Abstract
The intention of the following chapter is to shed light on primary factors that play a role in defining what we coin as an optimal learning environment, an environment that buttresses an experience of flow for learners (see Chap. 10 by Andersen in this volume). The chapter begins with an overview of flow related research reframed for the purpose of measuring the experience of flow in learning. A longitudinal study of flow experienced by students undertaking a Massive Open Online Course (MOOC) is described. The Flow in Education scale (EduFlow Scale) used in the study is described and the results of the study presented. The results illustrate the potential value and relevance of measuring flow in learning as well as the relation to the extended concept of cognitive absorption. We conclude the chapter with a presentation of a model of heuristic learning: the Individually Motivated Community model. The model builds upon three major theories of the self: Self-Determination, Self-Efficacy and Autotelism-Flow.
Keywords
- Community
- Flow
- MOOC
- Optimal learning environment
- Positive educational psychology
This is a preview of subscription content, access via your institution.
Buying options




Notes
- 1.
According to Keller and Landäußer (2012) and Rheinberg (2008), the term ‘demands’ is more appropriate than the term ‘challenge’. Keller and Landäußer argue that “the propositions regarding the boundary conditions of flow experience can be simplified and reduced […to] the antecedent factor ‘Perceived fit of skill and task demands’” (2012, p. 53). “In any case, a sense of control is definitely one of the most important components of the flow experience, whether or not an ‘objective’ assessment justifies such feelings” (Csikszentmihalyi 1975, p. 46).
- 2.
- 3.
In balance with two other basic psychological needs, autonomy and competence.
References
Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24(4), 665–694.
Andersen, F. O. (2005). International trends in primary school education: An overview based on case studies in Finland, Denmark & Japan. Billund: Lego Learning Institute.
Bachelet R. (2014). Data and success rates of MOOC GdP3, website read 01/15/2015. http://goo.gl/StCLX9
Bakker, A. B. (2008). The work-related flow inventory: Construction and initial validation of the WOLF. Journal of Vocational Behavior, 72, 400–414.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs: Prentice-Hall.
Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.
Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/windows. Thousand Oaks: Sage Publications.
Caron, P. A., Heutte, J., & Rosselle, M. (2014). Présentation d’une méthode et d’outils pour évaluer les perceptions des apprenants dans un MOOC., JOCAIR 2014, Paris, France, 27 juin.
Csikszentmihalyi, M. (1975). Beyond boredom and anxiety: Experiencing flow in work and play. San Francisco: Jossey-Bass.
Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper and Row.
Csikszentmihalyi, M. (1993). The evolving self. A psychology for the 3rd millennium. New York: Harper Collins.
Csikszentmihalyi, M., & Larson, R. (1984). Being adolescent. New York: Basic Books.
Csikszentmihalyi, M., & LeFevre, J. (1989). Optimal experience in work and leisure. Journal of Personality and Social Psychology, 56(5), 815–822.
Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11, 227–268.
Deci, E. L., & Ryan, R. M. (2008). Facilitating optimal motivation and psychological well-being across life’s domains. Canadian Psychology, 49, 14–23.
Delle Fave, A., & Massimini, F. (1992). The ESM and the measurement of clinical change: A case of anxiety disorder. The experience of psychopathology: Investigating mental disorders in their natural settings, 280.
Delle Fave, A., Massimini, F., & Bassi, M. (2011). Psychological selection and optimal experience across cultures: Social empowerment through personal growth. New York: Springer.
Engeser, S., & Schiepe-Tiska, A. (2012). Historical lines and overview of current research. In S. Engeser (Ed.), Introduction to flow research. New York: Springer.
Fenouillet, F. (2012). Les théories de la motivation. Paris: Dunod.
Fenouillet, F., Martin-Krumm, C., Heutte, J., & Besançon, M. (2014). An urgent call for change: Flow, motivation and well-being in French School students. 7th European Conference on Positive Psychology (ECPP), Amsterdam, The Netherlands.
Fu, F. L., Su, R. C., & Yu, S. C. (2009). Egameflow: A scale to measure learners’ enjoyment of e-learning games. Computers & Education, 52(1), 101–112.
Gable, S. L., & Haidt, J. (2005). What (and why) is positive psychology? Review of General Psychology, 9(2), 103.
Heutte, J. (2011). La part du collectif dans la motivation et son impact sur le bien-être comme médiateur de la réussite des étudiants: Complémentarités et contributions entre l’autodétermination, l’auto-efficacité et l’autotélisme. (Unpublished Ph. D. thesis). Université Paris Ouest-Nanterre-La Défense (France).
Heutte, J. (2014) Persister dans la conception de son environnement personnel d’apprentissage: Contributions et complémentarités de trois théories du self. STICEF, 21, ISSN: 1764-7223
Heutte J.,Fenouillet F., Martin-Krumm C. (2013). Contribution de la psychologie positive au pilotage de l’innovation. Congrès Francophone de Psychologie Positive, Metz, France.
Heutte, J., Fenouillet, F., Boniwell, I., Martin-Krumm, C., & Csikszentmihalyi, M. (2014a). Optimal learning experience in digital environments: Theoretical concepts, measure and modelisation, Symposium “Digital Learning in 21st Century Universities”. Georgia Institute of Technology (Georgia Tech), Atlanta, GA.
Heutte, J., Galaup, M., Lelardeux, C., Lagarrigue, P., & Fenouillet, F. (2014b). Etude des déterminants psychologiques de la persistance dans l’usage d’un jeu sérieux: évaluation de l’environnement optimal d’apprentissage avec Mecagenius. STICEF, 21, ISSN: 1764–7223
Heutte, J., Kaplan, J., Fenouillet, F., Caron, P. A., & Rosselle, M. (2014c). MOOC user persistence—lessons from French educational policy adoption and deployment of a pilot course. In L. Uden, J. Sinclair, Y.-H. Tao, & D. Liberona (Ed.), Learning technology for education in cloud. MOOC and Big Data (LTEC’14), Communications in Computer and Information Science. 446: 13–24. Springer.
Hoffman, D. L., & Novak, T. P. (2009). Flow online: Lessons learned and future prospects. Journal of Interactive Marketing, 23(1), 23–34.
Hu, L. T., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 76–99). Thousand Oaks: Sage.
Jackson, S. A., & Eklund, R. C. (2002). Assessing flow in physical activity: The flow stateScale-2 and dispositional flow state scale-2. Journal of Sport and Exercise Psychology, 24, 133–115.
Jackson, S. A., & Eklund, R. C. (2004). The flow scale manual. Morgantown: Fitness Information Technology.
Jackson, S. A., & Marsh, H. W. (1996). Development and validation of a scale to measure optimal experience: The flow state scale. Journal of Sport and Exercise Psychology, 18, 17–35.
Jackson, S. A., Martin, A. J., & Eklund, R. C. (2008). Long and short measures of flow: The construct validity of the FSS-2, DFS-2, and new brief counterparts. Journal of Sport and Exercise Psychology, 30, 561–587.
Johnson, L. S. (2004). Academic engagement from the perspective of flow theory: A comparative analysis of nontraditional and traditional schools. Unpublished doctoral dissertation, Northern Illinois University, DeKalb.
Keller, J., & Landhäußer, A. (2012). The flow model revisited. In S. Engeser (Ed.), Advances in flow research (pp. 51–64). New York: Springer.
Maddux, J. E. (2002). Self-efficacy: The power of believing you can. Handbook of positive psychology (pp. 277–287). New York: Oxford University Press.
Mayers, P. (1978). Flow in adolescence and its relevation to school experience. Unpublished doctoral dissertation, University of Chicago. In C. R. Snyder, & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 89–105). Oxford: University Press.
Mead, G.-H. (1934). Mind, self, and society. Chicago: University of Chicago Press.
Moneta, G. B. (2012). On the measurement and conceptualization of flow. In S. Engeser (Ed.), Advances in. Flow research (pp. 23–50). New York: Springer.
Nakamura, J., & Csikszentmihalyi, M. (2002). The concept of flow. In C. R. Snyder & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 89–105). Oxford: Oxford University Press.
Nakamura, J., & Csikszentmihalyi, M. (2009). Flow theory and research. In S. J. Lopez & C. R. Snyder (Eds.), Handbook of positive psychology (pp. 195–206). New York: Oxford University Press.
Novak, T. P., Hoffman, D. L., & Yung, Y. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing Science, 19(1), 22–42.
Parks, B. (1996). Flow, boredom and anxiety in therapeutic work. Unpublished doctoral dissertation, University of Chicago.
Procci, K., Singer, A. R., Levy, K. R., & Bowers, C. (2012). Measuring the flow experience of gamers: An evaluation of the DFS-2. Computers in Human Behavior, 28(6), 2306–2312.
Rathunde, K., & Csikszentmihalyi, M. (2005). Middle school students’ motivation and quality of experience: A comparison of Montessori and traditional school environments. American Journal of Education, 111(3), 341–371.
Rheinberg, F. (2008). Intrinsic motivation and flow-experience. In H. Heckhausen & J. Heckhausen (Eds.), Motivation and action (pp. 323–348). Cambridge: Cambridge University Press.
Rheinberg, F., Vollmeyer, R., & Engeser, S. (2003). Die Erfassung des Flow-Erlebens. In J. Stiensmeier-Pelster & F. Rheinberg (Eds.), Diagnostik von Motivation und Selbstkonzept (pp. 261–279). Göttingen: Hogrefe.
Richer, S. F., & Vallerand, R. J. (1998). Construction et validation de l’échelle du sentiment d’appartenance sociale (ÉSAS). European Review of Applied Psychology, 48(2), 129–138.
Sawyer, R. K. (2007). Group genius: The creative power of collaboration. New York: Basic Books.
Schwarzer, R., & Jerusalem, M. (1995). Generalized self-efficacy scale. In J. Weinman, S. Wright, & M. Johnston (Eds.), Measures in health psychology: A user’s portfolio. Causal and control beliefs (pp. 35–37). Windsor: NFER-NELSON.
Seligman, M. E. P., & Csikszentmihalyi, M. (2000). Positive psychology: An introduction. American Psychologist, 55(1), 5–14.
Shernoff, D. J., & Csikszentmihalyi, M. (2009). Flow in schools: Cultivating engaged learners and optimal learning environments. In R. C. Gilman, E. S. Heubner, & M. J. Furlong (Eds.), Handbook of positive psychology in schools (pp. 131–145). New York: Routledge.
Shernoff, D. J., Csikszentmihalyi, M., Schneider, B., & Shernoff, E. S. (2003). Student engagement in high school classrooms from the perspective of flow theory. School Psychology Quarterly, 18, 158–76.
Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioural Research, 25, 173–180.
Tucker, L. R., & Lewis, C. (1973). The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10.
Vollmeyer, R., & Rheinberg, F. (2006). Motivational effects on self-regulated learning with different tasks. Educational Psychology Review, 18(3), 239–253.
Vygotsky, L. -S. (1962). Thought and language. MIT Press, Cambridge, Massachusetts.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Heutte, J., Fenouillet, F., Kaplan, J., Martin-Krumm, C., Bachelet, R. (2016). The EduFlow Model: A Contribution Toward the Study of Optimal Learning Environments. In: Harmat, L., Ørsted Andersen, F., Ullén, F., Wright, J., Sadlo, G. (eds) Flow Experience. Springer, Cham. https://doi.org/10.1007/978-3-319-28634-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-28634-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28632-7
Online ISBN: 978-3-319-28634-1
eBook Packages: Behavioral Science and PsychologyBehavioral Science and Psychology (R0)