Skip to main content

Lithium Niobate for M/NEMS Resonators

  • Chapter
  • First Online:
Piezoelectric MEMS Resonators

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Piezoelectric Radio frequency (RF) microelectromechanical systems (MEMS) resonators are chip-scale components embedded in the modern RF front ends to carry out the function of frequency selection and interference rejection. They are the building blocks of RF filters and oscillators. Their working principle leverages piezoelectric thin films to covert resonance phenomenon from the mechanical to the electrical domain. Piezoelectric MEMS resonators are still being extensively researched with the main focus placed on attaining the optimal combination of electromechanical coupling, higher Q, and wafer-level frequency agility. The intense development of piezoelectric MEMS resonators was triggered in the past decade by the demand for high-precision timing sources and high-performance filtering devices to address telecommunication needs in an already-crowded RF spectrum. Particularly, fueled by the fast growth of consumers and services in the mobile marketplace, the demand for bandwidth has resulted in increasingly stringent performance specifications for front-end filters and duplexers. In order to accommodate the emerging standards in the RF spectrum, the development of piezoelectric MEMS resonators faces many new challenges, including lower loss, wider bandwidth performance, better temperature stability, high power handling and linearity, and most important of all, frequency tunability and agility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gong S, Piazza G (2013) Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering. IEEE Trans Microw Theor Tech 61:403–414

    Article  Google Scholar 

  2. Klauder JR, Price AC, Darlington S, Albersheim WJ (1960) The theory and design of chirp radars. Bell Lab Tech J 39(4):745–808

    Article  Google Scholar 

  3. Arizmendi L (2004) Photonic applications of lithium niobate crystals. Phys Status Solidi 201:253–283

    Article  Google Scholar 

  4. Nassau K, Levinstein HJ, Loiacono GM (1966) Ferroelectric lithium niobate-1 growth, domain structure, dislocations and etching. Solid State Commun 4:19

    Google Scholar 

  5. Carruthers JR, Peterson GE, Grasso M, Bridenbaugh PM (1971) Nonstoichiometry and crystal growth of lithium niobate. J Appl Phys 42:1846–1851

    Article  Google Scholar 

  6. Ruby RC, Bradley P, Oshmyansky Y, Chien A, Larson JD (2001) Thin film bulk wave acoustic resonators (FBAR) for wireless applications. In: 2001 IEEE international ultrasonics symposium. Proceedings of the international symposium (Cat. No. 01CH37263), vol 1

    Google Scholar 

  7. Takada S, Ohnishi M, Hayakawa H, Mikoshiba N (1974) Optical waveguides of single crystal LiNbO3 film deposited by RF sputtering. Appl Phys Lett 24(10):490–492

    Article  Google Scholar 

  8. Huang CH, Rabson TA (1993) Low-loss thin-film LiNbO(3) optical waveguide sputtered onto a SiO(2)/Si substrate. Opt Lett 18:811–813

    Article  Google Scholar 

  9. Jiang YD, McGee J, Polley TA, Schwerzel RE, Hunt AT (2001) Fabrication and properties of epitaxial lithium niobate thin films by combustion chemical vapor deposition (CCVD). In: MRS Proc 688

    Google Scholar 

  10. Kadota M, Ogami T, Yamamoto K, Tochishita H, Negoro Y (2010) High-frequency lamb wave device composed of MEMS structure using LiNbO 3 thin film and air gap. IEEE Trans Ultrason Ferroelectr Freq Control 57:2564–2571

    Article  Google Scholar 

  11. Yablonovitch E, Gmitter T, Harbison JP, Bhat R (1987) Extreme selectivity in the lift-off of epitaxial GaAs films. Appl Phys Lett 51:2222–2224

    Article  Google Scholar 

  12. Callejo D, Bermúdez V, Serrano MD, Diéguez E (2002) Lithium niobate films on periodic poled lithium niobate substrates prepared by liquid phase epitaxy. J Cryst Growth 237–239:596–601

    Article  Google Scholar 

  13. Betts RA, Pitt CW (1985) Growth of thin-film lithium niobate by molecular beam epitaxy. Electron Lett 21(21):1985

    Article  Google Scholar 

  14. Levy M, Osgood RM, Liu R, Cross LE, Cargill GS, Kumar A, Bakhru H (1998) Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl Phys Lett 73(16):2293–2295

    Article  Google Scholar 

  15. Weis R, Gaylord T (1985) Lithium niobate: summary of physical properties and crystal structure R. Appl Phys A Mater Sci Process 37:191–203

    Article  Google Scholar 

  16. Kovacs G, Anhorn M, Engan HE, Visintini G, Ruppel CCW (1990) Improved material constants for LiNbO3 and LiTaO3. In: Proceedings of the Ultrasonics Symposium 1990, pp 435–438

    Google Scholar 

  17. Weis RS, Gaylord TK (1985) Lithium niobate: summary of physical properties and crystal structure. Appl Phys A 203:191–203

    Article  Google Scholar 

  18. Auld BA (1990) Acoustic fields and waves in solids, vol 1. RE Krieger, Malabar, FL

    Google Scholar 

  19. Piazza G, Stephanou PJ, Pisano AP (2006) Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators. J Microelectromech Syst 15:1406–1418

    Article  Google Scholar 

  20. Rais-Zadeh M, Gokhale VJ, Ansari A, Faucher M, Théron D, Cordier Y, Buchaillot L (2014) Gallium nitride as an electromechanical material. J Microelectromech Syst 23(6):1252–1271

    Article  Google Scholar 

  21. Lu R, Gong S (2015) Study of thermal nonlinearity in lithium niobate-based MEMS resonators. In: 2015 18th international solid-state sensors, actuators and microsystems conference (TRANSDUCERS), pp 1993–1996

    Google Scholar 

  22. Chandorkar SA, Agarwal M, Melamud R, Candler RN, Goodson KE, Kenny TW (2008) Limits of quality factor in bulk-mode micromechanical resonators. In: 2008 IEEE 21st international conference on micro electro mechanical systems, 2008

    Google Scholar 

  23. Gong S, Kuo NK, Piazza G (2011) A 1.75 GHz piezoelectrically-transduced SiC lateral overmoded bulk acoustic-wave resonator. In: 2011 16th international solid-state sensors, actuators and microsystems conference, TRANSDUCERS’11, 2011, pp 922–925

    Google Scholar 

  24. Gong S, Kuo NK, Piazza G (2011) GHz AlN lateral overmoded bulk acoustic wave resonators with a f·Q of 1.17 × 1013. In: Proceedings of the IEEE international frequency control symposium and exposition, 2011

    Google Scholar 

  25. Lakin KM, Kline GR, McCarron KT (1993) High-Q microwave acoustic resonators and filters. IEEE Trans Microw Theor Tech 41:2139–2146

    Article  Google Scholar 

  26. Pijolat M, Reinhardt A, Defay E, Deguet C, Mercier D, Aid M, Moulet JS, Ghyselen B, Gachon D, Ballandras S (2008) Large Qxf product for HBAR using smart cut transfer of LiNbO3 thin layers onto LiNbO3 substrate. In: 2008 IEEE ultrasonics symposium, 2008

    Google Scholar 

  27. H. Search, C. Journals, A. Contact, M. Iopscience, S. Mater, and I. P. Address. Investigation of quasi-shear-horizontal acoustic waves in thin plates of lithium niobate, vol 739.

    Google Scholar 

  28. Jin Y, Joshi SG (1996) Propagation of a quasi-shear horizontal acoustic wave in Z-X lithium niobate plates [and conductivity sensor application]. IEEE Trans Ultrason Ferroelectr Freq Control 43(3):491–494

    Article  Google Scholar 

  29. Kuznetsova IE, Zaitsev BD, Joshi SG, Borodina IA (2001) Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate. IEEE Trans Ultrason Ferroelectr Freq Control 48(1):322–328

    Article  Google Scholar 

  30. Kuznetsova IE, Zaitsev BD, Borodina IA, Teplyh AA, Shurygin VV, Joshi SG (2004) Investigation of acoustic waves of higher order propagating in plates of lithium niobate. Ultrasonics 42(1–9):179–182

    Article  Google Scholar 

  31. Hashimoto K (2009) RF bulk acoustic wave filters for communications. Artech House, Norwood, MA

    Google Scholar 

  32. Adler EL (1989) Electromechanical coupling to lamb and shear-horizontal modes in piezoelectric plates. IEEE Trans Ultrason Ferroelectr Freq Control 36(2):223–230

    Article  Google Scholar 

  33. Gong S, Piazza G (2014) An 880 MHz ladder filter formed by arrays of laterally vibrating thin film lithium niobate resonators. In: 2014 IEEE 27th international conference on micro electro mechanical systems, Jan 2014, pp 1241–1244

    Google Scholar 

  34. Campbell C (2012) Surface acoustic wave devices and their signal processing. Elsevier, Amsterdam

    Google Scholar 

  35. Knuuttila JV, Tikka PT, Salomaa MM (2000) Scanning Michelson interferometer for imaging surface acoustic wave fields. Opt Lett 25(9):613–615

    Article  Google Scholar 

  36. Hu H, Ricken R, Sohler W, Wehrspohn RB (2007) Lithium niobate ridge waveguides fabricated by wet etching. IEEE Photon Technol Lett 19:417–419

    Article  Google Scholar 

  37. Sones CL, Mailis S, Brocklesby WS, Eason RW, Owen JR (2002) Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations. J Mater Chem 12:295–298

    Article  Google Scholar 

  38. Cheng R-S, Wang T-J, Wang W-S (1997) Wet-etched ridge waveguides in Y-cut lithium niobate. J Light Technol 15(10):1880–1887

    Article  Google Scholar 

  39. Minakata M (1979) Efficient LiNbO3 balanced bridge modulator/switch with an ion-etched slot. Appl Phys Lett 35:40

    Article  Google Scholar 

  40. Christensen FK, Mullenborn M (1995) Sub-band-gap laser micromachining of lithium niobate. Appl Phys Lett 66(21):2772–2773

    Article  Google Scholar 

  41. Malshe A, Deshpande D, Stach E, Rajurkar K, Alexander D (2004) Investigation of femtosecond laser-assisted micromachining of lithium niobate. CIRP Ann Manuf Technol 53:187–190

    Article  Google Scholar 

  42. Deng J, Si G, Danner AJ (2010) Dry etching of LiNbO 3 using inductively coupled plasma. In: IEEE photonics global conference, 2010, pp 1–5

    Google Scholar 

  43. Hui H, Ricken R, Sohler W (2008) Etching of lithium niobate: from ridge waveguides to photonic crystal structures. In: 14th European conference on integrated optics and technical exhibition, contributed and invited papers, ECIO’08 Eindhoven, 11 Jun 2008 to 13 Jun 2008, pp 75–78

    Google Scholar 

  44. Lacour F, Courjal F, Bernal M-P, Sabac A, Bainier C, Spajer M (2005) Nanostructuring lithium niobate substrates by focused ion beam milling. Opt Mater 27:1421–1425

    Article  Google Scholar 

  45. Jianjie W, Jinyang L, Yanqing Y, Zhimei Q (2013) Reactive ion etching of Ti-diffused LiNbO3 slab waveguides. J Semicond 34(8):096001

    Google Scholar 

  46. Benchabane S, Robert L, Rauch JY, Khelif A, Laude V (2009) Highly selective electroplated nickel mask for lithium niobate dry etching. J Appl Phys 105:094109

    Article  Google Scholar 

  47. Queste S, Courjon E, Ulliac G, Salut R, Petrini V, Rauch J, Besançon Cedex F (2008) Deep reactive ion etching of quartz, lithium niobate and lead titanate. In: JNTE proceedings

    Google Scholar 

  48. Wang R, Bhave SA, Bhattacharjee K (2015) Design and fabrication of S0 lamb-wave thin-film lithium niobate micromechanical resonators. J Microelectromech Syst 24(2):300–308

    Article  Google Scholar 

  49. Pal S, Das B (2010) Fabrication of ridge waveguide in X-cut LiNbO3 for nonlinear optic applications. In: International conference on fiber optics and photonics, 2010, p 81730W

    Google Scholar 

  50. Deng J, Si G, Danner AJ (2010) Dry etching of LiNbO3 using inductively coupled plasma. In: Photonics global conference (PGC), 2010, pp 1–5

    Google Scholar 

  51. Gong S, Piazza G (2013) Figure-of-merit enhancement for laterally vibrating lithium niobate MEMS resonators. IEEE Trans Electron Dev 60(11):3888–3894

    Article  Google Scholar 

  52. Olsson RH, Hattar K, Homeijer SJ, Wiwi M, Eichenfield M, Branch DW, Baker MS, Nguyen J, Clark B, Bauer T, Friedmann TA (2014) A high electromechanical coupling coefficient SH0 Lamb wave lithium niobate micromechanical resonator and a method for fabrication. Sensor Actuat A Phys 209:183–190

    Article  Google Scholar 

  53. Randles AB, Esashi M, Tanaka S (2010) Etch rate dependence on crystal orientation of lithium niobate. IEEE Trans Ultrason Ferroelectr Freq Control 57:2372–2380

    Article  Google Scholar 

  54. Gong S, Piazza G (2012) Weighted electrode configuration for electromechanical coupling enhancement in a new class of micromachined lithium niobate laterally vibrating resonators. In: 2012 international electron devices meeting, Dec 2012, pp 15.6.1–15.6.4

    Google Scholar 

  55. Wang R, Bhave RA, Bhattacharjee K (2014) Etch-a-sketch resonator. 2014 solid state sensor, actuator microsystems work (hilt Head 2014), no. 101–102

    Google Scholar 

  56. Gong S, Shi L, Piazza G (2012) High electromechanical coupling MEMS resonators at 530 MHz using ion sliced X-cut LiNbO3 thin film. Microw Symp Dig (MTT) 1:2–4

    Google Scholar 

  57. Shi L, Piazza G (2014) Lithium niobate on silicon dioxide suspended membranes: a technology platform for engineering the temperature coefficient of frequency of high electromechanical coupling resonators. J Microelectromech Syst 1

    Google Scholar 

  58. Schrempel F, Gischkat T, Hartung H, Höche T, Kley E-B, Tünnermann A, Wesch W (2009) Ultrathin membranes in X-cut lithium niobate. Opt Lett 34(9):1426–1428

    Article  Google Scholar 

  59. Olsson RH, Hatta K, Baker MS, Wiwi M, Nguyen J, Padilla C, Homeijer SJ, Wendt JR, Friedmann TA (2014) Lamb wave micromechanical resonators formed in thin plates of lithium niobate. In: Hilton head solid-state sensors, actuators and microsystems workshop, 2014, pp 281–284

    Google Scholar 

  60. Gachon D, Lengaigne G, Benchabane S, Majjad H, Ballandras S, Laude V (2006) High frequency bulk acoustic wave resonator using thinned monocrystalline lithium niobate. In: Proceedings of the 20th European frequency and time forum, pp 14–17

    Google Scholar 

  61. Pijolat M, Loubriat S, Queste S, Mercier D, Reinhardt A, Defaÿ E, Deguet C, Clavelier L, Moriceau H, Aïd M, Ballandras S (2009) Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer. Appl Phys Lett 95:182106

    Article  Google Scholar 

  62. Kadota M, Ogami T, Yamamoto K, Negoro Y, Tochishita H (2009) 4.5 GHz lamb wave device composed of LiNbO3 thin film. In: IEEE MTT-S international microwave symposium digest, 2009, pp 333–336

    Google Scholar 

  63. Rinaldi M, Zuniga C, Zuo C, Piazza G (2010) Super-high-frequency two-port AlN contour-mode resonators for RF applications. IEEE Trans Ultrason Ferroelectr Freq Control 57:38–45

    Google Scholar 

  64. Gong S, Piazza G (2014) Overmoded shear horizontal wave MEMS resonators using X-cut lithium niobate thin film. In: 2014 IEEE international ultrasonics symposium (IUS), 2014, pp568–571

    Google Scholar 

  65. Song YH, Gong S (2016) Arraying SH0 lithium niobate laterally vibrating resonators for mitigation of higher order spurious modes. In: IEEE 29th international conference on micro electro mechanical systems (MEMS), Jan 2016, vol 7, pp 111–114

    Google Scholar 

  66. Song YH, Gong S (2016) Analysis and removal of spurious response in SH0 lithium niobate MEMS resonators. IEEE Trans Electron Dev 63(5):2066–2073

    Article  Google Scholar 

  67. Gachon D, Lengaigne G, Gauthier-Manuel L, Laude V, Ballandras S (2007) Development of high frequency bulk acoustic wave resonator using thinned single-crystal lithium niobate. In: Proceedings of the IEEE international frequency control symposium and exposition, 2007, pp 810–812

    Google Scholar 

  68. Aigner R, Kaitila J, Ella J, Elbrecht L, Nessler W, Handtmann M, Herzog T-R, Marksteiner S (2003) Bulk-acoustic-wave filters: performance optimization and volume manufacturing. Int Microw Symp Dig 3:2003

    Google Scholar 

  69. Ruby R (2007) Review and comparison of bulk acoustic wave FBAR, SMR technology. In: Proceedings – IEEE ultrasonics symposium, 2007, pp 1029–1040

    Google Scholar 

  70. Piazza G, Stephanou PJ, Pisano AP (2006) AlN contour-mode vibrating RF MEMS for next generation wireless communications. In: 2006 European solid-state device conference, 2006

    Google Scholar 

  71. Lakin KM (2005) Thin film resonator technology. IEEE Trans Ultrason Ferroelectr Freq Control 52:707–716

    Article  Google Scholar 

  72. Branch D, Wojciechowski K, Olsson RH (2014) Elucidating the origin of spurious modes in aluminum nitride microresonators using a 2-D finite-element model. IEEE Trans Ultrason Ferroelectr Freq Control 61(5):729–738

    Article  Google Scholar 

  73. Giovannini M, Yazici S, Kuo NK, Piazza G (2014) Apodization technique for spurious mode suppression in AlN contour-mode resonators. Sensor Actuat A Phys 206:42–50

    Article  Google Scholar 

  74. Olsson RH, Nguyen J, Pluym T, Hietala VM (2014) A method for attenuating the spurious responses of aluminum nitride micromechanical filters. J Microelectromech Syst 23(5):1198–1207

    Article  Google Scholar 

  75. Gao A, Gong S (2016) Harnessing mode conversion for spurious mode suppression in AlN laterally vibrating resonators. J Microelectromech Syst 25(3):450–458

    Article  Google Scholar 

  76. Song YH, Gong S (2016) Arraying SH0 lithium niobate laterally vibrating resonators for mitigation of higher order spurious modes. In: IEEE 28th international conference on micro electro mechanical systems (MEMS), 2016, pp 111–114

    Google Scholar 

  77. Song YH, Gong S (2015) Spurious mode suppression in SH0 lithium niobate laterally vibrating MEMS resonators. In: 2015 IEEE international electron device meeting (IEDM), 2015, pp 18.5.1–18.5.4

    Google Scholar 

  78. Song YH, Gong S (2015) Elimination of spurious modes in SH0 lithium niobate laterally vibrating resonators. IEEE Electron Dev Lett 36(11):1198–1201

    Article  Google Scholar 

  79. Gong S, Piazza G (2013) Multi-frequency wideband RF filters using high electromechanical coupling laterally vibrating lithium niobate MEMS resonators. In: 2013 IEEE 26th international conference on micro electro mechanical systems, MEMS, pp 785–788

    Google Scholar 

  80. Lin C-M, Yen T-T, Lai Y-J, Felmetsger VV, Hopcroft MA, Kuypers JH, Pisano AP (2010) Temperature-compensated aluminum nitride lamb wave resonators. IEEE Trans Ultrason Ferroelectr Freq Control 57:524–532

    Article  Google Scholar 

  81. Gong S, Piazza G (2013) Large frequency tuning of lithium niobate laterally vibrating MEMS resonators via electric boundary reconfiguration. In: 2013 transducers and eurosensors XXVII: the 17th international conference on solid-state sensors, actuators and microsystems, transducers and eurosensors 2013, pp 2465–2468

    Google Scholar 

  82. Kadota M, Ogami T (2011) 5.4 GHz Lamb wave resonator on LiNbO3 thin crystal plate and its application. Jpn J Appl Phys 50

    Google Scholar 

  83. Reinhardt A, Defay E, Perruchot F, Billard C (2012) Tunable composite piezoelectric resonators: a possible holy grail of RF-filters. Int Microw Symp Dig 2012:1–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbin Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gong, S. (2017). Lithium Niobate for M/NEMS Resonators. In: Bhugra, H., Piazza, G. (eds) Piezoelectric MEMS Resonators. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28688-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28688-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28686-0

  • Online ISBN: 978-3-319-28688-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics