Skip to main content

Measurement and Noise

  • Chapter
  • First Online:
Fundamentals of Nanomechanical Resonators

Abstract

Max Planck used to say that the only things that exist are those that can be measured. In this chapter a general vision of the issues faced while performing measurements of nanomechanical resonators is presented. Different noise sources are analyzed: thermomechanical noise, electrical noise (Johnson, 1∕f, shot noise), and amplifier noise; to later define the Allan variance and how it relates to frequency noise. This chapter will provide the reader with the necessary information and tools to understand the basics of measurements and to maybe motivate further reading beyond these pages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.B. Callen, T.A. Welton, Irreversibility and generalized noise. Phys. Rev. 83 (1), 34–40 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Nyquist, Thermal agitation of electric charge in conductors. Phys. Rev. 32 (1), 110–113 (1928)

    Article  MathSciNet  Google Scholar 

  3. J.B. Johnson, Thermal agitation of electricity in conductors. Nature 119, 50–51 (1927)

    Article  Google Scholar 

  4. M.L. Roukes, M.R. Freeman, R.S. Germain, R.C. Richardson, M.B. Ketchen, Hot-electrons and energy-transport in metals at millikelvin temperatures. Phys. Rev. Lett. 55 (4), 422–425 (1985)

    Article  Google Scholar 

  5. N. Campbell, The study of discontinuous phenomena. Proc. Camb. Philos. Soc. 15, 117–136 (1910)

    Google Scholar 

  6. N. Campbell, Discontinuities in light emission. Proc. Camb. Philos. Soc. 15, 310–328 (1910)

    MATH  Google Scholar 

  7. E. Mathieson, Derivation of noise formulas using Campbells theorem. Am. J. Phys. 45 (12), 1184–1186 (1977)

    Article  MathSciNet  Google Scholar 

  8. W. Schottky, Regarding spontaneous current fluctuation in different electricity conductors. Ann. Phys. 57 (23), 541–567 (1918)

    Article  Google Scholar 

  9. C. Beenakker, C. Schonenberger, Quantum shot noise. Phys. Today 56 (5), 37–42 (2003)

    Article  Google Scholar 

  10. D. Halford, A general mechanical model of random perturbations which generate a noise spectral density law —f—alpha with reference to flicker noise law 1/—f—. IEEE Trans. Instrum. Meas. 15 (4), 404–411 (1966)

    Article  Google Scholar 

  11. M.S. Keshner, 1/f noise. Proc. IEEE 70 (3), 212–218 (1982)

    Article  Google Scholar 

  12. F.N. Hooge, 1/f noise. Phys. B & C 83 (1), 14–23 (1976)

    Article  Google Scholar 

  13. E. Milotti, Linear processes that produce 1/f or flicker noise. Phys. Rev. E 51, 3087 (1995)

    Article  Google Scholar 

  14. C.D. Motchenbacher, J.A. Connelly, C.D. Motchenbacher, Low-Noise Electronic System Design (Wiley, New York, 1993)

    Google Scholar 

  15. A.K. Naik, M.S. Hanay, W.K. Hiebert, X.L. Feng, M.L. Roukes, Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 4 (7), 445–450 (2009)

    Article  Google Scholar 

  16. Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, M.L. Roukes, Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6 (4), 583–586 (2006)

    Article  Google Scholar 

  17. Y.T. Yang, C. Callegari, X.L. Feng, M.L. Roukes, Surface adsorbate fluctuations and noise in nanoelectromechanical systems. Nano Lett. 11 (4), 1753–1759 (2011)

    Article  Google Scholar 

  18. J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7 (5), 300–303 (2012)

    Article  Google Scholar 

  19. S. Schmid, P. Senn, C. Hierold, Electrostatically actuated nonconductive polymer microresonators in gaseous and aqueous environment. Sensors Actuators A Phys. 145–146, 442–448 (2008)

    Article  Google Scholar 

  20. X.L. Feng, C.J. White, A. Hajimiri, M.L. Roukes, A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat. Nanotechnol. 3 (6), 342–346 (2008)

    Article  Google Scholar 

  21. A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, S.T. Purcell, Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion. Nano Lett. 7 (8), 2252–2257 (2007)

    Article  Google Scholar 

  22. P. Vincent, S. Perisanu, A. Ayari, M. Choueib, V. Gouttenoire, M. Bechelany, A. Brioude, D. Cornu, S.T. Purcell, Driving self-sustained vibrations of nanowires with a constant electron beam. Phys. Rev. B 76 (8), 085435 (2007)

    Google Scholar 

  23. S. Schmid, P. Senn, C. Hierold, Electrostatically actuated nonconductive polymer microresonators in gaseous and aqueous environment. Sensors Actuators A Phys. 145, 442–448 (2008)

    Article  Google Scholar 

  24. L.G. Villanueva, R.B. Karabalin, M.H. Matheny, E. Kenig, M.C. Cross, M.L. Roukes, A nanoscale parametric feedback oscillator. Nano Lett. 11 (11), 5054–5059 (2011)

    Article  Google Scholar 

  25. L.G. Villanueva, E. Kenig, R.B. Karabalin, M.H. Matheny, R. Lifshitz, M.C. Cross, M.L. Roukes, Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110 (17), 177208 (2013)

    Google Scholar 

  26. E. Kenig, M.C. Cross, L.G. Villanueva, R.B. Karabalin, M.H. Matheny, R. Lifshitz, M.L. Roukes, Optimal operating points of oscillators using nonlinear resonators. Phys. Rev. E 86 (5), 056207 (2012)

    Google Scholar 

  27. C.Y. Chen, S. Lee, V.V. Deshpande, G.H. Lee, M. Lekas, K. Shepard, J. Hone, Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 8 (12), 923–927 (2013)

    Article  Google Scholar 

  28. C.J. Zuo, J. Van der Spiegel, G. Piazza, Dual-mode resonator and switchless reconfigurable oscillator based on piezoelectric ALN MEMS technology. IEEE Trans. Electron Devices 58 (10), 3599–3603 (2011)

    Article  Google Scholar 

  29. C.J. Zuo, J. Van der Spiegel, G. Piazza, 1.05-GHz CMOS oscillator based on lateral-field-excited piezoelectric ALN contour-mode MEMS resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 (1), 82–87 (2010)

    Google Scholar 

  30. Y. Hui, T.X. Nan, N.X. Sun, M. Rinaldi, High resolution magnetometer based on a high frequency magnetoelectric MEMS-CMOS oscillator. J. Microelectromech. Syst. 24 (1), 134–143 (2015)

    Article  Google Scholar 

  31. D.W. Allan, H.E. Machlan, J.E. Gray, National bureau of standards atomic time scales - generation, dissemination, stability, and accuracy. IEEE Trans. Instrum. Meas. 21 (4), 388–391 (1972)

    Article  Google Scholar 

  32. F.L. Walls, D.W. Allan, Measurements of frequency stability. Proc. IEEE 74 (1), 162–168 (1986)

    Article  Google Scholar 

  33. D.A. Allan, N Ashby, C.C. Hodge, The science of timekeeping. Report, Hewlett Packard (1997)

    Google Scholar 

  34. M. Sansa, E. Sage, E.C. Bullard, M. Gély, T. Alava, E. Colinet, A.K. Naik, L.G. Villanueva, L. Duraffourg, M.L. Roukes, G. Jourdan, S. Hentz, Frequency fluctuations in silicon nanoresonators (2015). arXiv:1506.08135 [cond-mat]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmid, S., Villanueva, L.G., Roukes, M.L. (2016). Measurement and Noise. In: Fundamentals of Nanomechanical Resonators. Springer, Cham. https://doi.org/10.1007/978-3-319-28691-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28691-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28689-1

  • Online ISBN: 978-3-319-28691-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics