Running and Flow: Does Controlled Running Lead to Flow-States? Testing the Transient Hypofontality Theory

Chapter

Abstract

This chapter presents a summary of three studies, using treadmill running in a laboratory context, measuring flow-states via self-report data. To situate the theoretical context of the studies, Dietrich’s (Conscious Cogn 12:231–256, 2003). Transient Hypofrontality Theory (THT) is outlined, to show that flow-states are theorized in this work as being as a result of a down-regulated prefrontal cortex. Also, other neuropsychological research into flow is summarized to build the justification of our three projects. Two non-experimental studies show that flow-states can be induced in a laboratory setting, using a specific workload approach on treadmill or bicycle ergometer. In the third, an experimental study, prefrontal tasks were manipulated while participants were running on a treadmill. The results show that the participants in the control condition (reacting to a visual stimulus) reported significant higher flow-scores than in the experimental-condition (calculating numbers). Participants showed no differences in verbal ability between the conditions. Individuals in the experimental condition showed a decreasing running pace on the treadmill compared to the control-group. The results indicated that down-regulated prefrontal cortex activity could be a possible underlying mechanism of flow-states, which might support the THT.

Keywords

Flow-state Transient hypofrontality theory Sportpsychology Running 

References

  1. Abele, A., & Brehm, W. (1986). Zur Konzeptualisierung und Messung von Befindlichkeit. Die Entwicklung der Befindlichkeitsskalen (BFS) [Conceptualization and measurement of mood – the development of a mood-profile (BFS)]. Diagnostica, 32, 209–228.Google Scholar
  2. Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y., Weber, J., & Kober, H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. Proceedings of the National Academy of Science of the United States of America, 108(50), 20254–20259.CrossRefGoogle Scholar
  3. Brisswalter, J., Collardeau, M., & René, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sport Medicine, 32(9), 555–566.CrossRefGoogle Scholar
  4. Csikszentmihalyi, M. (1995). Beyond boredom an anxiety. San Francisco: Jossey-Bass.Google Scholar
  5. Csikszentmihalyi, M., Abuhamdeh, S., & Nakamura, J. (2005). Flow. In A. Elliot (Ed.), Handbook of competence and motivation (pp. 598–698). New York: The Guilford Press.Google Scholar
  6. de Manzano, Ö., Cervenka, S., Jucaite, A., Hellenäs, O., Farde, L., & Ullén, F. (2013). Individual differences in the proneness to have flow experiences are linked to dopamine D2- induced flow experiences. NeuroImage, 86, 194–202.Google Scholar
  7. Del Giorno, J. M., Hall, E. E., O’Leary, K. C., Bixby, W. R., & Miller, P. C. (2010). Cognitive function during acute exercise A test of the transient hypofrontality theory. Journal of Sports and Exercise Psychology, 32, 312–323.CrossRefGoogle Scholar
  8. Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness. The transient hypofrontality hypothesis. Consciousness and Cognition, 12, 231–256.CrossRefPubMedGoogle Scholar
  9. Dietrich, A. (2004). Neurocognitive mechanisms underlying the experience of flow. Consciousness and Cognition, 13, 746–761.CrossRefPubMedGoogle Scholar
  10. Dietrich, A. (2006). Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Research, 145, 79–83.CrossRefPubMedGoogle Scholar
  11. Dietrich, A. (2007). Introduction to consciousness. London: Palgrave Macmillan.Google Scholar
  12. Dietrich, A., & Sparling, P. B. (2004). Endurance exercise selectively impairs prefrontal-dependent cognition. Brain and Cognition, 55, 516–524.CrossRefPubMedGoogle Scholar
  13. Dietrich, A., & Stoll, O. (2010). Effortless attention in sports performance. In B. J. Bruya (Ed.), Effortless attention: A new perspective in the cognitive science of attention and action (pp. 159–178). Cambridge: MIT Press.CrossRefGoogle Scholar
  14. Ferris, L. T., Williams, J. S., & Shen, C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports and Exercise, 39(4), 728–734.CrossRefPubMedGoogle Scholar
  15. Goldstein, D., & Koppin, I. J. (2007). Evolution of concepts of stress. Stress, 10(2), 109–120.CrossRefPubMedGoogle Scholar
  16. Harmat, L., de Manzano, Ö., Theorell, T., Fischer, H., & Ullén, F. (2015). Physiological correlates of the flow experience during computer game playing. International Journal of Psychophysiology, 97, 1–7.CrossRefPubMedGoogle Scholar
  17. Knight, R. T., & Grabowecky, M. (2000). Prefrontal cortex, time and consciousness. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 1319–1339). Cambridge, MA: MIT Press.Google Scholar
  18. Kubitz, K. A., & Pothakos, K. (1997). Does aerobic exercise decrease brain activation? Journal of Sport & Exercise Psychology, 19, 291–301.CrossRefGoogle Scholar
  19. Larson, E., & von Eye, A. (2010). Beyond flow: Temporality and participation in everyday activities. American Journal of Occupational Therapy, 64, 152–163.CrossRefPubMedGoogle Scholar
  20. Laukkanen, R. M. T., Maijanen, S., & Tulppo, M. P. (1998). Determination of heart rates for training using Polar Smartedge heart rate monitor. Medicine and Science in Sports and Exercise, 30(5), 1430.Google Scholar
  21. Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PloS One. doi:10.1371/journal.pone.0001679.PubMedPubMedCentralGoogle Scholar
  22. Llinás, R., Ribary, U., Contreras, D., & Pedroarena, C. (1998). The neuronal basis for consciousness. Philosophical Transactions Royal Society London Biological Science, 353, 1841–1849.CrossRefGoogle Scholar
  23. Peifer, C., Schukz, A., Schächinger, H., Baumann, N., & Antoni, C. H. (2014). The relation of flow-experience and physiological arousal under stress – can u shape it? Journal of Experimental Social Psychology, 52, 62–69.CrossRefGoogle Scholar
  24. Rheinberg, F., Vollmeyer, M. & Engeser, S. (2003). Die Erfassung des Flow-Erlebens [The diagnostic of flowexperience]. In I. Steinsmeyer-Pelster & F. Rheinberg, (Eds.). Diagnostik von Motivation und Selbstkonzept [Diagnostics of motivation and self-concept]. (S.261–279), Göttingen: Hogrefe.Google Scholar
  25. Reinhardt, C., Lau, A., Hottenrott, K., & Stoll, O. (2006). Flow-Erleben unter kontrollierter Beanspruchungssteuerung [Flow-experiences under controlled workload-regulation]. Zeitschrift für Sportpsychologie, 13, 140–146.CrossRefGoogle Scholar
  26. Reinhardt, R., Wiener, S., Heimbeck, A., Stoll, O., Lau, A., & Schliermann, R. (2008). Flow in der Sporttherapie der Depression – ein beanspruchungsorientierter Ansatz [Flow in sports therapy with depressed patients – a work-load oriented approach]. Bewegungstherapie und Gesundheitssport, 24, 147–151.CrossRefGoogle Scholar
  27. Saad Al Youssef, H. (2012). Transient hypofrontality and flow-experiences. Doctoral thesis, Martin-Luther-University Halle-Wittenberg, Department of Sports Science, Halle (Saale), Germany.Google Scholar
  28. Shushruth, S. (2013). Exploring the neural basis of consciousness through anesthesia. The Journal of Neuroscience, 33(5), 1757–1758.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sparling, P. B., Giuffrida, A., Piomelli, D., Rosskopf, L., & Dietrich, A. (2003). Exercise activates the endocannabinoid system. Cognitive Neuroscience, 14, 959–965. doi:10.1097/01.wnr.0000097048.56589.47.Google Scholar
  30. Stoll, O. (1997). Endorphine, Laufsucht und Runner’s High. Aufstieg und Niedergang eines Mythos [Endorphins, running addiction and runner’s high. Rise and decline of a myth]. Leipziger Sportwissenschaftliche Beiträge, 28(1), 102–121.Google Scholar
  31. Stoll, O., & Lau, A. (2005). Flow-Erleben beim Marathonlauf – Zusammenhänge mit Anforderungspassung und Leistung [Flow-experiences while marathon running – correlations with demand-fitting and performance]. Zeitschrift für Sportpsychologie, 12(3), 75–82.CrossRefGoogle Scholar
  32. Tulppo, M. P., Makikallio, T. H., Takala, T. E., Seppanen, T., & Huikuri, H. V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. American Journal of Physiology, 271, 244–252.Google Scholar
  33. Ulrich, M., Keller, J., Hönig, K., Waller, C., & Grön, G. (2014). Neural correlates of experimentally induced flow experiences. NeuroImage, 86, 194–202.CrossRefPubMedGoogle Scholar
  34. Wechsler, D. (2008). Wechsler Adult Intelligence Scale (WAIS-IV) – German Version by F. Petermann. Frankfurt/M.: Pearson.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Martin-Luther-University Halle-Wittenberg Halle (Saale)HalleGermany

Personalised recommendations