Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 331 Accesses

Abstract

Experimental basics for single-cluster imaging are covered in this section. The basic principles of free-electron lasers are explained and the geometry and key components of the setup are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Huang, K.J. Kim, Review of x-ray free-electron laser theory. Phys. Rev. Spec. Top. 10, 034801 (2007)

    ADS  Google Scholar 

  2. J. Feldhaus, J. Arthur, J. Hastings, X-ray free-electron lasers. J. Phys. B 38, 799–819 (2005)

    Article  ADS  Google Scholar 

  3. W.C. Röntgen, On a new kind of rays. Nature 420(53), 274–276 (1896)

    Google Scholar 

  4. S. Hau-Riege, High-Intensity X-Rays, Interaction with Matter (Wiley, New York, 2011)

    Book  Google Scholar 

  5. W. Ackermann et al., Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photon. 1(6), 336–342 (2007)

    Article  ADS  Google Scholar 

  6. P. Emma et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photon. 4(9), 641–647 (2010)

    Article  ADS  Google Scholar 

  7. J. Schneider et al., FLASH. The Free-Electron Laser in Hamburg, Deutsches Elektronen Synchrotron DESY (2007)

    Google Scholar 

  8. J. Falta, T. Möller, Forschung Mit Synchrotronstrahlung (Vieweg und Teubner, Braunschweig, 2010)

    Book  Google Scholar 

  9. I. Flegel et al. BlitzLicht. Deutsches Elektronen Synchrotron DESY (2007)

    Google Scholar 

  10. P. Schmüser, Fel theory for pedestrians. Lecture at Heraeus seminar Free-electron lasers: From fundamentals to applications 2012

    Google Scholar 

  11. R. Mitzner et al., Spatio-temporal coherence of free-electron laser pulses in the soft x-ray. Opt. Express 16(24), 19909–19919 (2008)

    Article  ADS  Google Scholar 

  12. E. Allaria et al., The FERMI@Elettra free-electron laser source for coherent x-ray physics: photon properties, beam transport system and applications. New J. Phys. 12, 075002 (2010)

    Article  ADS  Google Scholar 

  13. J. Bödewadt. sFLASH—first results of direct seeding at FLASH, in Proceedings of FEL (Malmö, Sweden, 2010)

    Google Scholar 

  14. J. Feldhaus et al., Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL. Opt. Commun. 140, 341–352 (1997)

    Article  ADS  Google Scholar 

  15. E. Saldin et al., X-ray FEL with a meV bandwidth. Nucl. Instrum. Methods Phys. Res. A 475, 357–362 (2001)

    Article  ADS  Google Scholar 

  16. J. Amann et al., Demonstration of self-seeding in a hard-X-ray free-electron laser. Nature Photon. 180 (2012)

    Google Scholar 

  17. http://flash.desy.de DESY homepage

  18. J. Rossbach, Short-wavelenght single-pass free-electron lasers, in Proceedings of LINAC2002 (2002)

    Google Scholar 

  19. J.R. Schneider, FLASH - from accelerator test facility to the first single-pass soft x-ray free-electron laser. J. Phys. B 43, 194001 (2010)

    Article  ADS  Google Scholar 

  20. K. Tiedtke et al., The soft x-ray free-electron laser FLASH at DESY: beamlines, diagnostics and endstations. New J. Phys. 11, 023029 (2009)

    Article  ADS  Google Scholar 

  21. D. Attwood, Soft X-Ray and Extreme Ultraviolet Radiation (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  22. J. Feldhaus, FLASH—the first soft x-ray free-electron laser user facility. J. Phys. B 43, 194002 (2010)

    Article  ADS  Google Scholar 

  23. B. Steeg et al., Total reflection amorphous carbon mirrors for vacuum ultraviolet free-electron lasers. Appl. Phys. Lett. 84(5), 657–659 (2004)

    Article  ADS  Google Scholar 

  24. Online data base for X-ray optical constants. http://henke.lbl.gov/optical_constants/

  25. E. Hecht, Optik, 4th edn. (Oldenbourg Verlag, Berlin, 2005)

    Google Scholar 

  26. T. Feigl et al., EUV multilayer optics. Microelectron. Eng. 83, 703–706 (2006)

    Article  Google Scholar 

  27. C. Bostedt et al., Ultrafast x-ray scattering of xenon nanoparticles: imaging transient states of matter. Phys. Rev. Lett. 108, 093401 (2012)

    Article  ADS  Google Scholar 

  28. D. Rupp et al., Identification of twinned gas phase clusters by single shot scattering with intense soft x-ray pulses. New J. Phys. 14, 055016 (2012)

    Article  ADS  Google Scholar 

  29. M. Krikunova et al., Ionization dynamics in expanding clusters studied by XUV-pump-probe spectroscopy. J. Phys. B 45, 105101 (2012)

    Article  ADS  Google Scholar 

  30. M. Mueller et al, Fluorescence of xenon clusters as a probe for strong absorption XUV FEL pulses (in preparation, 2013)

    Google Scholar 

  31. M. Sauppe, Untersuchung der Ionisationsdynamik von Xenonclustern mit zeitaufgelöster Massenspektroskopie und mit Streumethoden, Master Thesis, TU Berlin, 2013

    Google Scholar 

  32. O.F. Hagena, Cluster ion sources. Rev. Sci. Instrum. 63(4), 2374–2379 (1992)

    Article  ADS  Google Scholar 

  33. G. Scoles, Atomic and Molecular Beam Methods 1 (Oxford University Press, Oxford, 1988)

    Google Scholar 

  34. I. Yamada et al., Materials processing by gas cluster ion beams. Mater. Sci. Eng. 34, 231–295 (2001)

    Article  Google Scholar 

  35. Air Liquide online data base. http://encyclopedia.airliquide.com/encyclopedia.asp

  36. J.M. Soler et al., Microcluster growth: transition from successive monomer addition to coagulation. Phys. Rev. Lett. 49(25), 1856–1860 (1982)

    Article  ADS  Google Scholar 

  37. O.F. Hagena, Nucleation and growth of clusters in expanding nozzle flows. Surf. Sci. 106, 101–116 (1981)

    Article  ADS  Google Scholar 

  38. U. Buck, R. Krohne, Cluster size determination from diffractive He atom scattering. J. Chem. Phys. 105(13), 5408 (1996)

    Article  ADS  Google Scholar 

  39. F. Dorchies et al., Spatial distribution of cluster size and density in supersonic jets as targets for intense laser pulses. Phys. Rev. A 68, 023201 (2003)

    Article  ADS  Google Scholar 

  40. Files/Precision Fluidics Division/UpdatedFiles/PulseValves.pdf. Data sheet Paker—General Valve, pulsed solenoid UHV valve 99 series. http://www.parker.com/Literature/Literature

  41. S. Schorb, Size-dependent ultrafast ionization dynamics of nanoscale samples in intense femtosecond x-ray free-electron laser pulses, Ph.D. Thesis, TU Berlin, 2012

    Google Scholar 

  42. G. Chen et al., Pressure dependence of argon cluster size for different nozzle geometries. J. Appl. Phys. 106, 053507 (2009)

    Article  ADS  Google Scholar 

  43. H. Thomas, Wechselwirkung von Edelgas-Clustern mit intensiven Pulsen weicher Röntgenstrahlung vom Freie-Elektronen-Laser FLASH, Ph.D. Thesis, TU Berlin 2009

    Google Scholar 

  44. Photonis. Quote and technical specifications of apd 3075 ps 32/28/8 i edr60:1 csi 3.0ch p20, 2011

    Google Scholar 

  45. J.L. Wiza et al., Microchannel plate detectors. Nucl. Instrum. Methods 162, 587–601 (1979)

    Article  ADS  Google Scholar 

  46. W.B. Colson et al., High-gain imaging electron multiplier. Rev. Sci. Instrum. 44(12), 1694–1696 (1973)

    Article  ADS  Google Scholar 

  47. I.S. Gilmore, M.P. Seah, Ion detection efficiency in SIMS: dependencies on energy, mass and composition for microchannel plates used in mass spectrometry. Int. J. Mass Spectrom. 202, 217–229 (2000)

    Article  ADS  Google Scholar 

  48. Acquiris data sheet. http://www.home.agilent.com/en/pd-1197891-pn-U1056B

  49. W.C. Wiley, I.H. McLaren, Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 12(26), 1150 (1955)

    Article  ADS  Google Scholar 

  50. A.A. Sorokin et al., Photoelectric effect at ultrahigh intensities. Phys. Rev. Lett. 99(21), 213002 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Rupp .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rupp, D. (2016). Experimental Setup. In: Ionization and Plasma Dynamics of Single Large Xenon Clusters in Superintense XUV Pulses. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-28649-5_2

Download citation

Publish with us

Policies and ethics