Abstract
Piezoelectric Radio frequency (RF) microelectromechanical systems (MEMS) resonators are chip-scale components embedded in the modern RF front ends to carry out the function of frequency selection and interference rejection. They are the building blocks of RF filters and oscillators. Their working principle leverages piezoelectric thin films to covert resonance phenomenon from the mechanical to the electrical domain. Piezoelectric MEMS resonators are still being extensively researched with the main focus placed on attaining the optimal combination of electromechanical coupling, higher Q, and wafer-level frequency agility. The intense development of piezoelectric MEMS resonators was triggered in the past decade by the demand for high-precision timing sources and high-performance filtering devices to address telecommunication needs in an already-crowded RF spectrum. Particularly, fueled by the fast growth of consumers and services in the mobile marketplace, the demand for bandwidth has resulted in increasingly stringent performance specifications for front-end filters and duplexers. In order to accommodate the emerging standards in the RF spectrum, the development of piezoelectric MEMS resonators faces many new challenges, including lower loss, wider bandwidth performance, better temperature stability, high power handling and linearity, and most important of all, frequency tunability and agility.
Keywords
- Etch Rate
- Surface Acoustic Wave
- Lithium Niobate
- Electromechanical Coupling
- Sacrificial Layer
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
















References
Gong S, Piazza G (2013) Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering. IEEE Trans Microw Theor Tech 61:403–414
Klauder JR, Price AC, Darlington S, Albersheim WJ (1960) The theory and design of chirp radars. Bell Lab Tech J 39(4):745–808
Arizmendi L (2004) Photonic applications of lithium niobate crystals. Phys Status Solidi 201:253–283
Nassau K, Levinstein HJ, Loiacono GM (1966) Ferroelectric lithium niobate-1 growth, domain structure, dislocations and etching. Solid State Commun 4:19
Carruthers JR, Peterson GE, Grasso M, Bridenbaugh PM (1971) Nonstoichiometry and crystal growth of lithium niobate. J Appl Phys 42:1846–1851
Ruby RC, Bradley P, Oshmyansky Y, Chien A, Larson JD (2001) Thin film bulk wave acoustic resonators (FBAR) for wireless applications. In: 2001 IEEE international ultrasonics symposium. Proceedings of the international symposium (Cat. No. 01CH37263), vol 1
Takada S, Ohnishi M, Hayakawa H, Mikoshiba N (1974) Optical waveguides of single crystal LiNbO3 film deposited by RF sputtering. Appl Phys Lett 24(10):490–492
Huang CH, Rabson TA (1993) Low-loss thin-film LiNbO(3) optical waveguide sputtered onto a SiO(2)/Si substrate. Opt Lett 18:811–813
Jiang YD, McGee J, Polley TA, Schwerzel RE, Hunt AT (2001) Fabrication and properties of epitaxial lithium niobate thin films by combustion chemical vapor deposition (CCVD). In: MRS Proc 688
Kadota M, Ogami T, Yamamoto K, Tochishita H, Negoro Y (2010) High-frequency lamb wave device composed of MEMS structure using LiNbO 3 thin film and air gap. IEEE Trans Ultrason Ferroelectr Freq Control 57:2564–2571
Yablonovitch E, Gmitter T, Harbison JP, Bhat R (1987) Extreme selectivity in the lift-off of epitaxial GaAs films. Appl Phys Lett 51:2222–2224
Callejo D, Bermúdez V, Serrano MD, Diéguez E (2002) Lithium niobate films on periodic poled lithium niobate substrates prepared by liquid phase epitaxy. J Cryst Growth 237–239:596–601
Betts RA, Pitt CW (1985) Growth of thin-film lithium niobate by molecular beam epitaxy. Electron Lett 21(21):1985
Levy M, Osgood RM, Liu R, Cross LE, Cargill GS, Kumar A, Bakhru H (1998) Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl Phys Lett 73(16):2293–2295
Weis R, Gaylord T (1985) Lithium niobate: summary of physical properties and crystal structure R. Appl Phys A Mater Sci Process 37:191–203
Kovacs G, Anhorn M, Engan HE, Visintini G, Ruppel CCW (1990) Improved material constants for LiNbO3 and LiTaO3. In: Proceedings of the Ultrasonics Symposium 1990, pp 435–438
Weis RS, Gaylord TK (1985) Lithium niobate: summary of physical properties and crystal structure. Appl Phys A 203:191–203
Auld BA (1990) Acoustic fields and waves in solids, vol 1. RE Krieger, Malabar, FL
Piazza G, Stephanou PJ, Pisano AP (2006) Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators. J Microelectromech Syst 15:1406–1418
Rais-Zadeh M, Gokhale VJ, Ansari A, Faucher M, Théron D, Cordier Y, Buchaillot L (2014) Gallium nitride as an electromechanical material. J Microelectromech Syst 23(6):1252–1271
Lu R, Gong S (2015) Study of thermal nonlinearity in lithium niobate-based MEMS resonators. In: 2015 18th international solid-state sensors, actuators and microsystems conference (TRANSDUCERS), pp 1993–1996
Chandorkar SA, Agarwal M, Melamud R, Candler RN, Goodson KE, Kenny TW (2008) Limits of quality factor in bulk-mode micromechanical resonators. In: 2008 IEEE 21st international conference on micro electro mechanical systems, 2008
Gong S, Kuo NK, Piazza G (2011) A 1.75 GHz piezoelectrically-transduced SiC lateral overmoded bulk acoustic-wave resonator. In: 2011 16th international solid-state sensors, actuators and microsystems conference, TRANSDUCERS’11, 2011, pp 922–925
Gong S, Kuo NK, Piazza G (2011) GHz AlN lateral overmoded bulk acoustic wave resonators with a f·Q of 1.17 × 1013. In: Proceedings of the IEEE international frequency control symposium and exposition, 2011
Lakin KM, Kline GR, McCarron KT (1993) High-Q microwave acoustic resonators and filters. IEEE Trans Microw Theor Tech 41:2139–2146
Pijolat M, Reinhardt A, Defay E, Deguet C, Mercier D, Aid M, Moulet JS, Ghyselen B, Gachon D, Ballandras S (2008) Large Qxf product for HBAR using smart cut transfer of LiNbO3 thin layers onto LiNbO3 substrate. In: 2008 IEEE ultrasonics symposium, 2008
H. Search, C. Journals, A. Contact, M. Iopscience, S. Mater, and I. P. Address. Investigation of quasi-shear-horizontal acoustic waves in thin plates of lithium niobate, vol 739.
Jin Y, Joshi SG (1996) Propagation of a quasi-shear horizontal acoustic wave in Z-X lithium niobate plates [and conductivity sensor application]. IEEE Trans Ultrason Ferroelectr Freq Control 43(3):491–494
Kuznetsova IE, Zaitsev BD, Joshi SG, Borodina IA (2001) Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate. IEEE Trans Ultrason Ferroelectr Freq Control 48(1):322–328
Kuznetsova IE, Zaitsev BD, Borodina IA, Teplyh AA, Shurygin VV, Joshi SG (2004) Investigation of acoustic waves of higher order propagating in plates of lithium niobate. Ultrasonics 42(1–9):179–182
Hashimoto K (2009) RF bulk acoustic wave filters for communications. Artech House, Norwood, MA
Adler EL (1989) Electromechanical coupling to lamb and shear-horizontal modes in piezoelectric plates. IEEE Trans Ultrason Ferroelectr Freq Control 36(2):223–230
Gong S, Piazza G (2014) An 880 MHz ladder filter formed by arrays of laterally vibrating thin film lithium niobate resonators. In: 2014 IEEE 27th international conference on micro electro mechanical systems, Jan 2014, pp 1241–1244
Campbell C (2012) Surface acoustic wave devices and their signal processing. Elsevier, Amsterdam
Knuuttila JV, Tikka PT, Salomaa MM (2000) Scanning Michelson interferometer for imaging surface acoustic wave fields. Opt Lett 25(9):613–615
Hu H, Ricken R, Sohler W, Wehrspohn RB (2007) Lithium niobate ridge waveguides fabricated by wet etching. IEEE Photon Technol Lett 19:417–419
Sones CL, Mailis S, Brocklesby WS, Eason RW, Owen JR (2002) Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations. J Mater Chem 12:295–298
Cheng R-S, Wang T-J, Wang W-S (1997) Wet-etched ridge waveguides in Y-cut lithium niobate. J Light Technol 15(10):1880–1887
Minakata M (1979) Efficient LiNbO3 balanced bridge modulator/switch with an ion-etched slot. Appl Phys Lett 35:40
Christensen FK, Mullenborn M (1995) Sub-band-gap laser micromachining of lithium niobate. Appl Phys Lett 66(21):2772–2773
Malshe A, Deshpande D, Stach E, Rajurkar K, Alexander D (2004) Investigation of femtosecond laser-assisted micromachining of lithium niobate. CIRP Ann Manuf Technol 53:187–190
Deng J, Si G, Danner AJ (2010) Dry etching of LiNbO 3 using inductively coupled plasma. In: IEEE photonics global conference, 2010, pp 1–5
Hui H, Ricken R, Sohler W (2008) Etching of lithium niobate: from ridge waveguides to photonic crystal structures. In: 14th European conference on integrated optics and technical exhibition, contributed and invited papers, ECIO’08 Eindhoven, 11 Jun 2008 to 13 Jun 2008, pp 75–78
Lacour F, Courjal F, Bernal M-P, Sabac A, Bainier C, Spajer M (2005) Nanostructuring lithium niobate substrates by focused ion beam milling. Opt Mater 27:1421–1425
Jianjie W, Jinyang L, Yanqing Y, Zhimei Q (2013) Reactive ion etching of Ti-diffused LiNbO3 slab waveguides. J Semicond 34(8):096001
Benchabane S, Robert L, Rauch JY, Khelif A, Laude V (2009) Highly selective electroplated nickel mask for lithium niobate dry etching. J Appl Phys 105:094109
Queste S, Courjon E, Ulliac G, Salut R, Petrini V, Rauch J, Besançon Cedex F (2008) Deep reactive ion etching of quartz, lithium niobate and lead titanate. In: JNTE proceedings
Wang R, Bhave SA, Bhattacharjee K (2015) Design and fabrication of S0 lamb-wave thin-film lithium niobate micromechanical resonators. J Microelectromech Syst 24(2):300–308
Pal S, Das B (2010) Fabrication of ridge waveguide in X-cut LiNbO3 for nonlinear optic applications. In: International conference on fiber optics and photonics, 2010, p 81730W
Deng J, Si G, Danner AJ (2010) Dry etching of LiNbO3 using inductively coupled plasma. In: Photonics global conference (PGC), 2010, pp 1–5
Gong S, Piazza G (2013) Figure-of-merit enhancement for laterally vibrating lithium niobate MEMS resonators. IEEE Trans Electron Dev 60(11):3888–3894
Olsson RH, Hattar K, Homeijer SJ, Wiwi M, Eichenfield M, Branch DW, Baker MS, Nguyen J, Clark B, Bauer T, Friedmann TA (2014) A high electromechanical coupling coefficient SH0 Lamb wave lithium niobate micromechanical resonator and a method for fabrication. Sensor Actuat A Phys 209:183–190
Randles AB, Esashi M, Tanaka S (2010) Etch rate dependence on crystal orientation of lithium niobate. IEEE Trans Ultrason Ferroelectr Freq Control 57:2372–2380
Gong S, Piazza G (2012) Weighted electrode configuration for electromechanical coupling enhancement in a new class of micromachined lithium niobate laterally vibrating resonators. In: 2012 international electron devices meeting, Dec 2012, pp 15.6.1–15.6.4
Wang R, Bhave RA, Bhattacharjee K (2014) Etch-a-sketch resonator. 2014 solid state sensor, actuator microsystems work (hilt Head 2014), no. 101–102
Gong S, Shi L, Piazza G (2012) High electromechanical coupling MEMS resonators at 530 MHz using ion sliced X-cut LiNbO3 thin film. Microw Symp Dig (MTT) 1:2–4
Shi L, Piazza G (2014) Lithium niobate on silicon dioxide suspended membranes: a technology platform for engineering the temperature coefficient of frequency of high electromechanical coupling resonators. J Microelectromech Syst 1
Schrempel F, Gischkat T, Hartung H, Höche T, Kley E-B, Tünnermann A, Wesch W (2009) Ultrathin membranes in X-cut lithium niobate. Opt Lett 34(9):1426–1428
Olsson RH, Hatta K, Baker MS, Wiwi M, Nguyen J, Padilla C, Homeijer SJ, Wendt JR, Friedmann TA (2014) Lamb wave micromechanical resonators formed in thin plates of lithium niobate. In: Hilton head solid-state sensors, actuators and microsystems workshop, 2014, pp 281–284
Gachon D, Lengaigne G, Benchabane S, Majjad H, Ballandras S, Laude V (2006) High frequency bulk acoustic wave resonator using thinned monocrystalline lithium niobate. In: Proceedings of the 20th European frequency and time forum, pp 14–17
Pijolat M, Loubriat S, Queste S, Mercier D, Reinhardt A, Defaÿ E, Deguet C, Clavelier L, Moriceau H, Aïd M, Ballandras S (2009) Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer. Appl Phys Lett 95:182106
Kadota M, Ogami T, Yamamoto K, Negoro Y, Tochishita H (2009) 4.5 GHz lamb wave device composed of LiNbO3 thin film. In: IEEE MTT-S international microwave symposium digest, 2009, pp 333–336
Rinaldi M, Zuniga C, Zuo C, Piazza G (2010) Super-high-frequency two-port AlN contour-mode resonators for RF applications. IEEE Trans Ultrason Ferroelectr Freq Control 57:38–45
Gong S, Piazza G (2014) Overmoded shear horizontal wave MEMS resonators using X-cut lithium niobate thin film. In: 2014 IEEE international ultrasonics symposium (IUS), 2014, pp568–571
Song YH, Gong S (2016) Arraying SH0 lithium niobate laterally vibrating resonators for mitigation of higher order spurious modes. In: IEEE 29th international conference on micro electro mechanical systems (MEMS), Jan 2016, vol 7, pp 111–114
Song YH, Gong S (2016) Analysis and removal of spurious response in SH0 lithium niobate MEMS resonators. IEEE Trans Electron Dev 63(5):2066–2073
Gachon D, Lengaigne G, Gauthier-Manuel L, Laude V, Ballandras S (2007) Development of high frequency bulk acoustic wave resonator using thinned single-crystal lithium niobate. In: Proceedings of the IEEE international frequency control symposium and exposition, 2007, pp 810–812
Aigner R, Kaitila J, Ella J, Elbrecht L, Nessler W, Handtmann M, Herzog T-R, Marksteiner S (2003) Bulk-acoustic-wave filters: performance optimization and volume manufacturing. Int Microw Symp Dig 3:2003
Ruby R (2007) Review and comparison of bulk acoustic wave FBAR, SMR technology. In: Proceedings – IEEE ultrasonics symposium, 2007, pp 1029–1040
Piazza G, Stephanou PJ, Pisano AP (2006) AlN contour-mode vibrating RF MEMS for next generation wireless communications. In: 2006 European solid-state device conference, 2006
Lakin KM (2005) Thin film resonator technology. IEEE Trans Ultrason Ferroelectr Freq Control 52:707–716
Branch D, Wojciechowski K, Olsson RH (2014) Elucidating the origin of spurious modes in aluminum nitride microresonators using a 2-D finite-element model. IEEE Trans Ultrason Ferroelectr Freq Control 61(5):729–738
Giovannini M, Yazici S, Kuo NK, Piazza G (2014) Apodization technique for spurious mode suppression in AlN contour-mode resonators. Sensor Actuat A Phys 206:42–50
Olsson RH, Nguyen J, Pluym T, Hietala VM (2014) A method for attenuating the spurious responses of aluminum nitride micromechanical filters. J Microelectromech Syst 23(5):1198–1207
Gao A, Gong S (2016) Harnessing mode conversion for spurious mode suppression in AlN laterally vibrating resonators. J Microelectromech Syst 25(3):450–458
Song YH, Gong S (2016) Arraying SH0 lithium niobate laterally vibrating resonators for mitigation of higher order spurious modes. In: IEEE 28th international conference on micro electro mechanical systems (MEMS), 2016, pp 111–114
Song YH, Gong S (2015) Spurious mode suppression in SH0 lithium niobate laterally vibrating MEMS resonators. In: 2015 IEEE international electron device meeting (IEDM), 2015, pp 18.5.1–18.5.4
Song YH, Gong S (2015) Elimination of spurious modes in SH0 lithium niobate laterally vibrating resonators. IEEE Electron Dev Lett 36(11):1198–1201
Gong S, Piazza G (2013) Multi-frequency wideband RF filters using high electromechanical coupling laterally vibrating lithium niobate MEMS resonators. In: 2013 IEEE 26th international conference on micro electro mechanical systems, MEMS, pp 785–788
Lin C-M, Yen T-T, Lai Y-J, Felmetsger VV, Hopcroft MA, Kuypers JH, Pisano AP (2010) Temperature-compensated aluminum nitride lamb wave resonators. IEEE Trans Ultrason Ferroelectr Freq Control 57:524–532
Gong S, Piazza G (2013) Large frequency tuning of lithium niobate laterally vibrating MEMS resonators via electric boundary reconfiguration. In: 2013 transducers and eurosensors XXVII: the 17th international conference on solid-state sensors, actuators and microsystems, transducers and eurosensors 2013, pp 2465–2468
Kadota M, Ogami T (2011) 5.4 GHz Lamb wave resonator on LiNbO3 thin crystal plate and its application. Jpn J Appl Phys 50
Reinhardt A, Defay E, Perruchot F, Billard C (2012) Tunable composite piezoelectric resonators: a possible holy grail of RF-filters. Int Microw Symp Dig 2012:1–3
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Gong, S. (2017). Lithium Niobate for M/NEMS Resonators. In: Bhugra, H., Piazza, G. (eds) Piezoelectric MEMS Resonators. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28688-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-28688-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28686-0
Online ISBN: 978-3-319-28688-4
eBook Packages: EngineeringEngineering (R0)