Skip to main content

On the Smoothness of Paging Algorithms

  • Conference paper
  • First Online:
Book cover Approximation and Online Algorithms (WAOA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9499))

Included in the following conference series:

Abstract

We study the smoothness of paging algorithms. How much can the number of page faults increase due to a perturbation of the request sequence? We call a paging algorithm smooth if the maximal increase in page faults is proportional to the number of changes in the request sequence. We also introduce quantitative smoothness notions that measure the smoothness of an algorithm.

We derive lower and upper bounds on the smoothness of deterministic and randomized demand-paging and competitive algorithms. Among strongly-competitive deterministic algorithms LRU matches the lower bound, while FIFO matches the upper bound.

Well-known randomized algorithms like Partition, Equitable, or Mark are shown not to be smooth. We introduce two new randomized algorithms, called Smoothed-LRU and LRU-Random. Smoothed-LRU allows to sacrifice competitiveness for smoothness, where the trade-off is controlled by a parameter. LRU-Random is at least as competitive as any deterministic algorithm while smoother.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
EUR 29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 39.58
Price includes VAT (Netherlands)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.32
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belady, L.A.: A study of replacement algorithms for virtual-storage computer. IBM Syst. J. 5(2), 78–101 (1966)

    Article  Google Scholar 

  2. Mattson, R.L., Gecsei, J., Slutz, D.R., Traiger, I.L.: Evaluation techniques for storage hierarchies. IBM Syst. J. 9(2), 78–117 (1970)

    Article  Google Scholar 

  3. Aho, A., Denning, P., Ullman, J.: Principles of optimal page replacement. J. ACM 18(1), 80–93 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)

    Article  MathSciNet  Google Scholar 

  5. McGeoch, L., Sleator, D.: A strongly competitive randomized paging algorithm. Algorithmica 6, 816–825 (1991). doi:10.1007/BF01759073

    Article  MATH  MathSciNet  Google Scholar 

  6. Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging algorithms. Theoret. Comput. Sci. 234(1–2), 203–218 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wilhelm, R., et al.: The worst-case execution-time problem-overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3), 36:1–36:53 (2008)

    Article  MathSciNet  Google Scholar 

  8. Axer, P., et al.: Building timing predictable embedded systems. ACM Trans. Embed. Comput. Syst. 13(4), 82:1–82:37 (2014)

    Article  Google Scholar 

  9. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of programs. Commun. ACM 55(8), 107–115 (2012)

    Article  Google Scholar 

  10. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Doychev, G., et al.: CacheAudit: a tool for the static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1), 4:1–4:32 (2015)

    Article  Google Scholar 

  12. Doyen, L., Henzinger, T., Legay, A., Nickovic, D.: Robustness of sequential circuits. In: ACSD 2010, pp. 77–84 (2010)

    Google Scholar 

  13. Kleene, S.: Representation of events in nerve nets and finite automata. In: Automata Studies, Princeton University Press, Princeton (1956)

    Google Scholar 

  14. Perles, M., Rabin, M., Shamir, E.: The theory of definite automata. IEEE Trans. Electron. Comput. 12(3), 233–243 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, C.L.: Some memory aspects of finite automata. Technical report 411, Massachusetts Institute of Technology, May 1963

    Google Scholar 

  16. Reineke, J., Grund, D.: Sensitivity of cache replacement policies. ACM Trans. Embed. Comput. Syst. 12(1s), 42:1–42:18 (2013)

    Article  Google Scholar 

  17. Cazorla, F.J., et al.: PROARTIS: probabilistically analyzable real-time systems. ACM Trans. Embed. Comput. Syst. 12(2s), 94:1–94:26 (2013)

    Article  Google Scholar 

  18. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, New York (1998)

    MATH  Google Scholar 

  19. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive paging algorithms. J. Algorithms 12(4), 685–699 (1991)

    Article  MATH  Google Scholar 

  20. Reineke, J., Salinger, A.: On the smoothness of paging algorithms, October 2015. arxiv:1510.03362

Download references

Acknowledgments

This work was partially supported by the DFG as part of the SFB/TR 14 AVACS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Reineke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Reineke, J., Salinger, A. (2015). On the Smoothness of Paging Algorithms. In: Sanità, L., Skutella, M. (eds) Approximation and Online Algorithms. WAOA 2015. Lecture Notes in Computer Science(), vol 9499. Springer, Cham. https://doi.org/10.1007/978-3-319-28684-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28684-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28683-9

  • Online ISBN: 978-3-319-28684-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics