VNS for the Treatment of Inflammatory Disorders of the Gastrointestinal Tract

  • Bruno BonazEmail author
  • Valérie Sinniger
  • Sonia Pellissier
  • Didier Clarençon


The brain and the gut communicate bi-directionally through the autonomic nervous system of which the vagus nerve is a major component. The vagus nerve has a well-documented anti-inflammatory activity through its afferents and the hypothalamic-pituitary-adrenal axis. More recently, an anti-inflammatory role of vagal efferents has also been discovered through the cholinergic anti-inflammatory pathway. Vagus nerve stimulation, used in the treatment of drug resistant epilepsy and depression, could be an effective tool to treat inflammatory disorders of the gastro-intestinal tract, such as inflammatory bowel disease, irritable bowel syndrome, as well as postoperative ileus which are characterized by an autonomic imbalance with a low vagal tone.


Autonomic nervous system Brain-gut axis Cholinergic anti-inflammatory pathway Gastro-intestinal tract Iinflammation Inflammatory bowel diseases Irritable bowel syndrome Postoperative ileus Vagus nerve Vagus nerve stimulation 



Alpha7 nicotinic Ach receptors




Autonomic nervous system


Cholinergic anti-inflammatory pathway


Crohn’s disease


Corticotrophin-releasing factor


Dorsal motor nucleus of the vagus


Food and drug administration

HPA axis

Hypothalamic pituitary adrenal axis


Heart rate variability


Inflammatory bowel disease


Irritable bowel syndrome




Locus coeruleus




Nucleus tractus solitarius


Parabrachial nucleus


Postoperative ileus


Paraventricular nucleus of the hypothalamus


Tumor necrosis factor


Ulcerative colitis


Vagus nerve


Vagus nerve stimulation


  1. 1.
    Mulak A, Bonaz B. Irritable bowel syndrome: a model of the brain-gut interactions. Med Sci Monit. 2004;10(4):RA55–62.PubMedGoogle Scholar
  2. 2.
    Bonaz BL, Bernstein CN. Brain-gut interactions in inflammatory bowel disease. Gastroenterology. 2013;144(1):36–49.PubMedCrossRefGoogle Scholar
  3. 3.
    Pellissier S, Dantzer C, Canini F, Mathieu N, Bonaz B. Psychological adjustment and autonomic disturbances in inflammatory bowel diseases and irritable bowel syndrome. Psychoneuroendocrinology. 2010;35(5):653–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Bonaz B, Picq C, Sinniger V, Mayol JF, Clarençon D. Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil. 2013;25(3):208–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Prechtl JC, Powley TL. The fiber composition of the abdominal vagus of the rat. Anat Embryol (Berl). 1990;181(2):101–15.CrossRefGoogle Scholar
  6. 6.
    Altschuler SM, Escardo J, Lynn RB, Miselis RR. The central organization of the vagus nerve innervating the colon of the rat. Gastroenterology. 1993;104(2):502–9.PubMedGoogle Scholar
  7. 7.
    Netter FH. Atlas of human anatomy. Ardsley: Ciba-Geigy Corporation; 1989.Google Scholar
  8. 8.
    Delmas et Laux. Anatomie médico-chirurgicale du système nerveux végétatif. Masson, 1933.Google Scholar
  9. 9.
    Berthoud HR, Carlson NR, Powley TL. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am J Physiol. 1991;260(1 Pt 2):R200–7.PubMedGoogle Scholar
  10. 10.
    Sharkey KA, Kroese AB. Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators. Anat Rec. 2001;262(1):79–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Margolis KG, Stevanovic K, Karamooz N, Li ZS, Ahuja A, D’Autréaux F, Saurman V, Chalazonitis A, Gershon MD. Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology. 2011;141(2):588–98. 598.e1–2.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Altschuler SM, Bao XM, Bieger D, Hopkins DA, Miselis RR. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol. 1989;283(2):248–68.PubMedCrossRefGoogle Scholar
  13. 13.
    Rinaman L, Card JP, Schwaber JS, Miselis RR. Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. J Neurosci. 1989;9(6):1985–96.PubMedGoogle Scholar
  14. 14.
    Ricardo JA, Koh ET. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 1978;153(1):1–26.PubMedCrossRefGoogle Scholar
  15. 15.
    Sawchenko PE. Central connections of the sensory and motor nuclei of the vagus nerve. J Auton Nerv Syst. 1983;9(1):13–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Ruggiero DA, Underwood MD, Mann JJ, Anwar M, Arango V. The human nucleus of the solitary tract: visceral pathways revealed with an “in vitro” postmortem tracing method. J Auton Nerv Syst. 2000;79(2–3):181–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Van Bockstaele EJ, Peoples J, Telegan P. Efferent projections of the nucleus of the solitary tract to peri-locus coeruleus dendrites in rat brain: evidence for a monosynaptic pathway. J Comp Neurol. 1999;412(3):410–28.PubMedCrossRefGoogle Scholar
  18. 18.
    Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT. The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science. 1986;234(4777):734–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Zagon A, Hughes DI. Gating of vagal inputs by sciatic afferents in nonspinally projecting neurons in the rat rostral ventrolateral medulla oblongata. Eur J Neurosci. 2001;13(4):781–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Conrad LC, Pfaff DW. Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol. 1976;169(2):221–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Norgren R. Taste pathways to hypothalamus and amygdala. J Comp Neurol. 1976;166(1):17–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Zagon A. Does the vagus nerve mediate the sixth sense? Trends Neurosci. 2001;24(11):671–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Goehler LE, Relton JK, Dripps D, Kiechle R, Tartaglia N, Maier SF, Watkins LR. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res Bull. 1997;43(3):357–64.PubMedCrossRefGoogle Scholar
  24. 24.
    Watkins LR, Goehler LE, Relton JK, Tartaglia N, Silbert L, Martin D, Maier SF. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci Lett. 1995;183(1–2):27–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Hosoi T, Okuma Y, Matsuda T, Nomura Y. Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. Auton Neurosci. 2005;120(1–2):104–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Taché Y, Brunnhuber S. From Hans Selye’s discovery of biological stress to the identification of corticotropin-releasing factor signaling pathways: implication in stress-related functional bowel diseases. Ann N Y Acad Sci. 2008;1148:29–41.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–62.PubMedCrossRefGoogle Scholar
  28. 28.
    Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9(5–8):125–34.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.PubMedCrossRefGoogle Scholar
  30. 30.
    de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM, Boeckxstaens GE. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6(8):844–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Sun Y, Li Q, Gui H, Xu DP, Yang YL, Su DF, Liu X. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res. 2013;23(11):1270–83.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, Gallowitsch-Puerta M, Ashok M, Czura CJ, Foxwell B, Tracey KJ, Ulloa L. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. 2006;203(7):1623–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Huston JM, Rosas-Ballina M, Xue X, Dowling O, Ochani K, Ochani M, Yeboah MM, Chatterjee PK, Tracey KJ, Metz CN. Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol. 2009;183(1):552–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Berthoud HR, Powley TL. Interaction between parasympathetic and sympathetic nerves in prevertebral ganglia: morphological evidence for vagal efferent innervation of ganglion cells in the rat. Microsc Res Tech. 1996;35(1):80–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Rosas-Ballina M, Tracey KJ. The neurology of the immune system: neural reflexes regulate immunity. Neuron. 2009;64(1):28–32.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Downs AM. Bond CE1, Hoover DB2. Localization of α7 nicotinic acetylcholine receptor mRNA and protein within the cholinergic anti-inflammatory pathway. Neuroscience. 2014;266:178–85.PubMedCrossRefGoogle Scholar
  37. 37.
    Ji H, Rabbi MF, Labis B, Pavlov VA, Tracey KJ, Ghia JE. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol. 2014;7(2):335–47.PubMedCrossRefGoogle Scholar
  38. 38.
    Xue N, Liang H, Yao H, Song XM, Li JG. The role of spleen in vagus nerve stimulation for treatment against septic shock in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2011;23(5):263–6.PubMedGoogle Scholar
  39. 39.
    Picq CA, Clarençon D, Sinniger VE, Bonaz BL, Mayol JF. Impact of Anesthetics on Immune Functions in a Rat Model of Vagus Nerve Stimulation. PLoS One. 2013;8(6):e67086.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Martelli D, Yao ST, McKinley MJ, McAllen RM. Reflex control of inflammation by sympathetic nerves, not the vagus. J Physiol. 2014;592(Pt 7):1677–86.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gautron L, Rutkowski JM, Burton MD, Wei W, Wan Y, Elmquist JK. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J Comp Neurol. 2013;521(16):3741–67.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wessler I, Kirkpatrick CJ, Racké K. Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther. 1998;77(1):59–79.PubMedCrossRefGoogle Scholar
  43. 43.
    Cano G, Sved AF, Rinaman L, Rabin BS, Card JP. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol. 2001;439(1):1–18.PubMedCrossRefGoogle Scholar
  44. 44.
    Bratton BO, Martelli D, McKinley MJ, Trevaks D, Anderson CR, McAllen RM. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons. Exp Physiol. 2012;97(11):1180–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Martelli D, McKinley MJ, McAllen RM. The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci. 2014;182:65–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Vida G, Peña G, Kanashiro A, Thompson-Bonilla Mdel R, Palange D, Deitch EA, Ulloa L. β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J. 2011;25(12):4476–85.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cailotto C, Gomez-Pinilla PJ, Costes LM, van der Vliet J, Di Giovangiulio M, Némethova A, Matteoli G, Boeckxstaens GE. Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS One. 2014;9(1):e87785.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lanska DJ. J.L. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology. 2002;58(3):452–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Bailey H, Bremer FA. Sensory cortical representation of the vagus nerve. J Neurophysiol. 1938;1:405–12.Google Scholar
  50. 50.
    Penry JK, Dean JC. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia. 1990;31(Suppl 2):S40–3.PubMedCrossRefGoogle Scholar
  51. 51.
    Rush AJ, Marangell LB, Sackeim HA, George MS, Brannan SK, Davis SM, Howland R, Kling MA, Rittberg BR, Burke WJ, Rapaport MH, Zajecka J, Nierenberg AA, Husain MM, Ginsberg D, Cooke RG. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol Psychiatry. 2005;58(5):347–54.PubMedCrossRefGoogle Scholar
  52. 52.
    Rush AJ, Sackeim HA, Marangell LB, George MS, Brannan SK, Davis SM, Lavori P, Howland R, Kling MA, Rittberg B, Carpenter L, Ninan P, Moreno F, Schwartz T, Conway C, Burke M, Barry JJ. Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: a naturalistic study. Biol Psychiatry. 2005;58(5):355–63.PubMedCrossRefGoogle Scholar
  53. 53.
    Fanselow EE. Central mechanisms of cranial nerve stimulation for epilepsy. Surg Neurol Int. 2012;3(Suppl 4):S247–54.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Krahl SE, Senanayake SS, Handforth A. Destruction of peripheral C-fibers does not alter subsequent vagus nerve stimulation-induced seizure suppression in rats. Epilepsia. 2001;42(5):586–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Zanchetti A, Wang SC, Moruzzi G. Effect of afferent vagal stimulation on the electroencephalogram of the cat in cerebral isolation. Boll Soc Ital Biol Sper. 1952;28(4):627–8.PubMedGoogle Scholar
  56. 56.
    Panebianco M, Rigby A, Weston J, Marson AG. Vagus nerve stimulation for partial seizures. Cochrane Database Syst Rev. 2015;4:CD002896.Google Scholar
  57. 57.
    Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005;29(3):493–500.PubMedCrossRefGoogle Scholar
  58. 58.
    Naritoku DK, Terry WJ, Helfert RH. Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. Epilepsy Res. 1995;22(1):53–62.PubMedCrossRefGoogle Scholar
  59. 59.
    Chae JH, Nahas Z, Lomarev M, Denslow S, Lorberbaum JP, Bohning DE, George MS. A review of functional neuroimaging studies of vagus nerve stimulation (VNS). J Psychiatr Res. 2003;37(6):443–55.PubMedCrossRefGoogle Scholar
  60. 60.
    Morris 3rd GL, Mueller WM. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. Neurology. 1999;53(8):1731–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Tisi G, Franzini A, Messina G, Savino M, Gambini O. Vagus nerve stimulation therapy in treatment-resistant depression: a series report. Psychiatry Clin Neurosci. 2014;68(8):606–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Bajbouj M, Merkl A, Schlaepfer TE, Frick C, Zobel A, Maier W, O’Keane V, Corcoran C, Adolfsson R, Trimble M, Rau H, Hoff HJ, Padberg F, Müller-Siecheneder F, Audenaert K, van den Abbeele D, Matthews K, Christmas D, Eljamel S, Heuser I. Two-year outcome of vagus nerve stimulation in treatment-resistant depression. J Clin Psychopharmacol. 2010;30(3):273–81.PubMedCrossRefGoogle Scholar
  63. 63.
    Reid SA. Surgical technique for implantation of the neurocybernetic prosthesis. Epilepsia. 1990;31(Suppl 2):S38–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Hamlin RL, Smith CR. Effects of vagal stimulation on S-A and A-V nodes. Am J Physiol. 1968;215(3):560–8.PubMedGoogle Scholar
  65. 65.
    Ben-Menachem E. Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol. 2001;18(5):415–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, Sudan S, Czura CJ, Ivanova SM, Tracey KJ. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med. 2002;195(6):781–8.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Costantini TW, Bansal V, Krzyzaniak M, Putnam JG, Peterson CY, Loomis WH, Wolf P, Baird A, Eliceiri BP, Coimbra R. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am J Physiol Gastrointest Liver Physiol. 2010;299(6):G1308–18.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lomarev M, Denslow S, Nahas Z, Chae JH, George MS, Bohning DE. Vagus nerve stimulation (VNS) synchronized BOLD fMRI suggests that VNS in depressed adults has frequency/dose dependent effects. J Psychiatr Res. 2002;36(4):219–27.PubMedCrossRefGoogle Scholar
  69. 69.
    Reyt S, Picq C, Sinniger V, Clarençon D, Bonaz B, David O. Dynamic Causal Modelling and physiological confounds: a functional MRI study of vagus nerve stimulation. Neuroimage. 2010;52(4):1456–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54.PubMedCrossRefGoogle Scholar
  71. 71.
    Danese S, Fiocchi C. Etiopathogenesis of inflammatory bowel diseases. World J Gastroenterol. 2006;12(30):4807–12.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Lindgren S, Lilja B, Rosén I, Sundkvist G. Disturbed autonomic nerve function in patients with Crohn’s disease. Scand J Gastroenterol. 1991;26(4):361–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Lindgren S, Stewenius J, Sjölund K, Lilja B, Sundkvist G. Autonomic vagal nerve dysfunction in patients with ulcerative colitis. Scand J Gastroenterol. 1993;28(7):638–42.PubMedCrossRefGoogle Scholar
  74. 74.
    Billiet T, Rutgeerts P, Ferrante M, Van Assche G, Vermeire S. Targeting TNF-α for the treatment of inflammatory bowel disease. Expert Opin Biol Ther. 2014;14(1):75–101.PubMedCrossRefGoogle Scholar
  75. 75.
    McLean LP, Cross RK. Adverse events in IBD: to stop or continue immune suppressant and biologic treatment. Expert Rev Gastroenterol Hepatol. 2014;8(3):223–40.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Cerveny P, Bortlik M, Vlcek J, Kubena A, Lukás M. Non-adherence to treatment in inflammatory bowel disease in Czech Republic. J Crohns Colitis. 2007;1(2):77–81.PubMedCrossRefGoogle Scholar
  77. 77.
    Pellissier S, Dantzer C, Mondillon L, Trocme C, Gauchez AS, Ducros V, Mathieu N, Toussaint B, Fournier A, Canini F, Bonaz B. Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn’s disease and irritable bowel syndrome. PLoS One. 2014;9(9):e105328.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Taché Y, Bonaz B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest. 2007;117(1):33–40.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Canavan C, West J, Card T. The epidemiology of irritable bowel syndrome. Clin Epidemiol. 2014;6:71–80.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Camilleri M. Pathophysiology in irritable bowel syndrome. Drug News Perspect. 2001;14(5):268–78.PubMedCrossRefGoogle Scholar
  81. 81.
    Chang L. The association of functional gastrointestinal disorders and fibromyalgia. Eur J Surg Suppl. 1998;583:32–6.CrossRefGoogle Scholar
  82. 82.
    Garakani A, Win T, Virk S, Gupta S, Kaplan D, Masand PS. Comorbidity of irritable bowel syndrome in psychiatric patients: a review. Am J Ther. 2003;10(1):61–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Bradford K, Shih W, Videlock EJ, Presson AP, Naliboff BD, Mayer EA, Chang L. Association between early adverse life events and irritable bowel syndrome. Clin Gastroenterol Hepatol. 2012 Apr;10(4):385–90.e1–3.PubMedCrossRefGoogle Scholar
  84. 84.
    Ritchie J. Pain from distension of the pelvic colon by inflating a balloon in the irritable colon syndrome. Gut. 1973;14(2):125–32.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mayer EA, Gebhart GF. Basic and clinical aspects of visceral hyperalgesia. Gastroenterology. 1994;107(1):271–93.PubMedCrossRefGoogle Scholar
  86. 86.
    Brierley SM, Linden DR. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol. 2014;11(10):611–27.PubMedGoogle Scholar
  87. 87.
    Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D, Pasquinelli G, Morselli-Labate AM, Grady EF, Bunnett NW, Collins SM, Corinaldesi R. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004;126(3):693–702.PubMedCrossRefGoogle Scholar
  88. 88.
    Gwee KA, Graham JC, McKendrick MW, Collins SM, Marshall JS, Walters SJ, Read NW. Psychometric scores and persistence of irritable bowel after infectious diarrhoea. Lancet. 1996;347(8995):150–3.PubMedCrossRefGoogle Scholar
  89. 89.
    Spence MJ, Moss-Morris R. The cognitive behavioural model of irritable bowel syndrome: a prospective investigation of patients with gastroenteritis. Gut. 2007;56(8):1066–71.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Catanzaro R, Occhipinti S, Calabrese F, Anzalone MG, Milazzo M, Italia A, Marotta F. Irritable bowel syndrome: new findings in pathophysiological and therapeutic field. Minerva Gastroenterol Dietol. 2014;60(2):151–63.PubMedGoogle Scholar
  91. 91.
    Bonaz B, Baciu M, Papillon E, Bost R, Gueddah N, Le Bas JF, Fournet J, Segebarth C. Central processing of rectal pain in patients with irritable bowel syndrome: an fMRI study. Am J Gastroenterol. 2002;97(3):654–61.PubMedCrossRefGoogle Scholar
  92. 92.
    Yunus MB. Role of central sensitization in symptoms beyond muscle pain, and the evaluation of a patient with widespread pain. Best Pract Res Clin Rheumatol. 2007;21(3):481–97.PubMedCrossRefGoogle Scholar
  93. 93.
    Hinton DE, Hofmann SG, Pollack MH, Otto MW. Mechanisms of efficacy of CBT for Cambodian refugees with PTSD: improvement in emotion regulation and orthostatic blood pressure response. CNS Neurosci Ther. 2009;15(3):255–63.PubMedCrossRefGoogle Scholar
  94. 94.
    Aubert AE, Verheyden B, Beckers F, Tack J, Vandenberghe J. Cardiac autonomic regulation under hypnosis assessed by heart rate variability: spectral analysis and fractal complexity. Neuropsychobiology. 2009;60(2):104–12.PubMedCrossRefGoogle Scholar
  95. 95.
    Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, Soffer EE, Spiegel BM, Moayyedi P. Effect of antidepressants and psychological therapies, including hypnotherapy, in irritable bowel syndrome: systematic review and meta-analysis. Am J Gastroenterol. 2014;109(9):1350–65.PubMedCrossRefGoogle Scholar
  96. 96.
    Zurowski D, Nowak Ł, Wordliczek J, Dobrogowski J, Thor PJ. Effects of vagus nerve stimulation in visceral pain model. Folia Med Cracov. 2012;52(1–2):57–69.PubMedGoogle Scholar
  97. 97.
    Zhang X, Cao B, Yan N, Liu J, Wang J, Tung VO, Li Y. Vagus nerve stimulation modulates visceral pain-related affective memory. Behav Brain Res. 2013;236(1):8–15.PubMedCrossRefGoogle Scholar
  98. 98.
    Kirchner A, Stefan H, Bastian K, Birklein F. Vagus nerve stimulation suppresses pain but has limited effects on neurogenic inflammation in humans. Eur J Pain. 2006;10(5):449–55.PubMedCrossRefGoogle Scholar
  99. 99.
    Holzer P, Lippe IT, Amann R. Participation of capsaicin-sensitive afferent neurons in gastric motor inhibition caused by laparotomy and intraperitoneal acid. Neuroscience. 1992;48(3):715–22.PubMedCrossRefGoogle Scholar
  100. 100.
    Bonaz B, Plourde V, Taché Y. Abdominal surgery induces Fos immunoreactivity in the rat brain. J Comp Neurol. 1994;349(2):212–22.PubMedCrossRefGoogle Scholar
  101. 101.
    Barquist E, Bonaz B, Martinez V, Rivier J, Zinner MJ, Taché Y. Neuronal pathways involved in abdominal surgery-induced gastric ileus in rats. Am J Physiol. 1996;270(4 Pt 2):R888–94.PubMedGoogle Scholar
  102. 102.
    Luckey A, Wang L, Jamieson PM, Basa NR, Million M, Czimmer J, Vale W, Taché Y. Corticotropin-releasing factor receptor 1-deficient mice do not develop postoperative gastric ileus. Gastroenterology. 2003;125(3):654–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Kalff JC, Carlos TM, Schraut WH, Billiar TR, Simmons RL, Bauer AJ. Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate postoperative ileus. Gastroenterology. 1999;117(2):378–87.PubMedCrossRefGoogle Scholar
  104. 104.
    de Jonge WJ, van den Wijngaard RM, The FO, ter Beek ML, Bennink RJ, Tytgat GN, Buijs RM, Reitsma PH, van Deventer SJ, Boeckxstaens GE. Postoperative ileus is maintained by intestinal immune infiltrates that activate inhibitory neural pathways in mice. Gastroenterology. 2003;125(4):1137–47.PubMedCrossRefGoogle Scholar
  105. 105.
    The FO, Boeckxstaens GE, Snoek SA, Cash JL, Bennink R, Larosa GJ, van den Wijngaard RM, Greaves DR, de Jonge WJ. Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology. 2007;133(4):1219–28.PubMedCrossRefGoogle Scholar
  106. 106.
    Löwenberg M, Verhaar A, van den Blink B, ten Kate F, van Deventer S, Peppelenbosch M, Hommes D. Specific inhibition of c-Raf activity by semapimod induces clinical remission in severe Crohn’s disease. J Immunol. 2005;175(4):2293–300.PubMedCrossRefGoogle Scholar
  107. 107.
    The FO, Cailotto C, van der Vliet J, de Jonge WJ, Bennink RJ, Buijs RM, Boeckxstaens GE. Central activation of the cholinergic anti-inflammatory pathway reduces surgical inflammation in experimental post-operative ileus. Br J Pharmacol. 2011;163(5):1007–16.PubMedCrossRefGoogle Scholar
  108. 108.
    Noble EJ, Harris R, Hosie KB, Thomas S, Lewis SJ. Gum chewing reduces postoperative ileus? A systematic review and meta-analysis. Int J Surg. 2009;7(2):100–5.PubMedCrossRefGoogle Scholar
  109. 109.
    Levin F, Edholm T, Schmidt PT, Grybäck P, Jacobsson H, Degerblad M, Höybye C, Holst JJ, Rehfeld JF, Hellström PM, Näslund E. Ghrelin stimulates gastric emptying and hunger in normal-weight humans. J Clin Endocrinol Metab. 2006;91(9):3296–302.PubMedCrossRefGoogle Scholar
  110. 110.
    Stengel A, Goebel-Stengel M, Wang L, Shaikh A, Lambrecht NW, Rivier J, Taché Y. Abdominal surgery inhibits circulating acyl ghrelin and ghrelin-O-acyltransferase levels in rats: role of the somatostatin receptor subtype 2. Am J Physiol Gastrointest Liver Physiol. 2011;301(2):G239–48.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Woodbury DM, Woodbury JW. Effects of vagal stimulation on experimentally induced seizures in rats. Epilepsia. 1990;31(Suppl 2):S7–19.PubMedCrossRefGoogle Scholar
  112. 112.
    Chung IS, Kim JA, Kim JA, Choi HS, Lee JJ, Yang M, Ahn HJ, Lee SM. Reactive oxygen species by isoflurane mediates inhibition of nuclear factor κB activation in lipopolysaccharide-induced acute inflammation of the lung. Anesth Analg. 2013;116(2):327–35.PubMedCrossRefGoogle Scholar
  113. 113.
    Garutti I, Rancan L, Simón C, Cusati G, Sanchez-Pedrosa G, Moraga F, Olmedilla L, Lopez-Gil MT, Vara E. Intravenous lidocaine decreases tumor necrosis factor alpha expression both locally and systemically in pigs undergoing lung resection surgery. Anesth Analg. 2014;119(4):815–28.PubMedCrossRefGoogle Scholar
  114. 114.
    Meregnani J, Clarençon D, Vivier M, Peinnequin A, Mouret C, Sinniger V, Picq C, Job A, Canini F, Jacquier-Sarlin M, Bonaz B. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci. 2011;160(1–2):82–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Travagli RA, Gillis RA, Rossiter CD, Vicini S. Glutamate and GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am J Physiol. 1991;260(3 Pt 1):G531–6.PubMedGoogle Scholar
  116. 116.
    Fogel R, Zhang X, Renehan WE. Relationships between the morphology and function of gastric and intestinal distention-sensitive neurons in the dorsal motor nucleus of the vagus. J Comp Neurol. 1996;364(1):78–91.PubMedCrossRefGoogle Scholar
  117. 117.
    Travagli RA, Hermann GE, Browning KN, Rogers RC. Brainstem circuits regulating gastric function. Annu Rev Physiol. 2006;68:279–305.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Osharina V, Bagaev V, Wallois F, Larnicol N. Autonomic response and Fos expression in the NTS following intermittent vagal stimulation: importance of pulse frequency. Auton Neurosci. 2006;126-127:72–80.PubMedCrossRefGoogle Scholar
  119. 119.
    Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci. 2002;25:433–69.PubMedCrossRefGoogle Scholar
  120. 120.
    Clarençon D, Pellissier S, Sinniger V, Kibleur A, Hoffman D, Vercueil L, David O, Bonaz B. Long term effects of low frequency (10 hz) vagus nerve stimulation on EEG and heart rate variability in Crohn’s disease: a case report. Brain Stimul. 2014;7(6):914–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Bonaz B, Sinniger V, Hoffmann D, Clarençon D, Mathieu N, Dantzer C, Vercueil L, Picq C, Trocmé C, Faure P, Cracowski JL, Pellissier S. Chronic vagus nerve stimulation in Crohn’s disease: a 6-month follow-up pilot study. Neurogastroenterol Motil. 2016;28(6):948–53.Google Scholar
  122. 122.
    Peuker ET, Filler TJ. The nerve supply of the human auricle. Clin Anat 2002;15(1):35–7.Google Scholar
  123. 123.
    Nomura S, Mizuno N. Central distribution of primary afferent fibers in the Arnold’s nerve (the auricular branch of the vagus nerve): a transganglionic HRP study in the cat. Brain Res. 1984;292(2):199–205.PubMedCrossRefGoogle Scholar
  124. 124.
    Gao XY, Rong P, Ben H, Liu K, Zhu B, Zhang S. Morphological and electrophysiological characterization of auricular branch of vagus nerve: projections to the NTS in mediating cardiovascular inhibition evoked by the acupuncture-like stimulation. Abstr Soc Neurosci. 2010;694:22/HHH45.Google Scholar
  125. 125.
    Hein E, Nowak M, Kiess O, Biermann T, Bayerlein K, Kornhuber J, Kraus T. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm. 2013;120(5):821–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8(3):624–36.PubMedCrossRefGoogle Scholar
  127. 127.
    Zhao YX, He W, Jing XH, Liu JL, Rong PJ, Ben H, Liu K, Zhu B. Transcutaneous auricular vagus nerve stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation. Evid Based Complement Alternat Med. 2012;2012:627023.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Stefan H, Kreiselmeyer G, Kerling F, Kurzbuch K, Rauch C, Heers M, Kasper BS, Hammen T, Rzonsa M, Pauli E, Ellrich J, Graf W, Hopfengärtner R. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia. 2012;53(7):e115–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Aihua L, Lu S, Liping L, Xiuru W, Hua L, Yuping W. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav. 2014;39:105–10.PubMedCrossRefGoogle Scholar
  130. 130.
    Rong P, Liu A, Zhang J, Wang Y, He W, Yang A, Li L, Ben H, Li L, Liu H, Wu P, Liu R, Zhao Y, Zhang J, Huang F, Li X, Zhu B. Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial. Clin Sci (Lond). 2014; [Epub ahead of print].Google Scholar
  131. 131.
    Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7(6):871–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Nesbitt AD. Marin JC1, Tompkins E1, Ruttledge MH1, Goadsby PJ2. Initial use of a novel noninvasive vagus nerve stimulator for cluster headache treatment. Neurology. 2015;84(12):1249–53.PubMedCrossRefGoogle Scholar
  133. 133.
    Moscato D, Moscato FR. Treatment of chronic migraine by means of vagal stimulator [abstract]. J Headache Pain. 2013;14(Suppl):56–7.Google Scholar
  134. 134.
    Abraham WT, Stough WG, Piña IL, Linde C, Borer JS, De Ferrari GM, Mehran R, Stein KM, Vincent A, Yadav JS, Anker SD, Zannad F. Trials of implantable monitoring devices in heart failure: which design is optimal? Nat Rev Cardiol. 2014;11(10):576–85.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bruno Bonaz
    • 1
    • 2
    Email author
  • Valérie Sinniger
    • 3
  • Sonia Pellissier
    • 4
  • Didier Clarençon
    • 2
    • 5
  1. 1.Clinique Universitaire d’Hépato-Gastroentérologie, CHU GrenobleGrenoble Cedex 09France
  2. 2.University Grenoble Alpes, Grenoble Institut des NeurosciencesGrenobleFrance
  3. 3.University Hospital, Grenoble Alpes, Department of HepatogastroenterologyInstitute of NeurosciencesGrenobleFrance
  4. 4.Universite Savoie Mont-Blanc, Laboratoire Interuniversitaire de Pschologie, Personnalite, Cognition, et Changement Social, Grenoble Institute of NeurosciencesChambéryFrance
  5. 5.Institut de Recherche Biomedicale des ArmeesParisFrance

Personalised recommendations