Functional Electrical Stimulation to Treat Foot Drop as a Result of an Upper Motor Neuron Lesion

  • Marietta L. van der LindenEmail author
  • Thomas H. Mercer


Foot drop or dropped foot is a common gait problem in many people with an upper motor neuron lesion such as people after a stroke, people with Multiple Sclerosis and children and adults with Cerebral Palsy. This chapter explains the action of Functional Electrical Stimulation (FES) to the pre-tibial muscles in order to treat foot drop and how it can be adapted to the walking pattern of the individual patients by altering the stimulation patterns. The potential benefits of using FES to treat foot drop, the outcome measures used to assess these benefits and evidence for these benefits for three different clinical populations form the main part of this chapter. Finally, future directions of research into FES are summarised.


Functional Electrical Stimulation Peroneal nerve stimulation Foot drop Dropped foot Stroke CVA Multiple Sclerosis Cerebral Palsy Upper Motor Neuron lesion 


  1. 1.
    Peterson EW, Cho CC, Finlayson ML. Fear of falling and associated activity curtailment among middle aged and older adults with multiple sclerosis. Mult Scler. 2007;13(9):1168–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Paul L, Rafferty D, Young S, Miller L, Mattison P, McFadyen A. The effect of functional electrical stimulation on the physiological cost of gait in people with multiple sclerosis. Mult Scler. 2008;14(7):954–61.CrossRefPubMedGoogle Scholar
  3. 3.
    Taylor P, Humphreys L, Swain I. The long-term cost-effectiveness of the use of functional electrical stimulation for the correction of dropped foot due to upper motor neuron lesion. J Rehabil Med. 2013;45(2):154–60.CrossRefPubMedGoogle Scholar
  4. 4.
    Prosser LA, Curatalo LA, Alter KE, Damiano DL. Acceptability and potential effectiveness of a foot drop stimulator in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2012;54(11):1044–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    van der Linden ML, Hazlewood ME, Hillman SJ, Robb JE. Functional electrical stimulation to the dorsiflexors and quadriceps in children with cerebral palsy. Pediatr Phys Ther. 2008;20(1):23–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Carmick J. Letters to the editor. Effect of functional electrical stimulation on activity in children with cerebral palsy: a systematic review. Pediatr Phys Ther. 2014;26(4):487–8.Google Scholar
  7. 7.
    Pool D, Blackmore AM, Bear N, Valentine J. Effects of short-term daily community walk aide use on children with unilateral spastic cerebral palsy. Pediatr Phys Ther. 2014;26(3):308–17.CrossRefPubMedGoogle Scholar
  8. 8.
    Liberson WT, Holmquest HJ, Scott HJ, Dow M. Functional electrotherapy stimulation of the common peroneal nerve synchronised with the swing phase of gait of hemiplegic subjects. Arch Phys Med Rehabil. 1961;42:101–5.PubMedGoogle Scholar
  9. 9.
    National Institute for Health and Clinical Excellence (NICE) Guideline. Functional electrical stimulation for drop foot of central neurological origin. Available at: Accessed 12 Oct 2015.
  10. 10.
    Dunning K, O’Dell MW, Kluding P, McBride K. Peroneal stimulation for foot drop after stroke: a systematic review. Am J Phys Med Rehabil. 2015;94(8):649–64.CrossRefPubMedGoogle Scholar
  11. 11.
    Kottink AI, Oostendorp LJ, Buurke JH, Nene AV, Hermens HJ, IJzerman MJ. The orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a dropped foot: a systematic review. Artif Organs. 2004;28(6):577–86.CrossRefPubMedGoogle Scholar
  12. 12.
    Robbins SM, Houghton PE, Woodbury MG, Brown JL. The therapeutic effect of functional and transcutaneous electric stimulation on improving gait speed in stroke patients: a meta-analysis. Arch Phys Med Rehabil. 2006;87(6):853–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Wright PA, Durham S, Ewins DJ, Swain ID. Neuromuscular electrical stimulation for children with cerebral palsy: a review. Arch Dis Child. 2012;97(4):364–71.CrossRefPubMedGoogle Scholar
  14. 14.
    Chiu HC, Ada L. Effect of functional electrical stimulation on activity in children with cerebral palsy: a systematic review. Pediatr Phys Ther. 2014;26(3):283–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Cauraugh JH, Naik SK, Hsu WH, Coombes SA, Holt KG. Children with cerebral palsy: a systematic review and meta-analysis on gait and electrical stimulation. Clin Rehabil. 2010;24(11):963–78.CrossRefPubMedGoogle Scholar
  16. 16.
    Taylor PN, Burridge JH, Dunkerley AL, Wood DE, Norton JA, Singleton C, Swain ID. Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking. Arch Phys Med Rehabil. 1999;80(12):1577–83.CrossRefPubMedGoogle Scholar
  17. 17.
    Everaert DG, Thompson AK, Chong SL, Stein RB. Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabil Neural Repair. 2010;24(2):168–77.CrossRefPubMedGoogle Scholar
  18. 18.
    Damiano DL, Prosser LA, Curatalo LA, Alter KE. Muscle plasticity and ankle control after repetitive use of a functional electrical stimulation device for foot drop in cerebral palsy. Neurorehabil Neural Repair. 2013;27(3):200–7.CrossRefPubMedGoogle Scholar
  19. 19.
    World Health Organization. International classification of functioning, disability and health (ICF). Geneva: WHO; 2001.Google Scholar
  20. 20.
    Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke. 1995;26(6):982–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults: meaningful change and performance. J Am Geriatr Soc. 2006;54:743–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Wolf SL, Catlin PA, Gage K, Gurucharri K, Robertson R, Stephen K. Establishing the reliability and validity of measurements of walking time using the Emory Functional Ambulation Profile. Phys Ther. 1999;79(12):1122–33.PubMedGoogle Scholar
  24. 24.
    Berg K, Wood-Dauphinee S, Williams JI. The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med. 1995;27(1):27–36.PubMedGoogle Scholar
  25. 25.
    Hobart JC, Riazi A, Lamping DL, Fitzpatrick R, Thompson AJ. Measuring the impact of MS on walking ability: the 12-Item MS Walking Scale (MSWS-12). Neurology. 2003;60(1):31–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Law M, Polatajko H, Pollock N, McColl MA, Carswell A, Baptiste S. Pilot testing of the Canadian Occupational Performance Measure: clinical and measurement issues. Can J Occup Ther. 1994;61:191–7.CrossRefPubMedGoogle Scholar
  27. 27.
    van der Linden ML, Hooper JE, Cowan P, Weller BB, Mercer TH. Habitual functional electrical stimulation therapy improves gait kinematics and walking performance, but not patient-reported functional outcomes, of people with multiple sclerosis who present with foot-drop. PLoS One. 2014;9(8):e103368.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sheffler LR, Taylor PN, Bailey SN, Gunzler DD, Buurke JH, IJzerman MJ, Chae J. Surface peroneal nerve stimulation in lower limb hemiparesis: effect on quantitative gait parameters. Am J Phys Med Rehabil. 2015;94(5):341–57.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Motl RW, McAuley E, Snook EM, Scott JA. Validity of physical activity measures in ambulatory individuals with multiple sclerosis. Disabil Rehabil. 2006;28(18):1151–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Esnouf JE, Taylor PN, Mann GE, Barrett CL. Impact on activities of daily living using a functional electrical stimulation device to improve dropped foot in people with multiple sclerosis, measured by the Canadian Occupational Performance Measure. Mult Scler. 2010;16(9):1141–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Taylor P, Barrett C, Mann G, Wareham W, Swain I. A feasibility study to investigate the effect of functional electrical stimulation and physiotherapy exercise on the quality of gait of people with multiple sclerosis. Neuromodulation. 2014;17(1):75–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Ware JE, Kosinski M, Dewey JE. How to score Version 2 of the SF-36® Health Survey Lincoln: Quality Metric Incorporated; 2001.Google Scholar
  33. 33.
    Brazier J, Jones N, Kind P. Testing the validity of the Euroqol and comparing it with the SF-36 health survey questionnaire. Qual Life Res. 1993;2(3):169–80.CrossRefPubMedGoogle Scholar
  34. 34.
    Hobart J, Lamping D, Fitzpatrick R, Riazi A, Thompson A. The Multiple Sclerosis Impact Scale (MSIS-29): a new patient-based outcome measure. Brain. 2000;124:962–73.CrossRefGoogle Scholar
  35. 35.
    Lin KC, Fu T, Wu CY, Hdieh YW, Chen CL, Lee PC. Psychometric comparisons of the Stroke Impact Scale 3.0 and Stroke-Specific Quality of Life Scale. Qual Life Res. 2010;19(3):435–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.CrossRefPubMedGoogle Scholar
  37. 37.
    Wade DT, Wood VA, Heller A, Maggs J, Langton HR. Walking after stroke: measurement and recovery over the first 3 months. Scand J Rehabil Med. 1987;19:25–30.PubMedGoogle Scholar
  38. 38.
    Skilbeck CE, Wade DT, Langton HR, Wood VA. Recovery after stroke. J Neurol Neurosurg Psychiatry. 1983;46:5–8.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kesar TM, Perumal R, Jancosko A, Reisman DS, Rudolph KS, Higginson JS, Binder-Macleod SA. Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys Ther. 2010;1:55–66.CrossRefGoogle Scholar
  40. 40.
    Lee YH, Yong SY, Kim SH, Kim JH, Shinn JM, Kim Y, Kim S, Hwang S. Functional electrical stimulation to ankle dorsiflexor and plantarflexor using single foot switch in patients with hemiplegia from hemorrhagic stroke. Ann Rehabil Med. 2014;38(3):310–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Burridge JH, Taylor PN, Hagan SA, Wood DE, Swain ID. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 1997;11(3):201–10.CrossRefPubMedGoogle Scholar
  42. 42.
    Laufer Y, Hausdorff JM, Ring H. Effects of a foot drop neuroprosthesis on functional abilities, social participation, and gait velocity. Am J Phys Med Rehabil. 2009;88(1):14–20.CrossRefPubMedGoogle Scholar
  43. 43.
    Everaert DG, Stein RB, Abrams GM, Dromerick AW, Francisco GE, Hafner BJ, Huskey TN, Munin MC, Nolan KJ, Kufta CV. Effect of a foot-drop stimulator and ankle-foot orthosis on walking performance after stroke: a multicenter randomized controlled trial. Neurorehabil Neural Repair. 2013;27(7):579–91.CrossRefPubMedGoogle Scholar
  44. 44.
    Kluding PM, Dunning K, O'Dell MW, Wu SS, Ginosian J, Feld J, McBride K. Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke. 2013;44(6):1660–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Sheffler LR, Taylor PN, Gunzler DD, Buurke JH, Ijzerman MJ, Chae J. Randomized controlled trial of surface peroneal nerve stimulation for motor relearning in lower limb hemiparesis. Arch Phys Med Rehabil. 2013;94(6):1007–14.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sabut SK, Sikdar C, Kumar R, Mahadevappa M. Functional electrical stimulation of dorsiflexor muscle: effects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients. NeuroRehabilitation. 2011;29(4):393–400.PubMedGoogle Scholar
  47. 47.
    Kottink AI, Ijzerman MJ, Groothuis-Oudshoorn CG, Hermens HJ. Measuring quality of life in stroke subjects receiving an implanted neural prosthesis for drop foot. Artif Organs. 2010;34(5):366–76.CrossRefPubMedGoogle Scholar
  48. 48.
    Bethoux F, Rogers HL, Nolan KJ, et al. The effects of peroneal nerve functional electrical stimulation versus ankle-foot orthosis in patients with chronic stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2014;28(7):688–97.CrossRefPubMedGoogle Scholar
  49. 49.
    Bethoux F, Rogers HL, Nolan KJ, et al. Long-term follow-up to a randomized controlled trial comparing peroneal nerve functional electrical stimulation to an ankle foot orthosis for patients with chronic stroke. Neurorehabil Neural Repair. 2015;29:911–922. pii: 1545968315570325.Google Scholar
  50. 50.
    van Swigchem R, van Duijnhoven HJ, den Boer J, Geurts AC, Weerdesteyn V. Effect of peroneal electrical stimulation versus an ankle-foot orthosis on obstacle avoidance ability in people with stroke-related foot drop. Phys Ther. 2012;92(3):398–406.CrossRefPubMedGoogle Scholar
  51. 51.
    Winter DA. Foot trajectory in human gait: a precise and multifactorial motor control task. Phys Ther. 1992;72:45–66.PubMedGoogle Scholar
  52. 52.
    O'Dell MW, Dunning K, Kluding P, Wu SS, Feld J, Ginosian J, McBride K. Response and prediction of improvement in gait speed from functional electrical stimulation in persons with poststroke drop foot. PM R. 2014;6(7):587–601.CrossRefPubMedGoogle Scholar
  53. 53.
    Smith KJ, McDonald WI. The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease. Philos Trans R Soc Lond B Biol Sci. 1999;354(1390):1649–73.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Larocca NG. Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners. Patient. 2011;4:189–201.CrossRefPubMedGoogle Scholar
  55. 55.
    Scott SM, van der Linden ML, Hooper JE, Cowan P, Mercer TH. Quantification of gait kinematics and walking ability of people with multiple sclerosis who are new users of functional electrical stimulation. J Rehabil Med. 2013;45(4):364–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Stein RB, Everaert DG, Thompson AK, Su LC, Whittaker M, Robertson J, et al. Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil Neural Repair. 2010;24:152–67.CrossRefPubMedGoogle Scholar
  57. 57.
    Miller L, Rafferty D, Paul L, Mattison P. The impact of walking speed on the effects of functional electrical stimulation for foot drop in people with multiple sclerosis. Disabil Rehabil Assist Technol. 2015;31:1–6.CrossRefGoogle Scholar
  58. 58.
    Street T, Taylor P, Swain I. Effectiveness of functional electrical stimulation on walking speed, functional walking category, and clinically meaningful changes for people with multiple sclerosis. Arch Phys Med Rehabil. 2015;96(4):667–72.CrossRefPubMedGoogle Scholar
  59. 59.
    Downing A, Van Ryn D, Fecko A, Aiken C, McGowan S, Sawers S, McInerny T, Moore K, Passariello L, Rogers H. Effect of a 2-week trial of functional electrical stimulation on gait function and quality of life in people with multiple sclerosis. Int J MS Care. 2014;16(3):146–52.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Barrett CL, Mann GE, Taylor PN, Strike P. A randomized trial to investigate the effects of functional electrical stimulation and therapeutic exercise on walking performance for people with multiple sclerosis. Mult Scler. 2009;15(4):493–504.CrossRefPubMedGoogle Scholar
  61. 61.
    Miller L, Rafferty D, Paul L, Mattison P. A comparison of the orthotic effect of the Odstock Dropped Foot Stimulator and the Walkaide functional electrical stimulation systems on energy cost and speed of walking in Multiple Sclerosis. Disabil Rehabil Assist Technol. 2014;10(6):482–5.CrossRefGoogle Scholar
  62. 62.
    Sheffler LR, Bailey SN, Chae J. Spatiotemporal and kinematic effect of peroneal nerve stimulation versus an ankle-foot orthosis in patients with multiple sclerosis: a case series. PM R. 2009;1(7):604–11.CrossRefPubMedGoogle Scholar
  63. 63.
    Bulley C, Mercer TH, Hooper JE, Cowan P, Scott S, van der Linden ML. Experiences of functional electrical stimulation (FES) and ankle foot orthoses (AFOs) for foot-drop in people with multiple sclerosis. Disabil Rehabil Assist Technol. 2015;10(6):458–67.CrossRefGoogle Scholar
  64. 64.
    Surveillance of Cerebral Palsy in Europe (SCPE). Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol. 2002;44:633–40.Google Scholar
  65. 65.
    Surman G, Bonellie S, Chalmers I, Colver A, Dolk H, Hemming K, King A, Kurinczuk I, Parkes I, Platt MJ. UKCP: a collaborative network of cerebral palsy registers in the United Kingdom. J Public Health (Oxf). 2006;28(2):148–56.CrossRefGoogle Scholar
  66. 66.
    Wiley ME, Damiano DL. Lower-extremity strength profiles in spastic cerebral palsy. Dev Med Child Neurol. 1998;40:100–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Fowler EG, Staudt LA, Greenberg MB. Lower-extremity selective voluntary motor control in patients with spastic cerebral palsy: increased distal motor impairment. Dev Med Child Neurol. 2010;52:264–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Carmick J. Managing equinus in children with cerebral palsy: electrical stimulation to strengthen the triceps surae muscle. Dev Med Child Neurol. 1995;37(11):965–75.CrossRefPubMedGoogle Scholar
  69. 69.
    Carmick J. Clinical use of neuromuscular electrical stimulation for children with cerebral palsy, part 1: lower extremity. Phys Ther. 1993;73(8):505–13.PubMedGoogle Scholar
  70. 70.
    Brown JK, Rodda J, Walsh EG, Wright GW. Neurophysiology of lower-limb function in hemiplegic children. Dev Med Child Neurol. 1991;33(12):1037.CrossRefPubMedGoogle Scholar
  71. 71.
    Comeaux P, Patterson N, Rubin M, Meiner R. Effect of neuromuscular electrical stimulation during gait in children with cerebral palsy. Pediatr Phys Ther. 1997;9:103–9.CrossRefGoogle Scholar
  72. 72.
    Postans NJ, Granat MH. Effect of functional electrical stimulation, applied during walking, on gait in spastic cerebral palsy. Dev Med Child Neurol. 2005;47:46–52.CrossRefPubMedGoogle Scholar
  73. 73.
    Orlin MN, Pierce SR, Stackhouse CL, Smith BT, Johnston T, Shewokis PA, McCarthy JJ. Immediate effect of percutaneous intramuscular stimulation during gait in children with cerebral palsy: a feasibility study. Dev Med Child Neurol. 2005;47(10):684–90.CrossRefPubMedGoogle Scholar
  74. 74.
    Taylor PN, Burridge JH, Dunkerley AL, Lamb A, Wood DE, Norton JA, Swain ID. Patients’ perceptions of the Odstock Dropped Foot Stimulator (ODFS). Clin Rehabil. 1999;13(5):439–46.CrossRefPubMedGoogle Scholar
  75. 75.
    Dalton H, Taylor P, New letter Winter 2011 Accessed 17 Oct 2015.
  76. 76.
    Van der Linden ML, Hooper JE, Mercer TM. Functional electrical stimulation to treat foot drop for people with MS; user perceptions of benefits, disadvantages and service provision in Edinburgh. In: Proceedings of rehabilitation in MS (RIMS) meeting, 6–7 June 2014; Brighton.Google Scholar
  77. 77.
    Bulley C, Shiels J, Wilkie K, Salisbury L. User experiences, preferences and choices relating to functional electrical stimulation and ankle foot orthoses for foot-drop after stroke. Physiotherapy. 2011;97(3):226–33.CrossRefPubMedGoogle Scholar
  78. 78.
    Economic Report. Functional electrical stimulation for dropped foot of central neurological origin [Internet]. NHS Purchasing and Supply Agency. 2010. CEP10012. Available from: Accessed 19 July 2016.
  79. 79.
    Ernst J, Grundey J, Hewitt M, von Lewinski F, Kaus J, Schmalz T, Rohde V, Liebetanz D. Towards physiological ankle movements with the ActiGait implantable drop foot stimulator in chronic stroke. Restor Neurol Neurosci. 2013;31(5):557–69.PubMedGoogle Scholar
  80. 80.
    Kottink A, Hermens HJ, Nene AV, Tenniglo MJ, van der Aa HE, Buschman HP, Ijzerman MJ. A randomized controlled trial of an implantable 2-channel peroneal nerve stimulator on walking speed and activity in poststroke hemiplegia. Arch Phys Med Rehabil. 2007;88(8):971–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Schiemanck S, Berenpas F, van Swigchem R, van den Munckhof P, de Vries J, Beelen A, Nollet F, Geurts AC. Effects of implantable peroneal nerve stimulation on gait quality, energy expenditure, participation and user satisfaction in patients with post-stroke drop foot using an ankle-foot orthosis. Restor Neurol Neurosci. 2015;33(6):795–807.CrossRefPubMedGoogle Scholar
  82. 82.
    Heller BW, Clarke AJ, Good TR, Healey TJ, Nair S, Pratt EJ, Reeves ML, van der Meulen JM, Barker AT. Automated setup of functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and electrode array: results from a gait-lab based study. Med Eng Phys. 2013;35(1):74–81.CrossRefPubMedGoogle Scholar
  83. 83.
    O'Halloran T, Haugland M, Lyons GM, Sinkjaer T. An investigation of the effect of modifying stimulation profile shape on the loading response phase of gait, during FES-corrected drop foot: stimulation profile and loading response. Neuromodulation. 2004;7(2):113–25.CrossRefPubMedGoogle Scholar
  84. 84.
    Melo PL, Silva MT, Martins JM, Newman DJ. Technical developments of functional electrical stimulation to correct drop foot: sensing, actuation and control strategies. Clin Biomech. 2015;30(2):101–13.CrossRefGoogle Scholar
  85. 85.
    Johnson CA, Burridge JH, Strike PW, Wood DE, Swain ID. The effect of combined use of botulinum toxin type A and functional electric stimulation in the treatment of spastic drop foot after stroke: a preliminary investigation. Arch Phys Med Rehabil. 2004;85(6):902–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Ng MF, Tong RK, Li LS. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation: six-month follow-up. Stroke. 2008;39(1):154–60.CrossRefPubMedGoogle Scholar
  87. 87.
    Johnston TE, Finson RL, McCarthy JJ, Smith BT, Betz RR, Mucahey MJ. The use functional electrical stimulation to augment traditional orthopaedic surgery in children with cerebral palsy. J Pediatr Orthop. 2004;24:283–91.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marietta L. van der Linden
    • 1
    Email author
  • Thomas H. Mercer
    • 1
  1. 1.Department of Rehabilitation SciencesQueen Margaret University, Centre for Health Activity and Rehabilitation ResearchMusselburghUK

Personalised recommendations