophysiological studies on hetero-cellular bilayers with controlled gap junction communication. Lab Chip 15, 2037–2048 (2015)
CrossRef
Google Scholar
S.A. Boppart, B.C. Wheeler, C.S. Wallace, A flexible perforated microelectrode array for extended neural recordings. IEEE Trans. Biomed. Eng. 39, 37–42 (1992)
CrossRef
Google Scholar
M. Ballini, J. Muller, P. Livi, Y. Chen, U. Frey, A. Stettler, et al., A 1024-Channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro. IEEE J. Solid-State Circ. 49, 2705–2719 (2014)
Google Scholar
P. Bergveld, J. Wiersma, H. Meertens, Extracellular potential recordings by means of a field effect transistor without gate metal, called OSFET. IEEE Trans. Biomed. Eng. BME-23, 136–144 (1976)
Google Scholar
P. Fromherz, A. Offenhausser, T. Vetter, J. Weis, A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252, 1290–1293 (1991)
CrossRef
Google Scholar
L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom, M. Koudelka-Hep et al., Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9, 2644–2651 (2009)
CrossRef
Google Scholar
U. Frey, U. Egert, F. Heer, S. Hafizovic, A. Hierlemann, Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens. Bioelectron. 24, 2191–2198 (2009)
CrossRef
Google Scholar
D.J. Bakkum, U. Frey, M. Radivojevic, T.L. Russell, J. Muller, M. Fiscella et al., Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites. Nat. Commun. 4, 2181 (2013)
CrossRef
Google Scholar
A. Hierlemann, U. Frey, S. Hafizovic, F. Heer, Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-Based microelectrode arrays. Proc. IEEE 99, 252–284 (2011)
Google Scholar
B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl et al., A 128 × 128 CMOS biosensor array for extracellular recording of neural activity. IEEE J. Solid-State Circ. 38, 2306–2317 (2003)
CrossRef
Google Scholar
I.L. Jones, T.L. Russell, K. Farrow, M. Fiscella, F. Franke, J. Müller, et al., A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array. Front. Neurosci. 9, (2015)
Google Scholar
A. Offenhäusser, J. Rühe, W. Knoll, Neuronal cells cultured on modified microelectronic device surfaces. J. Vac. Sci. Technol., A 13, 2606–2612 (1995)
CrossRef
Google Scholar
A. Cohen, M.E. Spira, S. Yitshaik, G. Borghs, O. Shwartzglass, J. Shappir, Depletion type floating gate p-channel MOS transistor for recording action potentials generated by cultured neurons. Biosens. Bioelectron. 19, 1703–1709 (2004)
Google Scholar
S. Meyburg, M. Goryll, J. Moers, S. Ingebrandt, S. Böcker-Meffert, H. Lüth, et al., N-Channel field-effect transistors with floating gates for extracellular recordings. Biosens. Bioelectron. 21, 1037–1044 (2006)
Google Scholar
F.N. Hooge, 1/F noise sources. IEEE Trans. Electron. Devices 41, 1926–1935 (1994)
CrossRef
Google Scholar
B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, C.M. Lieber, Three-Dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010)
Google Scholar
F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, et al., Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006)
Google Scholar
Q. Qing, S.K. Pal, B. Tian, X. Duan, B.P. Timko, T. Cohen-Karni, et al., Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Nat. Acad. Sci. 107, 1882–1887 (2010)
Google Scholar
R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie, X. Duan, et al., Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12, 3329–3333 (2012)
Google Scholar
P.B. Kruskal, Z. Jiang, T. Gao, C.M. Lieber, Beyond the patch clamp: nanotechnologies for intracellular recording. Neuron 86, 21–24 (2015)
Google Scholar
M. De Vittorio, L. Martiradonna, J.A. Assad, Nanotechnology and Neuroscience: Nano-Electronic, Photonic, and Mechanical Neuronal Interfacing (Springer, New York, 2014)
CrossRef
Google Scholar
V. Benfenati, S. Toffanin, S. Bonetti, G. Turatti, A. Pistone, M. Chiappalone, et al., A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12, 672–680 (2013)
Google Scholar
D. Ghezzi, M.R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, et al., A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photon. 7, 400–406 (2013)
Google Scholar
G. Lanzani, Materials for bioelectronics: Organic electronics meets biology. Nat. Mater. 13, 775–776 (2014)
Google Scholar
V. Benfenati, N. Martino, M.R. Antognazza, A. Pistone, S. Toffanin, S. Ferroni et al., Photostimulation of whole-cell conductance in primary rat neocortical astrocytes mediated by organic semiconducting thin films. Adv. Healthc. Mater. 3, 392–399 (2014)
CrossRef
Google Scholar
M.E.J. Obien, K. Deligkaris, T. Bullmann, D.J. Bakkum, U. Frey, Revealing neuronal function through microelectrode array recordings. Syst. Biol. 8, 423 (2015)
Google Scholar
C.M. Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic et al., An implantable 455-Active-Electrode 52-Channel CMOS neural probe. IEEE J. Solid-State Circ. 49, 248–261 (2014)
CrossRef
Google Scholar
W.M. Reichert, Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment (CRC Press, Boca Raton, 2008)
Google Scholar
A. Denisov, E. Yeatman, Ultrasonic versus Inductive Power Delivery for miniature biomedical implants, in 2010 International Conference on Body Sensor Networks (BSN), 2010, pp. 84–89
Google Scholar
K. Gosalia, J. Weiland, M. Humayun, G. Lazzi, Thermal elevation in the human eye and head due to the operation of a retinal prosthesis. IEEE Trans. Biomed. Eng. 51, 1469–1477 (2004)
Google Scholar
J.N. Burghartz, W. Appel, C. Harendt, H. Rempp, H. Richter, M. Zimmermann, Ultra-thin chip technology and applications, a new paradigm in silicon technology. Solid-State Electron. 54, 818–829 (2010)
Google Scholar
K. Kashyap, L.-C. Zheng, D.-Y. Lai, M. T. Hou, J.A. Yeh, Rollable Silicon IC wafers achieved by backside nanotexturing. IEEE Electron Device Lett. 36, 829–831 (2015)
Google Scholar
A.L.X. Jiang, L.C. Ming, J.C.Y. Gao, T.K. Hwee, silicon wafer backside thinning with mechanical and chemical method for better mechanical property (2006), pp. 1–4
Google Scholar
W.S. Wong, A. Salleo, Flexible Electronics: Materials and Applications (Springer, New York, 2009)
CrossRef
Google Scholar
P. Ihalainen, A. Määttänen, N. Sandler, Printing technologies for biomolecule and cell-based applications. Int. J. Pharm
Google Scholar
U. Meyer, Fundamentals of Tissue Engineering and Regenerative Medicine (Springer, Berlin, 2009)
CrossRef
Google Scholar
J.W. Lee, D. Kim, S. Yoo, H. Lee, G.-H. Lee, Y. Nam, Emerging neural stimulation technologies for bladder dysfunctions. Int. Neurourol. J. 19, 3–11 (2015)
Google Scholar
D.-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010)
Google Scholar
U. Frey, J. Sedivy, F. Heer, R. Pedron, M. Ballini, J. Mueller et al., Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circ. 45, 467–482 (2010)
CrossRef
Google Scholar
A. Hai, J. Shappir, M.E. Spira, In-cell recordings by extracellular microelectrodes. Nat. Methods 7, 200–202 (2010)
CrossRef
Google Scholar
J.H. Kim, G. Kang, Y. Nam, Y.K. Choi, Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Nanotechnology, 21, 85303, (2010)
Google Scholar
E. Seker, Y. Berdichevsky, M.R. Begley, M.L. Reed, K.J. Staley, M.L. Yarmush, The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies. Nanotechnology 21, 125504 (2010)
Google Scholar
D. Bruggemann, B. Wolfrum, V. Maybeck, Y. Mourzina, M. Jansen, A. Offenhausser, Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology 22, 265104 (2011)
Google Scholar
Y. Takayama, H. Moriguchi, K. Kotani, T. Suzuki, K. Mabuchi, Y. Jimbo, Network-wide integration of stem cell-derived neurons and mouse cortical neurons using microfabricated co-culture devices. Biosystems 107, 1–8 (2012)
CrossRef
Google Scholar
C. Xie, Z. Lin, L. Hanson, Y. Cui, B. Cui, Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012)
CrossRef
Google Scholar
R. Kim, N. Hong, Y. Nam, Gold nanograin microelectrodes for neuroelectronic interfaces. Biotechnol. J. 8, 206–214 (2013)
CrossRef
Google Scholar
I. Suzuki, M. Fukuda, K. Shirakawa, H. Jiko, M. Gotoh, Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens. Bioelectron. 49, 270–275 (2013)
CrossRef
Google Scholar
Y. Furukawa, A. Shimada, K. Kato, H. Iwata, K. Torimitsu, Monitoring neural stem cell differentiation using PEDOT–PSS based MEA. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830, 4329–4333 (2013)
Google Scholar
M. Sessolo, D. Khodagholy, J. Rivnay, F. Maddalena, M. Gleyzes, E. Steidl et al., Easy-to-fabricate conducting polymer microelectrode arrays. Adv. Mater. 25, 2135–2139 (2013)
CrossRef
Google Scholar
Z.C. Lin, C. Xie, Y. Osakada, Y. Cui, B. Cui, Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014)
Google Scholar
A. Czeschik, A. Offenhäusser, B. Wolfrum, Fabrication of MEA-based nanocavity sensor arrays for extracellular recording of action potentials. Physica Status Solidi (A) (2014)
Google Scholar
V. Maybeck, R. Edgington, A. Bongrain, J.O. Welch, E. Scorsone, P. Bergonzo et al., Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv. Healthc Mater. 3, 283–289 (2014)
CrossRef
Google Scholar
R. Samba, T. Herrmann, G. Zeck, PEDOT–CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities. J. Neural Eng. 12, 016014 (2015)
CrossRef
Google Scholar
R. Kim, Y. Nam, Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive. J. Neural Eng. 12, 026010 (2015)
CrossRef
Google Scholar