In Vitro Neural Recording by Microelectrode Arrays

Chapter
Part of the Microsystems and Nanosystems book series (MICRONANO)

Abstract

Neural interface plays an important role in monitoring and modulating brain activity. In order to study the neural information processing in vitro, microelectrode array (MEA) platform is used with cell culture or brain slice. To measure neural signals simultaneously from multiple cells for long-term period, extracellular neural recording technique is preferred and subcellular-scale microelectrodes, dense array, and flexible substrates are ideal. In this chapter, we will introduce the state-of-the-art in vitro neural recording technology based on microfabricated electrodes or transistors. MEAs with metal-type microelectrodes are passive types, and MEAs with active electronic components (field-effect transistors or integrated circuits) are active types. The motivation, operation principles, fabrication processes and materials, and current trends are reviewed.

Keywords

Microelectrode array (MEA) Neural interface Neural recording Action potentials Extracellular recording 

References

  1. 1.
    R.R. Harrison, The Design of integrated circuits to observe brain activity. Proc. IEEE 96, 1203–1216 (2008)Google Scholar
  2. 2.
    P. Fromherz, Electrical interfacing of nerve cells and semiconductor chips. Chem. Phys. Chem. 3, 276 (2002)Google Scholar
  3. 3.
    P. Livi, F. Heer, U. Frey, D.J. Bakkum, A. Hierlemann, Compact voltage and current stimulation buffer for high-density microelectrode arrays. IEEE Trans. Biomed. Circ. Syst. 4, 372–378 (2010)Google Scholar
  4. 4.
    K. Mathieson, S. Kachiguine, C. Adams, W. Cunningham, D. Gunning, V. O’Shea et al., Large-area microelectrode arrays for recording of neural signals. IEEE Trans. Nucl. Sci. 51, 2027–2031 (2004)CrossRefGoogle Scholar
  5. 5.
    J.T. Robinson, M. Jorgolli, A.K. Shalek, M.H. Yoon, R.S. Gertner, H. Park, Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012)CrossRefGoogle Scholar
  6. 6.
    Z.L.C. Lin, C. Xie, Y. Osakada, Y. Cui, B.X. Cui, Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014)Google Scholar
  7. 7.
    A. Blau, A. Murr, S. Wolff, E. Sernagor, P. Medini, G. Iurilli et al., Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 32, 1778–1786 (2011)CrossRefGoogle Scholar
  8. 8.
    M. David-Pur, L. Bareket-Keren, G. Beit-Yaakov, D. Raz-Prag, Y. Hanein, All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomed. Microdevices. 16, 43–53 (2014)Google Scholar
  9. 9.
    A. Mondal, B. Baker, I.R. Harvey, A.P. Moreno, PerFlexMEA: a thin microporous microelectrode array for in vitro cardiac electrophysiological studies on hetero-cellular bilayers with controlled gap junction communication. Lab Chip 15, 2037–2048 (2015)CrossRefGoogle Scholar
  10. 10.
    S.A. Boppart, B.C. Wheeler, C.S. Wallace, A flexible perforated microelectrode array for extended neural recordings. IEEE Trans. Biomed. Eng. 39, 37–42 (1992)CrossRefGoogle Scholar
  11. 11.
    M. Ballini, J. Muller, P. Livi, Y. Chen, U. Frey, A. Stettler, et al., A 1024-Channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro. IEEE J. Solid-State Circ. 49, 2705–2719 (2014)Google Scholar
  12. 12.
    P. Bergveld, J. Wiersma, H. Meertens, Extracellular potential recordings by means of a field effect transistor without gate metal, called OSFET. IEEE Trans. Biomed. Eng. BME-23, 136–144 (1976)Google Scholar
  13. 13.
    P. Fromherz, A. Offenhausser, T. Vetter, J. Weis, A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252, 1290–1293 (1991)CrossRefGoogle Scholar
  14. 14.
    L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom, M. Koudelka-Hep et al., Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9, 2644–2651 (2009)CrossRefGoogle Scholar
  15. 15.
    U. Frey, U. Egert, F. Heer, S. Hafizovic, A. Hierlemann, Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens. Bioelectron. 24, 2191–2198 (2009)CrossRefGoogle Scholar
  16. 16.
    D.J. Bakkum, U. Frey, M. Radivojevic, T.L. Russell, J. Muller, M. Fiscella et al., Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites. Nat. Commun. 4, 2181 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Hierlemann, U. Frey, S. Hafizovic, F. Heer, Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-Based microelectrode arrays. Proc. IEEE 99, 252–284 (2011)Google Scholar
  18. 18.
    B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl et al., A 128 × 128 CMOS biosensor array for extracellular recording of neural activity. IEEE J. Solid-State Circ. 38, 2306–2317 (2003)CrossRefGoogle Scholar
  19. 19.
    I.L. Jones, T.L. Russell, K. Farrow, M. Fiscella, F. Franke, J. Müller, et al., A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array. Front. Neurosci. 9, (2015)Google Scholar
  20. 20.
    A. Offenhäusser, J. Rühe, W. Knoll, Neuronal cells cultured on modified microelectronic device surfaces. J. Vac. Sci. Technol., A 13, 2606–2612 (1995)CrossRefGoogle Scholar
  21. 21.
    A. Cohen, M.E. Spira, S. Yitshaik, G. Borghs, O. Shwartzglass, J. Shappir, Depletion type floating gate p-channel MOS transistor for recording action potentials generated by cultured neurons. Biosens. Bioelectron. 19, 1703–1709 (2004)Google Scholar
  22. 22.
    S. Meyburg, M. Goryll, J. Moers, S. Ingebrandt, S. Böcker-Meffert, H. Lüth, et al., N-Channel field-effect transistors with floating gates for extracellular recordings. Biosens. Bioelectron. 21, 1037–1044 (2006)Google Scholar
  23. 23.
    F.N. Hooge, 1/F noise sources. IEEE Trans. Electron. Devices 41, 1926–1935 (1994)CrossRefGoogle Scholar
  24. 24.
    B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, C.M. Lieber, Three-Dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010)Google Scholar
  25. 25.
    F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, et al., Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006)Google Scholar
  26. 26.
    Q. Qing, S.K. Pal, B. Tian, X. Duan, B.P. Timko, T. Cohen-Karni, et al., Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Nat. Acad. Sci. 107, 1882–1887 (2010)Google Scholar
  27. 27.
    R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie, X. Duan, et al., Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12, 3329–3333 (2012)Google Scholar
  28. 28.
    P.B. Kruskal, Z. Jiang, T. Gao, C.M. Lieber, Beyond the patch clamp: nanotechnologies for intracellular recording. Neuron 86, 21–24 (2015)Google Scholar
  29. 29.
    M. De Vittorio, L. Martiradonna, J.A. Assad, Nanotechnology and Neuroscience: Nano-Electronic, Photonic, and Mechanical Neuronal Interfacing (Springer, New York, 2014)CrossRefGoogle Scholar
  30. 30.
    V. Benfenati, S. Toffanin, S. Bonetti, G. Turatti, A. Pistone, M. Chiappalone, et al., A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12, 672–680 (2013)Google Scholar
  31. 31.
    D. Ghezzi, M.R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, et al., A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photon. 7, 400–406 (2013)Google Scholar
  32. 32.
    G. Lanzani, Materials for bioelectronics: Organic electronics meets biology. Nat. Mater. 13, 775–776 (2014)Google Scholar
  33. 33.
    V. Benfenati, N. Martino, M.R. Antognazza, A. Pistone, S. Toffanin, S. Ferroni et al., Photostimulation of whole-cell conductance in primary rat neocortical astrocytes mediated by organic semiconducting thin films. Adv. Healthc. Mater. 3, 392–399 (2014)CrossRefGoogle Scholar
  34. 34.
    M.E.J. Obien, K. Deligkaris, T. Bullmann, D.J. Bakkum, U. Frey, Revealing neuronal function through microelectrode array recordings. Syst. Biol. 8, 423 (2015)Google Scholar
  35. 35.
    C.M. Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic et al., An implantable 455-Active-Electrode 52-Channel CMOS neural probe. IEEE J. Solid-State Circ. 49, 248–261 (2014)CrossRefGoogle Scholar
  36. 36.
    W.M. Reichert, Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment (CRC Press, Boca Raton, 2008)Google Scholar
  37. 37.
    A. Denisov, E. Yeatman, Ultrasonic versus Inductive Power Delivery for miniature biomedical implants, in 2010 International Conference on Body Sensor Networks (BSN), 2010, pp. 84–89Google Scholar
  38. 38.
    K. Gosalia, J. Weiland, M. Humayun, G. Lazzi, Thermal elevation in the human eye and head due to the operation of a retinal prosthesis. IEEE Trans. Biomed. Eng. 51, 1469–1477 (2004)Google Scholar
  39. 39.
    J.N. Burghartz, W. Appel, C. Harendt, H. Rempp, H. Richter, M. Zimmermann, Ultra-thin chip technology and applications, a new paradigm in silicon technology. Solid-State Electron. 54, 818–829 (2010)Google Scholar
  40. 40.
    K. Kashyap, L.-C. Zheng, D.-Y. Lai, M. T. Hou, J.A. Yeh, Rollable Silicon IC wafers achieved by backside nanotexturing. IEEE Electron Device Lett. 36, 829–831 (2015)Google Scholar
  41. 41.
    A.L.X. Jiang, L.C. Ming, J.C.Y. Gao, T.K. Hwee, silicon wafer backside thinning with mechanical and chemical method for better mechanical property (2006), pp. 1–4Google Scholar
  42. 42.
    W.S. Wong, A. Salleo, Flexible Electronics: Materials and Applications (Springer, New York, 2009)CrossRefGoogle Scholar
  43. 43.
    P. Ihalainen, A. Määttänen, N. Sandler, Printing technologies for biomolecule and cell-based applications. Int. J. PharmGoogle Scholar
  44. 44.
    U. Meyer, Fundamentals of Tissue Engineering and Regenerative Medicine (Springer, Berlin, 2009)CrossRefGoogle Scholar
  45. 45.
    J.W. Lee, D. Kim, S. Yoo, H. Lee, G.-H. Lee, Y. Nam, Emerging neural stimulation technologies for bladder dysfunctions. Int. Neurourol. J. 19, 3–11 (2015)Google Scholar
  46. 46.
    D.-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010)Google Scholar
  47. 47.
    U. Frey, J. Sedivy, F. Heer, R. Pedron, M. Ballini, J. Mueller et al., Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circ. 45, 467–482 (2010)CrossRefGoogle Scholar
  48. 48.
    A. Hai, J. Shappir, M.E. Spira, In-cell recordings by extracellular microelectrodes. Nat. Methods 7, 200–202 (2010)CrossRefGoogle Scholar
  49. 49.
    J.H. Kim, G. Kang, Y. Nam, Y.K. Choi, Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Nanotechnology, 21, 85303, (2010)Google Scholar
  50. 50.
    E. Seker, Y. Berdichevsky, M.R. Begley, M.L. Reed, K.J. Staley, M.L. Yarmush, The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies. Nanotechnology 21, 125504 (2010)Google Scholar
  51. 51.
    D. Bruggemann, B. Wolfrum, V. Maybeck, Y. Mourzina, M. Jansen, A. Offenhausser, Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology 22, 265104 (2011)Google Scholar
  52. 52.
    Y. Takayama, H. Moriguchi, K. Kotani, T. Suzuki, K. Mabuchi, Y. Jimbo, Network-wide integration of stem cell-derived neurons and mouse cortical neurons using microfabricated co-culture devices. Biosystems 107, 1–8 (2012)CrossRefGoogle Scholar
  53. 53.
    C. Xie, Z. Lin, L. Hanson, Y. Cui, B. Cui, Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012)CrossRefGoogle Scholar
  54. 54.
    R. Kim, N. Hong, Y. Nam, Gold nanograin microelectrodes for neuroelectronic interfaces. Biotechnol. J. 8, 206–214 (2013)CrossRefGoogle Scholar
  55. 55.
    I. Suzuki, M. Fukuda, K. Shirakawa, H. Jiko, M. Gotoh, Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens. Bioelectron. 49, 270–275 (2013)CrossRefGoogle Scholar
  56. 56.
    Y. Furukawa, A. Shimada, K. Kato, H. Iwata, K. Torimitsu, Monitoring neural stem cell differentiation using PEDOT–PSS based MEA. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830, 4329–4333 (2013)Google Scholar
  57. 57.
    M. Sessolo, D. Khodagholy, J. Rivnay, F. Maddalena, M. Gleyzes, E. Steidl et al., Easy-to-fabricate conducting polymer microelectrode arrays. Adv. Mater. 25, 2135–2139 (2013)CrossRefGoogle Scholar
  58. 58.
    Z.C. Lin, C. Xie, Y. Osakada, Y. Cui, B. Cui, Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014)Google Scholar
  59. 59.
    A. Czeschik, A. Offenhäusser, B. Wolfrum, Fabrication of MEA-based nanocavity sensor arrays for extracellular recording of action potentials. Physica Status Solidi (A) (2014)Google Scholar
  60. 60.
    V. Maybeck, R. Edgington, A. Bongrain, J.O. Welch, E. Scorsone, P. Bergonzo et al., Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv. Healthc Mater. 3, 283–289 (2014)CrossRefGoogle Scholar
  61. 61.
    R. Samba, T. Herrmann, G. Zeck, PEDOT–CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities. J. Neural Eng. 12, 016014 (2015)CrossRefGoogle Scholar
  62. 62.
    R. Kim, Y. Nam, Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive. J. Neural Eng. 12, 026010 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations