Abstract
We study the smoothness of paging algorithms. How much can the number of page faults increase due to a perturbation of the request sequence? We call a paging algorithm smooth if the maximal increase in page faults is proportional to the number of changes in the request sequence. We also introduce quantitative smoothness notions that measure the smoothness of an algorithm.
We derive lower and upper bounds on the smoothness of deterministic and randomized demand-paging and competitive algorithms. Among strongly-competitive deterministic algorithms LRU matches the lower bound, while FIFO matches the upper bound.
Well-known randomized algorithms like Partition, Equitable, or Mark are shown not to be smooth. We introduce two new randomized algorithms, called Smoothed-LRU and LRU-Random. Smoothed-LRU allows to sacrifice competitiveness for smoothness, where the trade-off is controlled by a parameter. LRU-Random is at least as competitive as any deterministic algorithm while smoother.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Belady, L.A.: A study of replacement algorithms for virtual-storage computer. IBM Syst. J. 5(2), 78–101 (1966)
Mattson, R.L., Gecsei, J., Slutz, D.R., Traiger, I.L.: Evaluation techniques for storage hierarchies. IBM Syst. J. 9(2), 78–117 (1970)
Aho, A., Denning, P., Ullman, J.: Principles of optimal page replacement. J. ACM 18(1), 80–93 (1971)
Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)
McGeoch, L., Sleator, D.: A strongly competitive randomized paging algorithm. Algorithmica 6, 816–825 (1991). doi:10.1007/BF01759073
Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging algorithms. Theoret. Comput. Sci. 234(1–2), 203–218 (2000)
Wilhelm, R., et al.: The worst-case execution-time problem-overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3), 36:1–36:53 (2008)
Axer, P., et al.: Building timing predictable embedded systems. ACM Trans. Embed. Comput. Syst. 13(4), 82:1–82:37 (2014)
Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of programs. Commun. ACM 55(8), 107–115 (2012)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)
Doychev, G., et al.: CacheAudit: a tool for the static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1), 4:1–4:32 (2015)
Doyen, L., Henzinger, T., Legay, A., Nickovic, D.: Robustness of sequential circuits. In: ACSD 2010, pp. 77–84 (2010)
Kleene, S.: Representation of events in nerve nets and finite automata. In: Automata Studies, Princeton University Press, Princeton (1956)
Perles, M., Rabin, M., Shamir, E.: The theory of definite automata. IEEE Trans. Electron. Comput. 12(3), 233–243 (1963)
Liu, C.L.: Some memory aspects of finite automata. Technical report 411, Massachusetts Institute of Technology, May 1963
Reineke, J., Grund, D.: Sensitivity of cache replacement policies. ACM Trans. Embed. Comput. Syst. 12(1s), 42:1–42:18 (2013)
Cazorla, F.J., et al.: PROARTIS: probabilistically analyzable real-time systems. ACM Trans. Embed. Comput. Syst. 12(2s), 94:1–94:26 (2013)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, New York (1998)
Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive paging algorithms. J. Algorithms 12(4), 685–699 (1991)
Reineke, J., Salinger, A.: On the smoothness of paging algorithms, October 2015. arxiv:1510.03362
Acknowledgments
This work was partially supported by the DFG as part of the SFB/TR 14 AVACS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Reineke, J., Salinger, A. (2015). On the Smoothness of Paging Algorithms. In: Sanità, L., Skutella, M. (eds) Approximation and Online Algorithms. WAOA 2015. Lecture Notes in Computer Science(), vol 9499. Springer, Cham. https://doi.org/10.1007/978-3-319-28684-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-28684-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28683-9
Online ISBN: 978-3-319-28684-6
eBook Packages: Computer ScienceComputer Science (R0)